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Multiple zeta values are the numbers defined by the convergent series 𝜁(𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑘
) = ∑

𝑛1>𝑛2>⋅⋅⋅>𝑛𝑘>0
(1/𝑛
𝑠1

1
𝑛
𝑠2

2
⋅ ⋅ ⋅ 𝑛
𝑠𝑘

𝑘
), where 𝑠

1
, 𝑠
2
,

. . . , 𝑠
𝑘
are positive integers with 𝑠

1
> 1. For 𝑘 ≤ 𝑛, let 𝐸(2𝑛, 𝑘) be the sum of all multiple zeta values with even arguments whose

weight is 2𝑛 and whose depth is 𝑘. The well-known result 𝐸(2𝑛, 2) = 3𝜁(2𝑛)/4was extended to 𝐸(2𝑛, 3) and 𝐸(2𝑛, 4) by Z. Shen and
T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers 𝐸(2𝑛, 𝑘) and
then gave a direct formula for 𝐸(2𝑛, 𝑘) for arbitrary 𝑘 ≤ 𝑛. In this paper we apply a technique introduced by Granville to present an
algorithm to calculate 𝐸(2𝑛, 𝑘) and prove that the direct formula can also be deduced from Eisenstein’s double product.

1. Introduction

Themultiple zeta sums,

𝜁 (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑚
) = ∑
𝑛
1
>𝑛
2
>⋅⋅⋅>𝑛

𝑘
>0

1

𝑛
𝑠
1

1
𝑛
𝑠
2

2
⋅ ⋅ ⋅ 𝑛
𝑠
𝑚

𝑚

, (1)

are also called Euler-Zagier sums, where 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑚
are

positive integers with 𝑠
1

≥ 2. Clearly, the Riemann zeta
function 𝜁(𝑠),

𝜁 (𝑠) =
∞

∑
𝑛=1

1

𝑛𝑠
, 𝑠 > 1, (2)

is the case 𝑚 = 1 in (1). The multiple zeta functions have
attracted considerable interest in recent years.

For Riemann’s zeta function 𝜁(𝑠), Euler proved the follow-
ing identity:

∑
𝑗
1
+𝑗
2
=𝑛

𝑗
1
,𝑗
2
≥1

𝜁 (2𝑗
1
) 𝜁 (2𝑗

2
) =

2𝑛 + 1

2
𝜁 (2𝑛) . (3)

Recently, some identities similar to (3) have also been estab-
lished. Given two positive integers 𝑛 and 𝑘 (suppose 𝑛 ≥ 𝑘),
define a number 𝑍(𝑛, 𝑘) by

𝑍 (𝑛, 𝑘) = ∑
𝑗
1
+𝑗
2
+⋅⋅⋅+𝑗

𝑘
=𝑛

𝑗
1
,𝑗
2
,...,𝑗
𝑘
≥1

𝜁 (2𝑗
1
) 𝜁 (2𝑗

2
) ⋅ ⋅ ⋅ 𝜁 (2𝑗

𝑘
) .

(4)

Then, for 𝑘 ∈ {3, 4, . . . , 9}, the value of𝑍(𝑛, 𝑘) is known [1–5].
Following [6], for 𝑘 ≤ 𝑛, let 𝐸(2𝑛, 𝑘) be the sum of all

multiple zeta values with even arguments whose weight is 2𝑛
and whose depth is 𝑘; that is,

𝐸 (2𝑛, 𝑘) = ∑
𝑗
1
+⋅⋅⋅+𝑗

𝑘
=𝑛

𝑗
1
,𝑗
2
,...,𝑗
𝑘
≥1

𝜁 (2𝑗
1
, 2𝑗
2
, . . . , 2𝑗

𝑘
) .

(5)

In [7], Gangl et al. proved the following identities:

𝐸 (2𝑛, 2) =
3

4
𝜁 (2𝑛) , for 𝑛 ≥ 2, (6)

𝑛−1

∑
𝑟=1

𝜁 (2𝑟 + 1, 2𝑛 − 2𝑟 − 1) =
1

4
𝜁 (2𝑛) , for 𝑛 ≥ 2. (7)
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Recently, using harmonic shuffle relations, Shen and Cai
proved the following results in [8]:

𝐸 (2𝑛, 3) =
5

8
𝜁 (2𝑛) −

1

4
𝜁 (2) 𝜁 (2𝑛 − 2) , for 𝑛 ≥ 3,

𝐸 (2𝑛, 4) =
35

64
𝜁 (2𝑛) −

5

16
𝜁 (2) 𝜁 (2𝑛 − 2) , for 𝑛 ≥ 4.

(8)

In [6], applying the theory of symmetric functions,
Hoffman established the generating function for the numbers
𝐸(2𝑛, 𝑘). He proved that

1 + ∑
𝑛≥𝑘≥1

𝐸 (2𝑛, 𝑘) 𝑡
𝑛
𝑠
𝑘
=

sin (𝜋√1 − 𝑠√𝑡)
√1 − 𝑠 sin (𝜋√𝑡)

. (9)

Based on this generating function, some formulas for𝐸(2𝑛, 𝑘)
for arbitrary 𝑛 ≥ 𝑘 are given. For example, Hoffman obtained
that

𝐸 (2𝑛, 𝑘) =
𝜁 (2𝑛)

22(𝑘−1)
(
2𝑘 − 1
𝑘

)

−
[(𝑘−1)/2]

∑
𝑗=1

𝜁 (2𝑗) 𝜁 (2𝑛 − 2𝑗)

22𝑘−3 (2𝑗 + 1) 𝐵
2𝑗

(
2𝑘 − 2𝑗 − 1

𝑘
) ,

(10)

where 𝐵
2𝑗
is the 2𝑗th Bernoulli number.

In this paper we use a technique introduced by Granville
[9] to present an elementary recursion algorithm to calculate
𝐸(2𝑛, 𝑘), we also give some direct formula for 𝐸(𝑛, 𝑘) for
arbitrary 𝑛 ≥ 𝑘. Our algorithm may be of some interest if
we note that it is obtained through an elementary analytic
method and that the statement of the algorithm is fairly
simple.

2. Statements of the Theorems

Theorem 1. Let 𝑁 denote a positive integer. Let 𝑎(𝑁)
0

, 𝑎(𝑁)
1

,
𝑎(𝑁)
2

, . . . , be a series of numbers defined by

∞

∏
𝑟=1

𝑟 ̸=𝑁

(1 +
𝑥

𝑟2 − 𝑁2
) = 𝑎
(𝑁)

0
+ 𝑎
(𝑁)

1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

(𝑁)

𝑘−1
𝑥
𝑘−1

+ ⋅ ⋅ ⋅ .

(11)

Then, for any two positive integers 𝑛 and 𝑘 with 𝑛 ≥ 𝑘, one has

𝐸 (2𝑛, 𝑘) =
∞

∑
𝑁=1

𝑎(𝑁)
𝑘−1

𝑁2𝑛−2𝑘+2
. (12)

Theorem 2. Given a positive integer𝑁, we have

∞

∏
𝑟=1

𝑟 ̸=𝑁

(1 +
𝑥

𝑟2 − 𝑁2
) = 2𝑁

2
(−1)
𝑁+1

sin (𝜋√𝑁2 − 𝑥)

𝜋𝑥√𝑁2 − 𝑥
. (13)

When 𝑘 is not large, we may use the following recursion
algorithm to calculate 𝑎(𝑁)

𝑘
then use Theorem 1 to get the

formula for 𝐸(2𝑛, 𝑘).

Theorem 3. The coefficients 𝑎(𝑁)
0

, 𝑎(𝑁)
1

, . . . , 𝑎(𝑁)
𝑘

, . . . , can be
calculated recursively by the following formulas:

𝑎
(𝑁)

0
= 1; 𝑘𝑎

(𝑁)

𝑘
= −
𝑘−1

∑
𝑗=0

𝑏
𝑘−𝑗

𝑎
(𝑁)

𝑗
, for 𝑘 ≥ 1, (14)

where 𝑏
1
, 𝑏
2
, . . . , are the numbers defined by

𝑏
𝑗
≜
∞

∑
𝑟=1

𝑟 ̸=𝑁

1

(𝑁2 − 𝑟2)
𝑗
, ∀𝑗 = 1, 2, 3, . . . . (15)

In [6], Hoffman established an interesting result [6,
Lemma 1.3] to obtain his formula (10) for 𝐸(2𝑛, 𝑘). This
lemmamight be deduced from the theory of Bessel functions.
Using the expressions for the Bessel functions of the first kind
with a half integer index, we may deduce from the generating
function (13) a direct formula for 𝑎(𝑁)

𝑘
.

Theorem 4. For 𝑘 ≥ 1, one has

𝑎
(𝑁)

𝑘−1
=

𝜋𝑘−1

𝑘!(2𝑁)𝑘−1

{
{
{

sin(𝑘𝜋
2
)
[𝑘/2]

∑
𝑗=0

(−1)𝑗 (𝑘 + 2𝑗)!

(2𝑗)! (𝑘 − 2𝑗)!

⋅
1

(2𝑁𝜋)2𝑗
− cos(𝑘𝜋

2
)

×
[(𝑘−1)/2]

∑
𝑗=0

(−1)𝑗 (𝑘 + 2𝑗 + 1)!

(2𝑗 + 1)! (𝑘 − 2𝑗 − 1)!

⋅
1

(2𝑁𝜋)2𝑗+1

}
}
}

,

(16)

𝑎
(𝑁)

𝑘−1
=

1

22𝑘−2𝑘!

[(𝑘−1)/2]

∑
𝑗=0

(−1)𝑗(2𝜋)2𝑗 (2𝑘 − 1 − 2𝑗)!

(𝑘 − 1 − 2𝑗)! (2𝑗 + 1)!

⋅
1

𝑁2𝑘−2−2𝑗
.

(17)

To deduce (17) from (16), we only need to write the
expression of 𝑎(𝑁)

𝑘−1
, respectively, according to whether 𝑘 is odd

or even, and use [(𝑘−1)/2]− 𝑗 (if 𝑘 is odd) or [𝑘/2]− 𝑗 (if 𝑘 is
even) to replace 𝑗. In the two cases, we will get the expression
(17) for 𝑎(𝑁)

𝑘−1
. By Theorem 1, we have

𝐸 (2𝑛, 𝑘)

=
[(𝑘−1)/2]

∑
𝑗=0

(−1)𝑗𝜋2𝑗 (2𝑘 − 1 − 2𝑗)!

22𝑘−2−2𝑗𝑘! (𝑘 − 1 − 2𝑗)! (2𝑗 + 1)!
𝜁 (2𝑛 − 2𝑗) ,

(18)

which reproduces Hoffman’s formula (10).
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3. Proofs of the Theorems

Proof of Theorem 1. The left side of (12) is

∑
𝑗
1
+⋅⋅⋅+𝑗

𝑘
=𝑛

𝑗
1
,...,𝑗
𝑘
≥1

𝜁 (2𝑗
1
, 2𝑗
2
, . . . , 2𝑗

𝑘
)

= ∑
𝑗
1
+⋅⋅⋅+𝑗

𝑘
=𝑛

𝑗
1
,...,𝑗
𝑘
≥1

∑
𝑛
1
>𝑛
2
>⋅⋅⋅>𝑛

𝑘
>0

1

𝑛
2𝑗
1

1
𝑛
2𝑗
2

2
⋅ ⋅ ⋅ 𝑛
2𝑗
𝑘

𝑘

= ∑
𝑛
1
>𝑛
2
>⋅⋅⋅>𝑛

𝑘
>0

∑
𝑗
1
+⋅⋅⋅+𝑗

𝑘
=𝑛

𝑗
1
,...,𝑗
𝑘
≥1

1

𝑛
2𝑗
1

1
𝑛
2𝑗
2

2
⋅ ⋅ ⋅ 𝑛
2𝑗
𝑘

𝑘

.

(19)

The second sum in (19) is the coefficient of 𝑥2𝑛 in the formal
power series

∞

∑
𝑗=1

(
𝑥2

𝑛2
1

)

𝑗 ∞

∑
𝑗=1

(
𝑥2

𝑛2
2

)

𝑗

⋅ ⋅ ⋅
∞

∑
𝑗=1

(
𝑥2

𝑛2
𝑘

)

𝑗

=
𝑥2𝑘

(𝑛2
1
− 𝑥2) (𝑛2

2
− 𝑥2) ⋅ ⋅ ⋅ (𝑛2

𝑘
− 𝑥2)

=
𝑘

∑
𝑗=1

(
𝑥2𝑘

𝑛2
𝑗
− 𝑥2

∏
1≤𝑚≤𝑘

𝑚 ̸= 𝑗

1

𝑛2
𝑚
− 𝑛2
𝑗

).

(20)

It follows that the coefficient of 𝑥2𝑛 earlier is

𝑘

∑
𝑗=1

(
1

𝑛2𝑛−2𝑘+2
𝑗

∏
1≤𝑚≤𝑘

𝑚 ̸= 𝑗

1

𝑛2
𝑚
− 𝑛2
𝑗

). (21)

Hence, the sum (19) is

∑
𝑛
1
>𝑛
2
>⋅⋅⋅>𝑛

𝑘
>0

𝑘

∑
𝑗=1

1

𝑛2𝑛−2𝑘+2
𝑗

∏
1≤𝑚≤𝑘

𝑚 ̸= 𝑗

1

𝑛2
𝑚
− 𝑛2
𝑗

. (22)

Now, consider the function

𝑓
𝑁
(𝑥) = ∏

𝑟=1

𝑟 ̸=𝑁

(1 +
𝑥

𝑟2 − 𝑁2
) . (23)

We partition 𝑓
𝑁
(𝑥) into two parts. Let

∏
𝑟>𝑁

(1 +
𝑥

𝑟2 − 𝑁2
) = 𝑃

(𝑁)

0
+ 𝑃
(𝑁)

1
𝑥 + 𝑃
(𝑁)

2
𝑥
2
+ ⋅ ⋅ ⋅ ,

∏
1≤𝑟<𝑁

(1 +
𝑥

𝑟2 − 𝑁2
) = 𝑄

(𝑁)

0
+ 𝑄
(𝑁)

1
𝑥 + 𝑄

(𝑁)

2
𝑥
2
+ ⋅ ⋅ ⋅ .

(24)

Then, we have 𝑃(𝑁)
0

= 𝑄(𝑁)
0

≜ 1, 𝑄(𝑁)
𝑚

= 0, for all 𝑚 ≥ 𝑁, and

𝑃
(𝑁)

𝑗−1
= ∑
𝑛
1
>𝑛
2
>⋅⋅⋅>𝑛

𝑗−1
>𝑁

1

(𝑛2
1
− 𝑁2) ⋅ ⋅ ⋅ (𝑛2

𝑗−1
− 𝑁2)

,

∀1 < 𝑗 ≤ 𝑘,

𝑄
(𝑁)

𝑘−𝑗
= ∑
𝑁>𝑛
𝑗+1
>𝑛
𝑗+2
>⋅⋅⋅>𝑛

𝑘
≥1

1

(𝑛2
𝑗+1

− 𝑁2) ⋅ ⋅ ⋅ (𝑛2
𝑘
− 𝑁2)

,

∀1 ≤ 𝑗 < 𝑘.

(25)

Consider the sum (22). For 𝑗 ∈ {1, 2, . . . , 𝑘}, we treat each
sum in (22) with respect to 𝑛

𝑗
as follows:

∑
𝑛
1
>𝑛
2
>⋅⋅⋅>𝑛

𝑘
>0

1

𝑛2𝑛−2𝑘+2
𝑗

∏
1≤𝑚≤𝑘

𝑚 ̸= 𝑗

1

𝑛2
𝑚
− 𝑛2
𝑗

=
∞

∑
𝑛
𝑗
=𝑘−𝑗+1

[

[

1

𝑛2𝑛−2𝑘+2
𝑗

× ( ∑
𝑛
1
>𝑛
2
>⋅⋅⋅>𝑛

𝑗−1
>𝑛
𝑗

∏
1≤𝑚<𝑗

1

𝑛2
𝑚
− 𝑛2
𝑗

)

×( ∑
𝑛
𝑗
>𝑛
𝑗+1
>⋅⋅⋅>𝑛

𝑘
≥1

∏
𝑗<𝑚≤𝑘

1

𝑛2
𝑚
− 𝑛2
𝑗

)]

]

=
∞

∑
𝑛
𝑗
=𝑘−𝑗+1

1

𝑛2𝑛−2𝑘+2
𝑗

𝑃
(𝑛
𝑗
)

𝑗−1
𝑄
(𝑛
𝑗
)

𝑘−𝑗

=
∞

∑
𝑁=𝑘−𝑗+1

1

𝑁2𝑛−2𝑘+2
𝑃
(𝑁)

𝑗−1
𝑄
(𝑁)

𝑘−𝑗

=
∞

∑
𝑁=1

1

𝑁2𝑛−2𝑘+2
𝑃
(𝑁)

𝑗−1
𝑄
(𝑁)

𝑘−𝑗
.

(26)

In the last step, 𝑁 begins with 1 since 𝑄(𝑁)
𝑘−𝑗

= 0 for 1 ≤ 𝑁 <

𝑘 − 𝑗.
It follows that the sum (22) becomes that

∞

∑
𝑁=1

𝑃(𝑁)
0

𝑄(𝑁)
𝑘−1

+ 𝑃(𝑁)
1

𝑄(𝑁)
𝑘−2

+ ⋅ ⋅ ⋅ + 𝑃(𝑁)
𝑘−1

𝑄(𝑁)
0

𝑁2𝑛−2𝑘+2
. (27)

Clearly, the sum 𝑃(𝑁)
0

𝑄(𝑁)
𝑘−1

+𝑃(𝑁)
1

𝑄(𝑁)
𝑘−2

+ ⋅ ⋅ ⋅ +𝑃(𝑁)
𝑘−1

𝑄(𝑁)
0

in (27)
is the coefficient of 𝑥𝑘−1 in the Cauchy product of

[𝑃
(𝑁)

0
+𝑃
(𝑁)

1
𝑥+𝑃
(𝑁)

2
𝑥
2
+ ⋅ ⋅ ⋅] ⋅ [𝑄

(𝑁)

0
+ 𝑄
(𝑁)

1
𝑥+𝑄
(𝑁)

2
𝑥
2
+ ⋅ ⋅ ⋅] ;

(28)

that is, it is the coefficient of 𝑥𝑘−1 in the power series

𝑓
𝑁
(𝑥) = 𝑎

(𝑁)

0
+ 𝑎
(𝑁)

1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

(𝑁)

𝑘−1
𝑥
𝑘−1

+ ⋅ ⋅ ⋅ . (29)
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Therefore, the sum (27) is
∞

∑
𝑁=1

𝑎(𝑁)
𝑘−1

𝑁2𝑛−2𝑘+2
. (30)

The proof is completed.

Remark 5. If we take 𝑥 to be a complex variable, then the
series

∞

∑
𝑟=1

𝑟 ̸=𝑁

𝑥

𝑟2 − 𝑁2 (31)

is absolutely and uniformly convergent for 𝑥 in any compact
set in the complex plane; thus, the function

𝑓
𝑁
(𝑥) =

∞

∏
𝑟=1

𝑟 ̸=𝑁

(1 +
𝑥

𝑟2 − 𝑁2
) (32)

is analytic in the complex plane. Hence, it may be expanded
as a Taylor series.

Proof of Theorem 2. First we recall Euler’s classical formula

sin (𝜋𝑧) = 𝜋𝑧
∞

∏
𝑟=1

(1 −
𝑧2

𝑟2
) , 𝑧 ∈ C. (33)

Similar to Euler’s formula, Eisenstein studied a product of two
variables and proved that for (𝜔, 𝑧) ∈ (C\Z)×C the following
formula holds (see [10, page 17]):

sin [𝜋 (𝜔 − 𝑧)]

sin (𝜋𝜔)
=
∞

∏
𝑟=−∞

(1 −
𝑧

𝑟 + 𝜔
)

≜ lim
𝑛→∞

𝑛

∏
𝑟=−𝑛

(1 −
𝑧

𝑟 + 𝜔
) .

(34)

Let𝑁 ≥ 1 be temporarily fixed. By (34), for 𝜔 ∉ Z we have
∞

∏
𝑟=1

𝑟 ̸=𝑁

(1 −
𝑧2 − 2𝜔𝑧

𝑟2 − 𝜔2
)

=
sin [𝜋 (𝜔 − 𝑧)]

sin (𝜋𝜔)
(1 −

𝑧

𝜔
)
−1

(1 −
𝑧2 − 2𝜔𝑧

𝑁2 − 𝜔2
)

−1

.

(35)

Now, let 𝜔 → 𝑁. We get
∞

∏
𝑟=1

𝑟 ̸=𝑁

(1 −
𝑧2 − 2𝑁𝑧

𝑟2 − 𝑁2
) = 2𝑁

2
(−1)
𝑁 sin [𝜋 (𝑁 − 𝑧)]

𝜋 (𝑁 − 𝑧) (𝑧2 − 2𝑁𝑧)
.

(36)

Wewrite 𝑧2−2𝑁𝑧 = −𝑥. Or equivalently, let 𝑧 = 𝑁±√𝑁2 − 𝑥.
Then, we get

∞

∏
𝑟=1

𝑟 ̸=𝑁

(1 +
𝑥

𝑟2 − 𝑁2
) = 2𝑁

2
(−1)
𝑁+1

sin (𝜋√𝑁2 − 𝑥)

𝜋𝑥√𝑁2 − 𝑥
. (37)

Proof of Theorem 3. Taking logarithms of both sides of (32),
we get that

log (𝑓
𝑁
(𝑥)) =

∞

∑
𝑟=1

𝑟 ̸=𝑁

log(1 − 𝑥

𝑁2 − 𝑟2
) . (38)

By Remark 5, the series may be differentiated term-by-term;
hence, we have

𝑓󸀠
𝑁
(𝑥)

𝑓
𝑁
(𝑥)

=
∞

∑
𝑟=1

𝑟 ̸=𝑁

−1

𝑁2 − 𝑟2 − 𝑥

= −
∞

∑
𝑟=1

𝑟 ̸=𝑁

∞

∑
𝑗=0

𝑥𝑗

(𝑁2 − 𝑟2)
𝑗+1

= −
∞

∑
𝑗=0

(𝑥
𝑗

∞

∑
𝑟=1

𝑟 ̸=𝑁

1

(𝑁2 − 𝑟2)
𝑗+1

)

= −
∞

∑
𝑗=0

𝑏
𝑗+1
𝑥
𝑗
,

(39)

where we denote

𝑏
𝑗+1

=
∞

∑
𝑟=1

𝑟 ̸=𝑁

1

(𝑁2 − 𝑟2)
𝑗+1

, for 𝑗 = 0, 1, 2, . . . . (40)

The order of the summation can be changed since the series
∑
∞

𝑟=1

𝑟 ̸=𝑁

(−1/(𝑁2−𝑟2−𝑥)) is dominated by∑∞
𝑛=1

(𝐿/𝑛2) for some
positive constant 𝐿. From (39), we get that

𝑓
󸀠

𝑁
(𝑥) = −𝑓

𝑁
(𝑥)
∞

∑
𝑗=0

𝑏
𝑗+1

𝑥
𝑗
, (41)

or
∞

∑
𝑘=1

𝑘𝑎
(𝑁)

𝑘
𝑥
𝑘−1

= −(
∞

∑
𝑖=0

𝑎
(𝑁)

𝑖
𝑥
𝑖
)(
∞

∑
𝑗=0

𝑏
𝑗+1
𝑥
𝑗
) . (42)

Write out the Cauchy product in the right side of (42), then
compare the coefficient of 𝑥𝑘−1 on both sides. We get that

𝑘𝑎
(𝑁)

𝑘
= − ∑
𝑖+𝑗=𝑘−1

𝑖,𝑗≥0

𝑏
𝑗+1

𝑎
(𝑁)

𝑖
= −
𝑘−1

∑
𝑗=0

𝑏
𝑘−𝑗

𝑎
(𝑁)

𝑗
. (43)

Proof of Theorem 4. We now study the the generating func-
tion

𝑓
𝑁
(𝑥) = 2𝑁

2
(−1)
𝑁+1

sin (𝜋√𝑁2 − 𝑥)

𝜋𝑥√𝑁2 − 𝑥
. (44)

We may use L’Hospital’s rule to verify that

lim
𝑥→0

2𝑁
2
(−1)
𝑁+1

sin (𝜋√𝑁2 − 𝑥)

𝜋𝑥√𝑁2 − 𝑥
= 1. (45)
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Now we expand out 𝑓
𝑁
(𝑥). We have

𝑓
𝑁
(𝑥) =

2𝑁2(−1)𝑁+1

𝑥

∞

∑
𝑚=0

(−1)𝑚𝜋2𝑚(𝑁2 − 𝑥)
𝑚

(2𝑚 + 1)!

=
2𝑁2(−1)𝑁+1

𝑥

∞

∑
𝑚=0

(−1)𝑚𝜋2𝑚

(2𝑚 + 1)!

×
𝑚

∑
𝑘=0

(
𝑚
𝑘
)𝑁
2𝑚−2𝑘

(−1)
𝑘
𝑥
𝑘

= 2𝑁
2
(−1)
𝑁+1

∞

∑
𝑘=0

(−1)𝑘

𝑁2𝑘

×
∞

∑
𝑚=𝑘

(−1)𝑚(𝑁𝜋)2𝑚

(2𝑚 + 1)!
(
𝑚
𝑘
)𝑥
𝑘−1

.

(46)

By (11) and (13), we have

𝑎
(𝑁)

𝑘−1
= 2𝑁

2−2𝑘
(−1)
𝑁+𝑘+1

×
∞

∑
𝑚=𝑘

(−1)𝑚(𝑁𝜋)2𝑚

(2𝑚 + 1)!
(
𝑚
𝑘
) , ∀𝑘 = 1, 2, 3, . . . .

(47)

Consider the function

sin (𝑁𝜋√𝑥)
𝑁𝜋√𝑥

=
∞

∑
𝑚=0

(−1)𝑚(𝑁𝜋)2𝑚

(2𝑚 + 1)!
𝑥
𝑚
. (48)

Clearly, the sum in (47) can be rewritten as

∞

∑
𝑚=𝑘

(−1)𝑚(𝑁𝜋)2𝑚

(2𝑚 + 1)!
(
𝑚
𝑘
) =

1

𝑘!
(
sin (𝑁𝜋√𝑥)
𝑁𝜋√𝑥

)

(𝑘)

𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1
, (49)

where ()(𝑘)
𝑥

means the 𝑘th derivative of a functionwith respect
to 𝑥.

We denote 𝜙(𝑥) = sin√𝑥/√𝑥. Then, we have

𝜙 (𝑁
2
𝜋
2
𝑡) =

sin (𝑁𝜋√𝑡)
𝑁𝜋√𝑡

, (50)

and, hence,

𝑑𝑘𝜙 (𝑁2𝜋2𝑡)

𝑑𝑡𝑘
= (𝑁𝜋)

2𝑘 𝑑
𝑘𝜙 (𝑥)

𝑑𝑥𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑁2𝜋2𝑡
, ∀𝑘 = 0, 1, 2, . . . ,

(51)

which implies that

(
sin (𝑁𝜋√𝑡)
𝑁𝜋√𝑡

)

(𝑘)

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

= (𝑁𝜋)
2𝑘
(
sin√𝑥
√𝑥

)

(𝑘)

𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=(𝑁𝜋)2
. (52)

Finally, from (47) (49) we get that

𝑎
(𝑁)

𝑘−1
=
2𝑁2𝜋2𝑘(−1)𝑁+𝑘+1

𝑘!
(
sin√𝑥
√𝑥

)

(𝑘)

𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=(𝑁𝜋)2
, 𝑘 ≥ 1.

(53)

We may apply Hoffman’s result [6, Lemma 1.3] to get the
direct formula for

(
sin√𝑥
√𝑥

)

(𝑘)

𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=(𝑁𝜋)2
. (54)

Here, we use some simple properties of the Bessel functions
of the first kind to give its direct expression.

Lemma 6. Let 𝑘 ≥ 0 be an integer and let 𝑥 > 0. Then one has

𝑑𝑘

𝑑𝑥𝑘
(
sin√𝑥
√𝑥

) = √
𝜋

2
(−1)
𝑘
2
−𝑘
𝑥
−(2𝑘+1)/4

𝐽
𝑘+1/2

(√𝑥) , (55)

where 𝐽
𝑘+1/2

(𝑥) denotes the Bessel function of the first kind of
index 𝑘 + 1/2.

The Bessel functions with a half-integer index can be
represented by elementary functions. The following lemma
is well known.

Lemma 7. Let 𝑘 ≥ 0 be an integer, and let 𝑥 > 0. Then, one has

𝐽
𝑘+1/2

(𝑥)

= √
2

𝜋

1

√𝑥

{
{
{

sin(𝑥 − 𝑘𝜋

2
)
[𝑘/2]

∑
𝑗=0

(−1)𝑗 (𝑘 + 2𝑗)!

(2𝑗)! (𝑘 − 2𝑗)!

⋅
1

(2𝑥)2𝑗
+ cos(𝑥 − 𝑘𝜋

2
)

×
[(𝑘−1)/2]

∑
𝑗=0

(−1)𝑗 (𝑘 + 2𝑗 + 1)!

(2𝑗 + 1)! (𝑘 − 2𝑗 − 1)!
⋅

1

(2𝑥)2𝑗+1

}
}
}

.

(56)

From Lemmas 6 and 7, and (53), we get that

𝑎
(𝑁)

𝑘−1

=
𝜋𝑘−1

𝑘!(2𝑁)𝑘−1

{
{
{

sin(𝑘𝜋
2
)
[𝑘/2]

∑
𝑗=0

(−1)𝑗 (𝑘 + 2𝑗)!

(2𝑗)! (𝑘 − 2𝑗)!

⋅
1

(2𝑁𝜋)2𝑗
− cos(𝑘𝜋

2
)

×
[(𝑘−1)/2]

∑
𝑗=0

(−1)𝑗 (𝑘 + 2𝑗 + 1)!

(2𝑗 + 1)! (𝑘 − 2𝑗 − 1)!

⋅
1

(2𝑁𝜋)2𝑗+1

}
}
}

.

(57)

This completes the proof of Theorem 4.

4. Examples

The direct formula for 𝑎(𝑁)
𝑘

can be found from Theorem 4.
However, we would like to use Theorem 3 to present some
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concrete examples to show how to calculate 𝑎(𝑁)
𝑘

for small 𝑘.
The difficult part of the recursion formula (14) is for 𝑗 ≥ 1 to
calculate the sum

𝑏
𝑗
=
∞

∑
𝑟=1

𝑟 ̸=𝑁

1

(𝑁2 − 𝑟2)
𝑗
= (

1

2𝑁
)
𝑗 ∞

∑
𝑟=1

𝑟 ̸=𝑁

[
1

𝑁 − 𝑟
+

1

𝑁 + 𝑟
]
𝑗

= 𝜆
𝑗

∞

∑
𝑟=1

𝑟 ̸=𝑁

[𝐴
𝑟
+ 𝐵
𝑟
]
𝑗

,

(58)

where we denote 𝐴
𝑟
= 1/(𝑁 − 𝑟), 𝐵

𝑟
= 1/(𝑁 + 𝑟), and

𝜆 = 1/2𝑁.
It follows from 𝐴

𝑟
𝐵
𝑟
= 𝜆[𝐴

𝑟
+ 𝐵
𝑟
] that

[𝐴
𝑟
+ 𝐵
𝑟
]
2

= [𝐴
2

𝑟
+ 𝐵
2

𝑟
] + 2𝜆 [𝐴

𝑟
+ 𝐵
𝑟
] ,

[𝐴
𝑟
+ 𝐵
𝑟
]
3

= [𝐴
3

𝑟
+ 𝐵
3

𝑟
] + 3𝜆 [𝐴

2

𝑟
+ 𝐵
2

𝑟
] + 6𝜆

2
[𝐴
𝑟
+ 𝐵
𝑟
] .

(59)

Generally, we can use induction on 𝑗 to prove that if for 𝑗 ≥ 2
we have gotten some positive integers 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑗−1
such that

[𝐴
𝑟
+ 𝐵
𝑟
]
𝑗

= [𝐴
𝑗

𝑟
+ 𝐵
𝑗

𝑟
] + 𝑐
1
𝜆 [𝐴
𝑗−1

𝑟
+ 𝐵
𝑗−1

𝑟
]

+ ⋅ ⋅ ⋅ + 𝑐
𝑗−1
𝜆
𝑗−1

[𝐴
𝑟
+ 𝐵
𝑟
] ,

(60)

then the expression for [𝐴
𝑟
+ 𝐵
𝑟
]𝑗+1 is

[𝐴
𝑟
+ 𝐵
𝑟
]
𝑗+1

= [𝐴
𝑗+1

𝑟
+ 𝐵
𝑗+1

𝑟
] + (1 + 𝑐

1
) 𝜆 [𝐴

𝑗

𝑟
+ 𝐵
𝑗

𝑟
]

+ (1 + 𝑐
1
+ 𝑐
2
) 𝜆
2
[𝐴
𝑗−1

𝑟
+ 𝐵
𝑗−1

𝑟
]

+ ⋅ ⋅ ⋅ + (1 + 𝑐
1
+ 𝑐
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑗−1
) 𝜆
𝑗−1

[𝐴
2

𝑟
+ 𝐵
2

𝑟
]

+ 2 (1 + 𝑐
1
+ 𝑐
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑗−1
) 𝜆
𝑗
[𝐴
𝑟
+ 𝐵
𝑟
] .

(61)

Note that if 𝑖 ≥ 2 is an even integer, then we have

∞

∑
𝑟=1

𝑟 ̸=𝑁

[𝐴
𝑖

𝑟
+ 𝐵
𝑖

𝑟
] = ∑
1≤𝑟<𝑁

[
1

(𝑁 − 𝑟)𝑖
+

1

(𝑁 + 𝑟)𝑖
]

+ ∑
𝑟>𝑁

[
1

(𝑁 − 𝑟)𝑖
+

1

(𝑁 + 𝑟)𝑖
]

= 2𝜁 (𝑖) −
1 + 2𝑖

(2𝑁)𝑖
= 2𝜁 (𝑖) − (1 + 2

𝑖
) 𝜆
𝑖
.

(62)

Similarly, if 𝑖 ≥ 1 is an odd integer, then we have

∞

∑
𝑟=1

𝑟 ̸=𝑁

[𝐴
𝑖

𝑟
+ 𝐵
𝑖

𝑟
] = −

1 + 2𝑖

(2𝑁)𝑖
= − (1 + 2

𝑖
) 𝜆
𝑖
. (63)

From (58)–(63), we get that

𝑏
1
= −𝑎
(𝑁)

1
= 𝜆
∞

∑
𝑟=1

𝑟 ̸=𝑁

[𝐴
𝑟
+ 𝐵
𝑟
] = −3𝜆

2
,

𝑏
2
= 𝜆
2

∞

∑
𝑟=1

𝑟 ̸=𝑁

{[𝐴
2

𝑟
+ 𝐵
2

𝑟
] + 2𝜆 [𝐴

𝑟
+ 𝐵
𝑟
]}

= 𝜆
2
⋅ {[2𝜁 (2) − 5𝜆

2
] − 6𝜆

2
}

= − 11𝜆
4
+ 2𝜁(2) 𝜆

2
,

𝑏
3
= 𝜆
3

∞

∑
𝑟=1

𝑟 ̸=𝑁

{[𝐴
3

𝑟
+ 𝐵
3

𝑟
] + 3𝜆 [𝐴

2

𝑟
+ 𝐵
2

𝑟
] + 6𝜆

2
[𝐴
𝑟
+ 𝐵
𝑟
]}

= 𝜆
3
⋅ {−9𝜆

3
+ 3𝜆 [2𝜁(2) − 5𝜆

2
] − 18𝜆

3
}

= − 42𝜆
6
+ 6𝜁(2)𝜆

4
,

𝑏
4
= 𝜆
4

∞

∑
𝑟=1

𝑟 ̸=𝑁

{[𝐴
4

𝑟
+ 𝐵
4

𝑟
] + 4𝜆 [𝐴

3

𝑟
+ 𝐵
3

𝑟
]

+ 10𝜆
2
[𝐴
2

𝑟
+ 𝐵
2

𝑟
]

+20𝜆
3
[𝐴
𝑟
+ 𝐵
𝑟
]}

= − 163𝜆
8
+ 20𝜁(2) 𝜆

6
+ 2𝜁(4) 𝜆

4
.

(64)
From formula (14), we get that

𝑎
(𝑁)

2
= −

1

2
{𝑎
(𝑁)

0
𝑏
2
+ 𝑎
(𝑁)

1
𝑏
1
}

= −
1

2
{[−11𝜆

4
+ 2𝜁(2)𝜆

2
] − (3𝜆

2
)
2

}

= 10𝜆
4
− 𝜁(2) 𝜆

2
=

5

8𝑁4
−
𝜁(2)

4𝑁2
,

𝑎
(𝑁)

3
= −

1

3
{𝑎
(𝑁)

0
𝑏
3
+ 𝑎
(𝑁)

1
𝑏
2
+ 𝑎
(𝑁)

2
𝑏
1
}

= −
1

3
{[−42𝜆

6
+ 6𝜁(2) 𝜆

4
] + 3𝜆

2
[−11𝜆

4
+ 2𝜁(2) 𝜆

2
]

−3𝜆
2
[10𝜆
4
− 𝜁(2) 𝜆

2
]}

= 35𝜆
6
− 5𝜁(2) 𝜆

4
=

35

64𝑁6
−
5𝜁(2)

16𝑁4
,

𝑎
(𝑁)

4
= −

1

4
{𝑎
(𝑁)

0
𝑏
4
+ 𝑎
(𝑁)

1
𝑏
3
+ 𝑎
(𝑁)

2
𝑏
2
+ 𝑎
(𝑁)

3
𝑏
1
}

= 126𝜆
8
− 21𝜁(2) 𝜆

6
−
1

2
𝜁(4) 𝜆

4
+
1

2
𝜁
2
(2) 𝜆
4

=
63

128𝑁8
−
21𝜁(2)

64𝑁6
+
3𝜁(4)

64𝑁4
.

(65)
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For 𝑘 = 2, 3, 4, using 𝑎(𝑁)
1

, 𝑎(𝑁)
2

, and 𝑎(𝑁)
3

in formula (12),
respectively, we will get identities (6) and (8). Moreover, for
𝑛 ≥ 5, we have

𝐸 (2𝑛, 5) =
63

128
𝜁(2𝑛) −

21

64
𝜁(2) 𝜁 (2𝑛 − 2)

+
3

64
𝜁(4) 𝜁 (2𝑛 − 4) .

(66)
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