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An analysis has been carried out to study the flowandheat transfer in a liquid filmover a permeable stretching sheet.Using similarity
transformations, the time-dependent boundary layer equations are reduced to a set of nonlinear ordinary differential equations.
The resulting parameter problem and velocity as well as temperature fields are solved using the homotopy analysis method (HAM).
Analytic series solutions are given, and numerical results for velocity and the temperature profiles are presented through graphs
of different values for pertinent parameter. The effects of unsteadiness parameter and permeability parameter on the velocity and
temperature profiles are explored for different values of blowing or suction parameter.

1. Introduction

The study of flow and heat transfer in a thin liquid film is
often encountered in industrial and engineering applications.
Such processes are wire and fibre coating, cooling of metallic
plates, drawing of a polymer sheet, aerodynamic extrusion
of plastic sheets, and thinning of copper wires. In polymer
processing application, the flow over a permeable stretching
sheet has received considerable attention from researchers
because of its widespread applications.Therefore, the analysis
of momentum and thermal transport within thin liquid film
on a continuously stretching surface is important for gaining
some fundamental understanding of such processes. Crane
[1] studied theNewtonian fluid flow induced by the stretching
of an elastic sheet.The boundary layer equation is considered,
and the boundary conditions are prescribed at the sheet
and on the fluid at infinity. Nonetheless, in real physical
application involving coating processes, the consideration of
the fluid adhering to the finite liquid film is important. The
hydrodynamics of a flow in a thin liquid film driven by an
unsteady stretching surfacewas first investigated byWang [2].
Andersson et al. [3] explored the heat transfer characteristics
of the hydrodynamical problem. Wang [4] investigated the
same problem of Andersson et al. [3], presenting analytic

solutions. Several researchers extended Wang’s [2] classical
problem in non-Newtonian problems [5–8], thermocapillar-
ity effects [9–12], and magnetic effects [13, 14].

Wang [4] was probably the first to analyze the flow
and heat transfer in a thin liquid film on an unsteady
stretching surface using homotopy analysis method (HAM).
The HAM is a general analytic method to obtain series
solutions for various types of nonlinear equations [15, 16].
Several studies have successfully applied HAM to various
nonlinear problems in science and engineering such as in heat
transfer [17], upper-convected Maxwell fluid [18], Kawahara
equation [19], diffusion and reaction in porous catalyst [20],
micropolar fluid flow [21, 22], and MHD flow [23, 24].

The purpose of the present study is to give a numerical
analysis of the flow and heat transfer in a thin liquid film
over a porous stretching sheet, and the effects of unsteadiness
parameter on the film thickness are explored for different
values of blowing or suction parameter. Here the momentum
and energy equations are highly nonlinear; hence a similarity
transformation is used to transform the nonlinear partial
differential equations into nonlinear ordinary differential
equations. The resulting parameter problem and velocity as
well as temperature fields are solved using the homotopy
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analysis method (HAM). The analytical solutions reached
using HAM are presented and implications discussed.

2. Mathematical Model

Consider that the Newtonian fluid flow in a thin liquid film
of uniform thickness ℎ(𝑡) on a horizontal thin elastic sheet
emerges from a narrow slot at the origin of a Cartesian
coordinate system.The fluidmotion and heat transfer are due
to the stretching of a permeable elastic sheet parallel to the 𝑥-
axis at 𝑦 = 0. Two equal and opposite forces are applied along
the𝑥-axis, keeping the origin fixed.Under these assumptions,
the governing conservation equations of mass, momentum,
and energy at unsteady state can be expressed as

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, (1)

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕
2
𝑢

𝜕𝑦2
, (2)

𝜌𝐶
𝑝
(
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝜅

𝜕
2
𝑇

𝜕𝑦2
, (3)

where 𝑢 is the velocity component of the fluid in the 𝑥

direction is defined as𝑈 = 𝑏𝑥/(1−𝛼𝑡), 𝑣
𝑠
is the mass transfer

velocity at the surface of the sheet with 𝑣
𝑠
> 0 for blowing

(injection) and 𝑣
𝑠
< 0 for suction, and 𝑣

𝑠
= 0 corresponding

to an impermeable sheet. Further, 𝑇 is the temperature, 𝜈
is the kinematic viscosity, 𝜌 is the density, 𝐶

𝑝
is the specific

heat at constant pressure, and 𝜅 is the thermal diffusivity. It is
assumed that the surface of the planar liquid film is smooth
and free of surface waves, and the viscous shear stress as well
as the heat flux vanishes at the adiabatic free surface.Thus the
boundary conditions are

𝑢 = 𝑈, 𝑣 = 𝑣
𝑠
, 𝑇 = 𝑇

𝑠
at 𝑦 = 0,

𝜕𝑢

𝜕𝑦
=
𝜕𝑇

𝜕𝑦
= 0, 𝑣 =

𝑑ℎ

𝑑𝑡
at 𝑦 = ℎ.

(4)

The elastic sheet’s temperature is assumed to vary both along
the sheet and with time in accordance with

𝑇
𝑠
= 𝑇
𝑜
− 𝑇ref

𝑏𝑥
2

𝜈
(1 − 𝛼𝑡)

−3/2
, (5)

where 𝑇
𝑜
is the temperature at the slit, 𝑇ref is the constant ref-

erence temperature for all 𝑡 < 1/𝛼, and 𝑑 is the positive con-
stant of proportionality with dimension (length2−𝑟 time−1).

Consider employing the similarity transformationswhich
are given as

𝜓 = 𝛽𝑥[
𝜈𝑏

1 − 𝛼𝑡
]

1/2

𝑓 (𝜂) ,

𝑇 = 𝑇
𝑜
− 𝑇ref [

𝑏𝑥
2

𝜈(1 − 𝛼𝑡)
−3/2

] 𝜃 (𝜂) ,

𝜂 =
1

𝛽
[

𝑏

𝜈 (1 − 𝛼𝑡)
]

1/2

𝑦,

(6)

where 𝛽 is the dimensionless film thickness and𝜓(𝑥, 𝑦) is the
stream function defined by

𝑢 =
𝜕𝜓

𝜕𝑦
=

𝑏𝑥

1 − 𝛼𝑡
𝑓

(𝜂) ,

𝑣 = −
𝜕𝜓

𝜕𝑥
= −(

𝜈𝑏

1 − 𝛼𝑡
)

1/2

𝛽𝑓 (𝜂) ,

(7)

where a prime denotes differentiation with respect to 𝜂.
Apparently, (7) has already satisfied the continuity equation,
(1). Consequently, (1)–(4) are transformed to the following
nonlinear boundary-value problem:

𝑓

+ 𝛾 (𝑓𝑓


−
1

2
𝑆𝜂𝑓

− (𝑓

)
2

− 𝑆𝑓

) = 0, (8)

1

Pr
𝜃

+ 𝛾 (𝑓𝜃


− 2𝑓

𝜃 −

1

2
𝑆𝜂𝜃

−
3

2
𝑆𝜃) = 0, (9)

subject to

𝑓 (0) = 𝐾, 𝑓

(0) = 1,

𝑓 (1) =
1

2
𝑆, 𝑓


(1) = 0,

(10)

𝜃 (0) = 1, 𝜃

(1) = 0, (11)

where 𝑆 = 𝛼/𝑏 is a dimensionless measure of the unsteadi-
ness, 𝛾 = 𝛽

2 is an unknown constant which must be
determined as a part of the boundary value problem, Pr =

𝜈/𝜅 is Prandtl number, and 𝐾 = 𝑣
𝑠
/𝛽(𝜈𝑏)

1/2 is permeability
parameter. It is worth mentioning that the momentum
boundary layer problem defined by the ODE (8) subject to
the relevant boundary conditions (10) is decoupled from the
thermal boundary layer problem, while the temperature field
𝜃(𝜂) is on the other hand coupled to the velocity field. The
most important characteristics of flow and heat transfer are
the shear stress 𝜏

𝑠
and the heat flux 𝑞

𝑠
on the stretching sheet

that are defined as

𝜏
𝑠
= 𝜇(

𝜕𝑢

𝜕𝑦
)

𝑦=0

,

𝑞
𝑠
= −𝜅(

𝜕𝑇

𝜕𝑦
)

𝑦=0

,

(12)

where 𝜇 is the fluid dynamic viscosity. The local skin-friction
coefficient 𝐶

𝑓
and the local Nusselt number Nu

𝑥
can be

defined as

𝐶
𝑓
=

𝜏
𝑠

𝜌𝑢2/2
,

Nu
𝑥
= −

𝑥𝑞
𝑠

𝜅𝑇ref
.

(13)

Thus, the skin friction and the rate of heat transfer for fluid
flow in a thin film can be expressed as

1

2
𝐶
𝑓
Re1/2
𝑥

=
1

𝛽
𝑓

(0) ,

Nu
𝑥
Re−1/2
𝑥

=
𝑏𝑥
2

𝛽𝜈(1 − 𝛼𝑡)
1/2

𝜃

(0) ,

(14)

where Re
𝑥
= 𝑈𝑥/𝜈 is the local Reynolds number.
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3. Analytical Approach

In this section we apply HAM to solve systems (8)–(11). We
assume that the solutions of𝑓(𝜂) and 𝜃(𝜂) can be expressed by
a set of base functions {𝜂𝑚 | 𝑚 = 0, 1, 2, . . .}with the following
forms:

𝑓 (𝜂) =

+∞

∑

𝑚=0

𝑎
𝑚
𝜂
𝑚
, (15)

𝜃 (𝜂) =

+∞

∑

𝑚=0

𝑐
𝑚
𝜂
𝑚
, (16)

where 𝑎
𝑚
and 𝑐
𝑚
are constants. Under the rule of solution

expression given by (8) and (9), subject to the boundary
conditions (10) and (11), it is straightforward to choose

𝑓
0
(𝜂) = (

−𝑆

4
+
𝐾

2
+
1

2
) 𝜂
3
+ (

3𝑆

4
−
3𝐾

2
−
3

2
) 𝜂
2
+ 𝜂 + 𝐾,

(17)

𝜃
0
(𝜂) = 1 (18)

as the initial guesses of 𝑓(𝜂) and 𝜃(𝜂). The auxiliary linear
operators 𝐿

𝑓
= 𝜕
3
/𝜕𝜂
3 and 𝐿

𝜃
= 𝜕
2
/𝜕𝜂
2 are chosen with the

following properties:

𝐿
𝑓
[𝐶
1
+ 𝐶
2
𝜂 + 𝐶
3
𝜂
2
] = 0,

𝐿
𝜃
[𝐶
4
+ 𝐶
5
𝜂] = 0,

(19)

where 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, and 𝐶

5
are constants of integration.

From (8) and (9), the nonlinear operators are defined as

𝑁
𝑓
[𝐹 (𝜂, 𝑞) , Γ (𝑞)]

= 𝐹

+ Γ [𝐹𝐹


−
1

2
𝑆𝜂𝐹

− (𝐹

)
2
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] ,

𝑁
𝜃
[𝐹 (𝜂, 𝑞) , Θ (𝜂, 𝑞) , Γ (𝑞)]

=
1

Pr
Θ

+ Γ [𝐹Θ


− 2𝐹

Θ −

1

2
𝑆𝜂Θ

−
3

2
𝑆Θ] ,

(20)

where 𝐹(𝜂, 𝑞) and Θ(𝜂, 𝑞) are both unknown functions of 𝜂
and 𝑞 while Γ is a function dependent on the embedding
parameter 𝑞. Let ℎ

𝑓
and ℎ

𝜃
denote the non-zero auxiliary

parameters whereas 𝐻
𝑓
and 𝐻

𝜃
denote nonzero auxiliary

functions, respectively.The zero-order deformation equation
can be constructed as

(1 − 𝑞) 𝐿
𝑓
[𝐹 (𝜂, 𝑞) − 𝑓

0
(𝜂)]

= 𝑞ℎ
𝑓
𝐻
𝑓
𝑁
𝑓
[𝐹 (𝜂, 𝑞) , Γ (𝑞)] ,

(1 − 𝑞) 𝐿
𝜃
[Θ (𝜂, 𝑞) − 𝜃

0
(𝜂)]

= 𝑞ℎ
𝜃
𝐻
𝜃
𝑁
𝜃
[𝐹 (𝜂, 𝑞) , Θ (𝜂, 𝑞) , Γ (𝑞)] ,

(21)

subject to the boundary conditions

𝐹 (0, 𝑞) = 𝐾, 𝐹

(0, 𝑞) = 1, Θ (0, 𝑞) = 1,

𝐹 (1, 𝑞) =
1

2
𝑆, 𝐹


(1, 𝑞) = 0, Θ


(1, 𝑞) = 0.

(22)

From (17) and (18), it is straightforward to show that when
𝑞 = 0, the solutions of (21)-(22) are

𝐹 (𝜂, 0) = 𝑓
0
(𝜂) , Θ (𝜂, 0) = 𝜃

0
(𝜂) . (23)

Since ℎ
𝑓
, ℎ
𝜃

̸= 0 and 𝐻
𝑓
, 𝐻
𝜃

̸= 0 when 𝑞 = 1, (21)-(22) are
equivalent to (8)–(11), respectively, provided that

𝐹 (𝜂, 1) = 𝑓 (𝜂) , Θ (𝜂, 1) = 𝜃 (𝜂) , Γ (1) = 𝛾.

(24)

Thus, as 𝑞 increases from 0 to 1, 𝐹(𝜂, 𝑞) andΘ(𝜂, 𝑞) vary from
the initial guesses 𝑓

0
(𝜂) and 𝜃

0
(𝜂) to the solutions 𝑓(𝜂) and

𝜃(𝜂) in (8)–(11). In addition, Γ also varies from the initial guess

Γ (0) = 𝛾
0 (25)

to 𝛾. Applying the Taylor series to (23) and (25), 𝐹(𝜂, 𝑞),
Θ(𝜂, 𝑞), and Γ(𝑞) can be expanded as series of 𝑞

𝐹 (𝜂, 𝑞) = 𝑓
0
(𝜂) +

+∞

∑

𝑚=1

𝑓
𝑚
(𝜂) 𝑞
𝑚
,

Θ (𝜂, 𝑞) = Θ
0
(𝜂) +

+∞

∑

𝑚=1

𝜃
𝑚
(𝜂) 𝑞
𝑚
,

Γ (𝑞) = 𝛾
0
+

+∞

∑

𝑚=1

𝛾
𝑚
𝑞
𝑚
,

(26)

where

𝑓
𝑚
(𝜂) =

1

𝑚!
[
𝜕
𝑚
𝐹 (𝜂, 𝑞)

𝜕𝑞𝑚
]

𝑞=0

,

𝜃
𝑚
(𝜂) =

1
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𝜕
𝑚
Θ(𝜂, 𝑞)

𝜕𝑞𝑚
]

𝑞=0

,

𝛾
𝑚
=

1

𝑚!
[
𝜕
𝑚
Γ (𝑞)

𝜕𝑞𝑚
]

𝑞=0

.

(27)

Thus, using (24), we have

𝑓 (𝜂) = 𝑓
0
(𝜂) +

+∞

∑

𝑚=1

𝑓
𝑚
(𝜂) ,

𝜃 (𝜂) = 𝜃
0
(𝜂) +

+∞

∑

𝑚=1

𝜃
𝑚
(𝜂) ,

𝛾 = 𝛾
0
+

+∞

∑

𝑚=1

𝛾
𝑚
.

(28)

By differentiating (21)𝑚 times with respect to 𝑞, then setting
𝑞 = 0, and finally dividing by𝑚!, the𝑚th-order deformation
equations are obtained:

𝐿
𝑓
[𝑓
𝑚
(𝜂) − 𝜒

𝑚
𝑓
𝑚−1

(𝜂)] = ℎ
𝑓
𝐻
𝑓
(𝜂) 𝑅
1,𝑚

(𝜂) ,

𝐿
𝜃
[𝜃
𝑚
(𝜂) − 𝜒

𝑚
𝜃
𝑚−1

(𝜂)] = ℎ
𝜃
𝐻
𝜃
(𝜂) 𝑅
2,𝑚

(𝜂) ,

(29)
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subject to the boundary conditions

𝑓
𝑚
(0) = 𝐾, 𝑓



𝑚
(0) = 0, 𝜃

𝑚
(0) = 0,

𝑓
𝑚
(1) = 0, 𝑓



𝑚
(1) = 0, 𝜃



𝑚
(1) = 0,

(30)

for𝑚 ≥ 1, where

𝑅
1,𝑚

(𝜂) = 𝑓


𝑚−1
+

𝑚−1

∑

𝑛=0

𝛾
𝑚−1−𝑛

𝑛

∑

𝑖=0

(𝑓
𝑖
𝑓


𝑛−𝑖
− 𝑓


𝑖
𝑓


𝑛−𝑖
)

−
1

2
𝑆𝜂

𝑚−1

∑

𝑛=0

𝛾
𝑛
𝑓


𝑚−1−𝑛
− 𝑆

𝑚−1

∑

𝑛=0

𝛾
𝑛
𝑓


𝑚−1−𝑛
,

𝑅
2,𝑚

(𝜂) =
1

Pr
𝜃


𝑚−1
+

𝑚−1

∑

𝑛=0

𝛾
𝑚−1−𝑛

𝑛

∑

𝑖=0

(𝑓
𝑖
𝜃


𝑛−𝑖
− 2𝑓


𝑛−𝑖
𝜃
𝑖
)

−
1

2
𝑆𝜂

𝑚−1

∑

𝑛=0

𝛾
𝑛
𝜃


𝑚−1−𝑛
−
3

2
𝑆

𝑚−1

∑

𝑛=0

𝛾
𝑛
𝜃
𝑚−1−𝑛

,

𝜒
𝑚
= {

1 𝑚 > 1,

0 𝑚 = 1.

(31)

Let 𝑓∗
𝑚
and 𝜃∗
𝑚
denote the particular solutions of (29) as

𝑓
∗

𝑚
= ∫

𝜂

0

∫

𝜂

0

∫

𝜂

0

ℎ
𝑓
𝐻
𝑓
(𝑠) 𝑅
1,𝑚

(𝑠) 𝑑𝑠 𝑑𝜂 𝑑𝜂 + 𝜒
𝑚
𝑓
𝑚−1

,

𝜃
∗

𝑚
= ∫

𝜂

0

∫

𝜂

0

ℎ
𝜃
𝐻
𝜃
(𝑠) 𝑅
2,𝑚

(𝑠) 𝑑𝑠 𝑑𝜂 + 𝜒
𝑚
𝜃
𝑚−1

.

(32)

The general solutions for (19) are

𝑓
𝑚
(𝜂) = 𝑓

∗

𝑚
+ 𝐶
1
+ 𝐶
2
𝜂 + 𝐶
3
𝜂
2
,

𝜃
𝑚
(𝜂) = 𝜃

∗

𝑚
+ 𝐶
4
+ 𝐶
5
𝜂.

(33)

Hence, the𝑚th-order approximations of𝑓(𝜂), 𝜃(𝜂), and 𝛾 are
given, respectively, by

𝑓 (𝜂) ≈

𝑚

∑

𝑛=0

𝑓
𝑛
(𝜂) ,

𝜃 (𝜂) ≈

𝑚

∑

𝑛=0

𝜃
𝑛
(𝜂) ,

𝛾 ≈

𝑚−1

∑

𝑛=0

𝛾
𝑛
.

(34)

4. Results and Discussion

We solve (29)-(30) with the aid of Maple, a symbolic compu-
tation software.The auxiliary functions ℎ

𝑓
and ℎ
𝜃
in (29)were

set to be equal to 1 in all calculations reported in this paper.
The solution of (29)-(30) can be expressed as

𝑓
𝑚
(𝜂) =

4𝑚+3

∑

𝑘=2

𝑎
𝑚,𝑘

(𝜂) 𝜂
𝑘
, 𝜃

𝑚
(𝜂) =

4𝑚

∑

𝑘=1

𝑐
𝑚,𝑘

(𝜂) 𝜂
𝑘
, (35)

for𝑚 ≥ 1, where 𝑎
𝑚,𝑘

and 𝑐
𝑚,𝑘

are the coefficients, which can
be obtained recursively for𝑚 = 1, 2, 3, . . . using

𝑎
0,1

= 1, 𝑎
0,2

=
3𝑆

4
−
3𝐾

2
−
3

2
,

𝑎
0,3

=
−𝑆

4
+
𝐾

2
+
1

2
, 𝑏

0,0
= 1,

(36)

given by (16) and (17). When 𝑚 = 1, we have the analytic
solutions as follows:

𝑓
1
(𝜂) =

7

∑

𝑘=2

𝑎
1,𝑘
(𝜂) 𝜂
𝑘
, 𝜃

1
(𝜂) =

4

∑

𝑘=1

𝑐
1,𝑘
(𝜂) 𝜂
𝑘
,

𝛾
0
=
105 (2 − 𝑆 + 2𝐾 − 2𝐾/ℎ

𝑓
)

𝑅
,

(37)

where

𝑎
1,2

=
−3

8𝑅
(152𝐾ℎ

𝑓
𝑆 + 76ℎ

𝑓
𝐾
2
𝑆 − 94ℎ

𝑓
𝐾𝑆
2
− 112𝐾 + 24ℎ

𝑓

− 504𝐾
2
+ 72ℎ

𝑓
𝐾 + 76ℎ

𝑓
𝑆 + 112𝐾𝑆 − 94ℎ

𝑓
𝑆
2

+ 24ℎ
𝑓
𝐾
3
− 238𝐾𝑆

2
+ 812𝐾

2
𝑆 + 72ℎ

𝑓
𝐾
2

+25𝑆
3
ℎ
𝑓
− 672𝐾

3
) ,

𝑎
1,3

=
−1

2𝑅
(−210𝐾

3
− 210𝐾

2
− 70𝐾 + 96ℎ

𝑓
𝑆 + 144ℎ

𝑓
𝐾

− 70𝐾𝑆 − 132ℎ
𝑓
𝑆
2
𝐾 + 96𝐾

2
ℎ
𝑓
𝑆 + 48ℎ

𝑓

+ 144𝐾
2
ℎ
𝑓
+ 48𝐾

3
ℎ
𝑓
− 132ℎ

𝑓
𝑆
2
+ 36ℎ

𝑓
𝑆
3

+105𝐾
2
𝑆 + 192𝑆ℎ

𝑓
𝐾) ,

𝑎
1,4

=
105

32𝑅
(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾)

× (4𝐾
2
+ 8𝐾 − 3𝑆

2
+ 4𝑆 + 4𝐾𝑆 + 4) ,

𝑎
1,5

=
−21

32𝑅
(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾)

× (24𝐾 + 12𝐾
2
− 4𝑆 − 𝑆

2
− 4𝐾𝑆 + 12) ,

𝑎
1,6

=
21

32𝑅
(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾)

× (4𝐾
2
+ 8𝐾 + 𝑆

2
− 4𝑆 + 4 − 4𝐾𝑆) ,

𝑎
1,7

=
−3

32𝑅
(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾)

× (4𝐾
2
+ 8𝐾 + 𝑆

2
− 4𝑆 + 4 − 4𝐾𝑆) ,
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Figure 1: The ℎ
𝑓
curve of 𝛾 = 𝛽

2 using 10th-order HAM approximation for the cases 𝑆 = 0.8 and Pr = 1.

𝑐
1,1

=
−105

2𝑅

ℎ
𝜃

ℎ
𝑓

(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾) (4𝐾 − 5𝑆) ,

𝑐
1,2

=
−105

4𝑅

ℎ
𝜃

ℎ
𝑓

(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾) (4 + 3𝑆) ,

𝑐
1,3

=
105

2𝑅

ℎ
𝜃

ℎ
𝑓

(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾) (2𝐾 − 𝑆 + 2) ,

𝑐
1,4

=
−105

8𝑅

ℎ
𝜃

ℎ
𝑓

(2ℎ
𝑓
− ℎ
𝑓
𝑆 + 2ℎ

𝑓
𝐾 − 2𝐾) (2𝐾 − 𝑆 + 2) ,

(38)

where 𝑅 = 162𝐾
2
− 225𝐾𝑆 + 114𝐾 + 72𝑆

2
− 50𝑆 + 22. Note

that (37) will be simplified to the expression 𝛾
0
of Wang [4]

when 𝐾 = 0.
We noted that the HAM analytic solutions contain two

nonzero auxiliary parameters ℎ
𝑓
and ℎ

𝜃
that can be used to

adjust and control the convergence of the series solutions.
Liao [15, 25] indicates that the analytic solutions given by
HAM contain an auxiliary parameter ℎ which could be
chosen by means of what he calls the ℎ-curve.

Figures 1(a) and 1(b) show the variation of 𝛾with ℎ
𝑓
using

10th-orderHAMapproximationwhen 𝑆 = 0.8 for suction and
𝑆 = 1.4 for blowing, respectively. For suction case, it is shown
that the convergence region can be obtained by choosing a
value of ℎ

𝑓
in the ranges −1.8 ≤ ℎ

𝑓
≤ −0.1 for 𝐾 = −0.3,

−2.5 ≤ ℎ
𝑓
≤ 0.3 for 𝐾 = −0.5, −2.3 ≤ ℎ

𝑓
≤ −0.2 for 𝐾 = −1,

−2.3 ≤ ℎ
𝑓
≤ −0.5 for 𝐾 = −1.5, and −2.3 ≤ ℎ

𝑓
≤ −0.5 for

𝐾 = −2.
For blowing case, the appropriate ranges of the auxiliary

parameter ℎ
𝑓
to maintain the convergent rate and region of 𝛾

are −2 ≤ ℎ
𝑓
≤ −0.5 for 𝐾 = 0.1, −1.75 ≤ ℎ

𝑓
≤ 0 for 𝐾 = 0.2,

−1.4 ≤ ℎ
𝑓
≤ −0.1 for 𝐾 = 0.3, −1.2 ≤ ℎ

𝑓
≤ −0.1 for 𝐾 = 0.4,

and −0.65 ≤ ℎ
𝑓
≤ −0.5 for𝐾 = 0.5.

The ℎ
𝑓
curves of 𝑓(0) are graphed in Figures 2(a) and

2(b) for suction and blowing, respectively. For suction case,

it is shown that the convergence region can be obtained by
choosing a value of ℎ

𝑓
in the ranges −1.5 ≤ ℎ

𝑓
≤ −0.4 for

𝐾 = −0.3, −1.8 ≤ ℎ
𝑓
≤ 0 for 𝐾 = −0.5, −1.9 ≤ ℎ

𝑓
≤ −0.1 for

𝐾 = −1, −1.7 ≤ ℎ
𝑓
≤ −0.3 for 𝐾 = −1.5, and −1.5 ≤ ℎ

𝑓
≤

−0.5 for𝐾 = −2.
For blowing case, the appropriate ranges of the auxiliary

parameter ℎ
𝑓
to maintain the convergent rate and region of

𝑓

(0) are −1.5 ≤ ℎ

𝑓
≤ −0.25 for 𝐾 = 0.1, −1.4 ≤ ℎ

𝑓
≤ −0.4

for 𝐾 = 0.2, −1.2 ≤ ℎ
𝑓
≤ −0.5 for 𝐾 = 0.3, −1 ≤ ℎ

𝑓
≤ −0.5

for𝐾 = 0.4, and −0.55 ≤ ℎ
𝑓
≤ −0.45 for𝐾 = 0.5.

In order to retain the convergent rate and region of 𝜃(0),
Figures 3(a) and 3(b) show the appropriate ranges of ℎ

𝜃
for

both suction and blowing. For suction case, the appropriate
value of ℎ

𝜃
is in the ranges −0.8 ≤ ℎ

𝜃
≤ −0.6 for 𝐾 = −0.3,

−1.4 ≤ ℎ
𝜃
≤ −0.4 for 𝐾 = −0.5, −1.75 ≤ ℎ

𝜃
≤ −0.75 for

𝐾 = −0.8, and −1.5 ≤ ℎ
𝜃
≤ −1.5 for𝐾 = −1.

For blowing case, the appropriate value of ℎ
𝜃
is in the

ranges −1 ≤ ℎ
𝜃
≤ −0.4 for 𝐾 = 0.1, −0.75 ≤ ℎ

𝜃
≤ −0.5

for 𝐾 = 0.2, −0.6 ≤ ℎ
𝜃
≤ −0.4 for 𝐾 = 0.3, −0.5 ≤ ℎ

𝜃
≤ −0.45

for𝐾 = 0.4, and −0.55 ≤ ℎ
𝜃
≤ −0.5 for𝐾 = 0.5.

To demonstrate the accuracy of the present findings,
results for dimensionless film thickness and the skin friction
are compared with the available results obtained byWang [4].
It is found that all the numerical results in Table 1 agree with
the values of 𝛽 and −𝑓(0) in Wang [4]. As the unsteadiness
parameter 𝑆 increases, the skin friction −𝑓(0) increases and
thereby the film thickness reduces.

The effects of permeability parameter 𝐾 on the velocity
distribution 𝑓


(𝜂) are presented in Figures 4(a) and 4(b)

for suction and blowing, respectively. It is found that, as
permeability parameter 𝐾 increases, the flow velocity of the
thin film increases for suction case, while for blowing case,
the flow velocity decreases.

Figures 5(a) and 5(b) reveal that by increasing the values
of unsteadiness parameter, the velocity of thin film flow
increases for both cases of suction (𝐾 < 0) and blowing
(𝐾 > 0).
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Table 1: Variations of the dimensionless film thickness 𝛽 = 𝛾
1/2 and

the skin friction −𝑓(0) with respect to the unsteadiness parameter
when Pr = 1 and 𝐾 = 0 using 10th-order HAM approximation.

Present work Wang [4]
S ℎ

𝑓
𝛽 −𝑓


(0) 𝛽 −𝑓


(0)

0.8 −0.6 2.151994 2.680943 2.15199 2.68094
1.0 −0.8 1.543616 1.972384 1.54362 1.97238
1.2 −1.0 1.127780 1.442625 1.127780 1.442631
1.4 −1.0 0.821032 1.012784 0.821032 1.012784
1.6 −0.6 0.576173 0.642397 0.567173 0.642397
1.8 −1.0 0.356389 0.309137 0.356389 0.309137

The temperature profiles for different values of suction
and blowing are demonstrated in Figures 6(a) and 6(b). It is
seen that the temperature of the fluid flow increases with the
increase in suction whereas blowing (𝐾 > 0) has quite the
opposite effect on the temperature of the flow.

The effects of the unsteadiness parameter on the temper-
ature profile are shown graphically in Figures 7(a) and 7(b).
It is observed that by increasing the value of unsteadiness
parameter, the temperature profiles decrease for both cases
of suction and blowing.

5. Concluding Remarks

In this paper an analysis has been carried out to study the
effects of porous stretching sheet for both cases of suction
and blowing. Analytical and numerical solutions are obtained
for momentum and heat transfer over a permeable stretching
sheet. The effect of permeability parameter 𝐾 is to increase
the flow velocity 𝑓(𝜂) for suction case and to decrease the
flow velocity for the blowing case. Besides, we found that
the permeability parameter 𝐾 has significant effects on the
temperature distribution.When𝐾 increases, the temperature
of the fluid flow 𝜃(𝜂) increases for suction case and decreases
for blowing case.When the unsteadiness parameter increases,
the velocity of thin film flow increases for both cases of
suction (𝐾 < 0) and blowing (𝐾 > 0); thereby the film
thickness reduces.
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