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Derivatives of eigenvectors with respect to structural parameters play an important role in structural design, identification, and
optimization. Particularly, calculation of eigenvector sensitivity is considered when the eigenvalues are repeated. A relaxation factor
embedded in the combined approximations (CA) method makes it effective to the structural response at various modified designs.
The proposed method is feasible after overcoming the defection of irreversibility of the characteristic matrix. Numerical examples
show that it is easy to implement the computational procedure, and the method presented in this paper is efficient for the general
linear vibration damped systems with repeated frequencies.

1. Introduction

Many engineering optimization problems, for example,
model updating [1] or structural damage detections [2], lead
to a sensitivity analysis of eigenproblems. As a result, the
study of the sensitivity of eigensolutions due to variations in
the system parameters has been an important research area.
A dynamic model can be far from the assumed prototype
because there is usually a variation, such as a mistuned
parameter or a geometrical irregularity. For these reasons,
sensitivity analysis is meaningful to perform a theoretical
study and give a guide for engineering practice. Two main
difficulties exist in computing the eigenvectors derivatives.
One of the main difficulties is how to change the irreversible
state of characteristic matrix. The other difficulty is how
to establish a uniform efficient method for computing the
eigenvectors derivatives with repeated eigenvalues.

In the area of eigenproblem sensitivity, there is a great deal
of interest and significant progress in sensitivity of problems
with repeated eigenvalues.The situation of repeated frequen-
cies occurs in complex large structures, such as an airplane,
rocket, high tower, bridge and ocean platform. Wilkinson
first put forward the mode expansion method which was
of importance in the engineering [3]. Fox and Kapoor [4]
provided the expressions for derivatives of eigensolutions

with respect to any design variable by the mode expansion
method. The expressions are valid for symmetric undamped
systems and have been used in a wide range of application
areas of structural dynamics. Rogers [5] has extended Fox
and Kapoor’s method to calculate the first-order derivative of
eigenvectors for more general asymmetric. Nelson [6] pro-
posed a very efficient algorithm for eigenvector derivatives
that only requires those eigensolutions information which is
to be differentiated. However, this method cannot deal with
cases of repeated eigenvalues which can often occur in many
practical engineering problems. Many researches [7–10] have
applied Nelson’s approach to the symmetric eigensystems
with repeated eigenvalues for computing the derivatives of
eigensolutions; moreover, [10] pointed that a critical step in
Dailey’s method may fail under certain circumstances. Lee
et al. [11] derived an iterative method for sensitivity analysis
of eigenvectors with distinct and repeated eigenvalues in the
generalized eigenproblems. Chen [12] developed matrix per-
turbation theory to determine the first part of the repeated-
root eigenvector derivatives. The implementation effort must
be weighed against the performance of the algorithms as
reflected in their accuracy and computational efficiency.

In choosing a suitable sensitivity analysis method for the
system with repeated eigenvalues, the following two factors
should be well balanced: the accuracy of the calculations and
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the computational effort involved. High accuracy, however,
is often achieved at the expense of more computational
effort. The CA approach is the most suitable for efficient-
accurate evaluation of the structural response at various
modified designs [13, 14]. A relaxation factor embedded in
theCAmethod is to keep the reversibility of the characteristic
matrix which makes it possible and effective to deal with the
problems of sensitivity analysis for multiple eigenvalues. To
preserve the ease of implementation and the advantage of the
relaxation factor, improving significantly the quality of the
results, extension of CAmethod to sensitivity analysis for the
systems with repeated eigenvalues is presented in this paper.

The purpose of Section 2 is to give a brief background of
modal sensitivity analysis. An overview of the CA approach
is given in Section 3. An extended CA method for solving
the first-order derivatives with repeated eigenvalues is devel-
oped systematically in Section 4. Numerical examples are
demonstrated in Section 5, and the conclusions are drawn in
Section 6.

2. Theoretical Background

The eigenproblem of a linear vibration damped system can be
expressed as

(𝜆2M + 𝜆C + K) u = 0, (1)

where M,C, and K ∈ C𝑛×𝑛 are the mass, damping, and
stiffness matrices, respectively, and (𝜆, u) is the eigenpair of
the system. Denote 2𝑛 = 𝑁 briefly.

Let z = ( u
𝜆u )𝑁×1 andA = ( 0 I

𝑛

−M−1K −M−1C )𝑁×𝑁, and z andA
are the state vector and the state matrix, respectively. We can
verify

Az = 𝜆z, 𝑖 = 1, 2, . . . , 𝑁, (2)

where 𝜆 = 𝜔2, 𝜔 is the natural frequency.
It can be called a system with repeated frequencies if

eigenproblem has repeated eigenvalues.Therefore, researches
on the close frequencies are equal to those on close eigenval-
ues. In the following, we give the definitions for classifying
the nondefective system and the defective system.The system
will be defective if the algebra multiplicity of the eigenvalue
𝜆 is greater than the geometric multiplicity; therefore the
defective system has an incomplete set of eigenvectors to
span the state space. The system must be nondefective if 𝜆
is distinct eigenvalue or the algebra multiplicity of the eigen-
value 𝜆 is equal to geometric multiplicity. The derivatives of
nondefective systemswith repeated frequencies are presented
in this study.

3. CA Method

The reanalysis problem to be solved for each modified design
can be stated briefly as follows.

Given an initial symmetric positive-definite stiffness
matrix K

0
and the load vector R

0
, the initial displacements

r
0
are calculated by

K
0
r
0
= R
0
. (3)

The initial stiffness matrix K
0
is usually given in the

decomposed form

K
0
= U𝑇
0
U
0
, (4)

where U
0
is the upper triangular matrix.

Assume a change in the structure and the corresponding
changes ΔK in the stiffness matrix and ΔR in the load
vector, where ΔK and ΔR might be due to both design (or
optimization) considerations and analysis (or nonlinearity)
considerations. The object is to estimate the modified dis-
placements r due to the changes in the structure without
solving the complete set of modified analysis equations:

Kr = R, (5)

where K = K
0
+ ΔK, R = R

0
+ ΔR.

(i) The matrix of basis vectors r
𝐵
is determined by the

binomial series

r
1
= K−1
0
R,

r
𝑖
= −K−1
0
ΔKr
𝑖−1
, 𝑖 = 1, 2, . . . , 𝑠,

r
𝐵
= (r
1
, r
2
, . . . , r

𝑠
) ,

(6)

where the preselected 𝑠 is assumed to bemuch smaller
than the number of degree-of-freedom (DOF)𝑛.

(ii) Through the matrix of basis vector r
𝐵
, we compute

condensed stiffness matrix K
𝑅
and mass matrix R

𝑅
,

where K
𝑅
and R

𝑅
are defined as

K
𝑅
= r𝑇
𝐵
Kr
𝐵
, R

𝑅
= r𝑇
𝐵
R. (7)

(iii) The coefficient vector y can be calculated by solving a
reduced set of 𝑠th order reanalysis equations instead
of computing the exact solution by solving the larger
𝑛th order system:

K
𝑅
y = R

𝑅
, (8)

where y𝑇 = {𝑦
1
, 𝑦
2
. . . , 𝑦
𝑠
}.

(iv) The approximate displacements vector r is evaluated
by a linear combination of matrix of basis vector r

𝐵

and the coefficient vector y:

r = 𝑦
1
r
1
+ 𝑦
2
r
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑠
r
𝑠
= r
𝐵
y. (9)

In large-scale structural design and optimization prob-
lems, the cost of reanalysis, even for a small change in the
design, is significant. The CA approach is efficient in the
reanalysis problems of large structures, and high quality
approximations can be achieved with a small effect for
changes in design variables.
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4. Sensitivity Analysis for Repeated
Frequencies

The eigenproblem corresponding to the state matrix A is

AΘ = ΘJ, (10)

where J is the Jordan canonical form of matrix A,

J = (

J
1

J
2

. . .
J
𝑡

), (1 ≤ 𝑡 < 𝑁) , (11)

J
𝑖
= (

𝜆
𝑖
1
𝜆
𝑖

. . . 1
𝜆
𝑖

)

𝑚
𝑖
×𝑚
𝑖

, (
𝑡

∑
𝑖=1

𝑚
𝑖
= 𝑁) , (12)

𝑚
𝑖
is the multiplicities of eigenvalues 𝜆

𝑖
. Θ is called the

eigenmatrix of the state matrix A.
Suppose that multiplicity of the eigenvalue 𝜆 is 𝑡 (2 ≤

𝑡 ≤ 𝑁); the remaining eigenvalues are distinct, that is,
𝜆, . . . , 𝜆, 𝜆

𝑡+1
, 𝜆
𝑡+2
, . . . , 𝜆

𝑁
. Equation (11) becomes

J = (J𝑡 0
0 J
𝑁−𝑡

) , (13)

where

J
𝑡
= (

𝜆 1 0
𝜆

. . . 1
0 𝜆

)

𝑡×𝑡

, (14)

J
𝑁−𝑡

= (

𝜆
𝑡+1

0
𝜆
𝑡+2

0 𝜆
𝑁

)

(𝑁−𝑡)×(𝑁−𝑡)

. (15)

If the structural parameters have small changes, such that
the state matrix A has a change ΔA, for the modified state
matrix A + ΔA, there exists an invertible matrix

∼

Θ, such that

(A + ΔA)
∼

Θ =
∼

Θ

∼

J, (16)

where
∼

A= A + ΔA,
∼

J= J + ΔJ,
∼

J is the new Jordan canonical
form of the state matrix

∼

A.
Note

L
0
= A − 𝜆I + 𝜌I, ΔL = ΔA − ΔJ − 𝜌I, L = L

0
+ ΔL.

(17)

Combine (16) and (17), it can be derived that

(L
0
+ ΔL)

∼

Θ =
∼

Θ B, (18)

where B = (0, e
1
, . . . , e

𝑁−1
), e
𝑖
(1 ≤ 𝑖 ≤ 𝑁 − 1) is the unit

vector.

Expand (18) and rewrite characteristic equations to the
form of equivalent equations:

(L
0
+ ΔL)

∼

𝜓
1
= 0,

(L
0
+ ΔL)

∼

𝜓
𝑖
=
∼

𝜓
𝑖−1
, 𝑖 = 2, 3, . . . , 𝑁.

(19)

The selection of relaxation factor should guarantee that
L
0
(= A − 𝜆I + 𝜌I) is invertible. It is an equivalent technology,

and the value of 𝜌 (𝜌 ̸= 0) does not affect the results.
For 𝑖 = 1 in (19), we can get the generalized eigenvector

∼

𝜃
1
.
Based on the CA approach, we obtain

∼

𝜃
𝑖

𝑘

= −L−1
0
ΔL
∼

𝜃
𝑖

𝑘−1

, 𝑘 = 1, 2, . . . , 𝑠, 𝑖 = 2, 3, . . . , 𝑁. (20)

From (20), the basis vectors can be given by

∼

𝜃

𝐵

𝑖
= (
∼

𝜃

1

𝑖
,
∼

𝜃

2

𝑖
, . . . ,
∼

𝜃

𝑠

𝑖
) , 𝑖 = 2, 3, . . . , 𝑁, (21)

where 𝑠 is the number of basis vectors.
The vector

∼

𝜃
𝑖
is a linear combination of the basis vectors

∼

𝜃

𝐵

𝑖
and the coefficient vectors y

𝑖
; it is derived that

∼

𝜃
𝑖
= 𝑦1
𝑖

∼

𝜃

1

𝑖
+ ⋅ ⋅ ⋅ + 𝑦𝑠

𝑖

∼

𝜃

𝑠

𝑖
, 𝑖 = 2, 3, . . . , 𝑁, (22)

where the vectors of coefficient are determined

y
𝑖
= (𝑦1
𝑖
, 𝑦2
𝑖
, . . . , 𝑦𝑠

𝑖
)
𝑇

, 𝑖 = 2, 3, . . . , 𝑁. (23)

Let

L𝑅
𝑖
= (
∼

𝜃

𝐵

𝑖
)
𝑇

L
∼

𝜃

𝐵

𝑖
, R𝑅

𝑖
= (
∼

𝜃

𝐵

𝑖
)
𝑇
∼

𝜃
𝑖−1
, 𝑠, 𝑖 = 2, 3, . . . , 𝑁.

(24)

Therefore, only to solve the smaller 𝑠 × 𝑠 system

L𝑅
𝑖
y
𝑖
= R𝑅
𝑖
, 𝑖 = 2, 3, . . . , 𝑁, (25)

we can get the vectors of coefficients y
𝑖
, and the computation

is much smaller than the original equations (18). Substituting
the vectors of coefficient to (22) and repeating the above

iterations for 𝑖 = 2, 3, . . . , 𝑁, the eigenvectors
∼

𝜃
𝑖
can be

computed. Summing up the previous ideas, the modified
eigenvector matrix

∼

Θ can be obtained.
The approximate generalized eigenvector derivatives can

be calculated by differentiating the approximate generalized
eigenvectors expression (22) with respect to a design of
variable 𝑑:

𝜕
∼

𝜃
𝑖

𝜕𝑑
=
𝜕
∼

𝜃

𝐵

𝑖

𝜕𝑑
y
𝑖
+
∼

𝜃

𝐵

𝑖

𝜕y
𝑖

𝜕𝑑
, 𝑖 = 1, 2, . . . , 𝑁. (26)
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(1) Introduce the relaxation factor and transform the eigenequations into equivalent equations.
(2) Compute eigenvector �̃�

1
.

(3)The eigenvectors �̃�
𝑖
(𝑖 = 2, 3, . . . , 𝑁) can be expressed by the basis vectors �̃�

𝐵

𝑖
(𝑖 = 2, 3, . . . , 𝑁)

and coefficients vectors y
𝑖
(𝑖 = 2, 3, . . . , 𝑁).

(4) Compute 𝜕�̃�
𝑖
/𝜕𝑑 = (𝜕�̃�

𝐵

𝑖
/𝜕𝑑)y

𝑖
+ �̃�
𝐵

𝑖
(𝜕y
𝑖
/𝜕𝑑), 𝑖 = 1, 2, . . . , 𝑁.

Algorithm 1: The produce of the proposed method.

Differentiating and rearranging (25), we obtain for 𝜕y
𝑖
/𝜕𝑑,

L𝑅
𝑖

𝜕y
𝑖

𝜕𝑑
=
𝜕R𝑅
𝑖

𝜕𝑑
−
𝜕L𝑅
𝑖

𝜕𝑑
y
𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (27)

The matrix 𝜕K𝑅
𝑖
/𝜕𝑑 and the vector 𝜕R𝑅

𝑖
/𝜕𝑑 are evaluated by

differentiating (24):

𝜕L𝑅
𝑖

𝜕𝑑
=
𝜕(
∼

𝜃

𝐵

𝑖
)
𝑇

𝜕𝑑
L
∼

𝜃

𝐵

𝑖
+ (
∼

𝜃

𝐵

𝑖
)
𝑇 𝜕L
𝜕𝑑
∼

𝜃

𝐵

𝑖
+ (
∼

𝜃

𝐵

𝑖
)
𝑇

L
𝜕
∼

𝜃

𝐵

𝑖

𝜕𝑑
,

𝜕R𝑅
𝑖

𝜕𝑑
=
𝜕(
∼

𝜃

𝐵

𝑖
)
𝑇

𝜕𝑑
∼

𝜃
𝑖−1
, 𝑖 = 1, 2, . . . , 𝑁.

(28)

The algorithm for the first-order sensitivity analysis
of eigenvectors for multiple eigenvalues is summarized in
Algorithm 1.

The approximation quality and computation efficiency
are usually two conflicting factors in selecting an approximate
reanalysis method. This also holds in the approximation
method presented.The number of algebraic operations (mul-
tiplication and division) needed to solve an 𝑛 × 𝑛 set of
equations is 𝑛3/3. The operations cost for the CA method is
3𝑛2𝑠 + 𝑛𝑠2 + 𝑠3/3, where 𝑠 is the number of basis vectors.

5. Numerical Examples

As an illustrative example in case of the structural vibration
system with multiple eigenvalues, the 5 degrees of freedom
(DOF) spring-mass mechanical system shown in Figure 1 are
considered. It is assumed that only vibrations in the vertical
plane are possible.

The mass parameters of the mass matrixM are

𝑚
11
= 𝑚
1
, 𝑚

22
= 𝑚
2
, 𝑚

33
= 𝑚
3
, (29)

𝑚
44
= 𝐽
4
= 𝑚3𝐿

2

12
, 𝑚

55
= 𝐽
5
= 𝑚3𝐿

2

12
, (30)

where 𝐽
𝑖
(𝑖 = 4, 5) is the moment of inertia, 𝐿 is the edge

length of the rotation plan, and 𝜃
𝑖
(𝑖 = 4, 5).

The springs have the following stiffnesses:

𝑘
11
= 𝑘
1
, 𝑘

12
= −𝑘
1
, 𝑘

13
= 𝑘
14
= 𝑘
15
= 0,

𝑘
22
= 𝑘
1
+ 𝑘
2
, 𝑘

23
= −𝑘
2
, 𝑘

24
= 𝑘
25
= 0,

𝑘
33
= 𝑘
2
+ 𝑘
3
+ 𝑘
4
+ 𝑘
5
+ 𝑘
6
,

𝑘
34
= 𝐿
2
(𝑘
3
− 𝑘
4
+ 𝑘
5
− 𝑘
6
) ,

𝑘
35
= 𝐿
2
(𝑘
3
+ 𝑘
4
− 𝑘
5
− 𝑘
6
) ,

𝑘
44
= (𝐿

2
)
2

(𝑘
3
+ 𝑘
4
+ 𝑘
5
+ 𝑘
6
) ,

𝑘
45
= −(𝐿

2
)
2

(𝑘
3
− 𝑘
4
− 𝑘
5
+ 𝑘
6
) ,

𝑘
55
= (𝐿

2
)
2

(𝑘
3
+ 𝑘
4
+ 𝑘
5
+ 𝑘
6
) .

(31)

The constituents of the damped matrix C are given as
follows:

𝑐
11
= 𝑐
1
, 𝑐

12
= −𝑐
1
,

𝑐
13
= 𝑐
14
= 𝑐
15
= 0, 𝑐

22
= 𝑐
1
+ 𝑐
2
,

𝑐
23
= −𝑐
2
, 𝑐

24
= 𝑐
25
= 0,

𝑐
33
= 𝑐
2
+ 𝑐
3
+ 𝑐
4
+ 𝑐
5
+ 𝑐
6
,

𝑐
34
= 𝐿
2
(𝑐
3
− 𝑐
4
+ 𝑐
5
− 𝑐
6
) ,

𝑘
35
= 𝐿
2
(𝑐
3
+ 𝑐
4
− 𝑐
5
− 𝑐
6
) ,

𝑐
44
= (𝐿

2
)
2

(𝑐
3
+ 𝑐
4
+ 𝑐
5
+ 𝑐
6
) ,

𝑐
45
= −(𝐿

2
)
2

(𝑐
3
− 𝑐
4
− 𝑐
5
+ 𝑐
6
) ,

𝑐
55
= (𝐿

2
)
2

(𝑐
3
+ 𝑐
4
+ 𝑐
5
+ 𝑐
6
) .

(32)
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Table 1: Result of eigenvectors and the sensitivity analysis.

Mode
1 2 3 4 5

Generalized
eigenvectors

−1.6940𝑒 − 4
−7.5774𝑒 − 2𝑖

−1.6940𝑒 − 4
+7.5774𝑒 − 2𝑖

−5.9292𝑒 − 4
−1.4832𝑒 − 1𝑖

−5.9292𝑒 − 4
+1.4832𝑒 − 1𝑖

−8.8391𝑒 − 3
−3.7710𝑒 − 1𝑖

6.4403𝑒 − 5
+6.6628𝑒 − 2𝑖

6.4403𝑒 − 5
−6.6628𝑒 − 2𝑖

−7.6481𝑒 − 4
−3.8049𝑒 − 2𝑖

−7.6481𝑒 − 4
+3.8049𝑒 − 2𝑖

−9.1033𝑒 − 3
−3.6559𝑒 − 1𝑖

2.0564𝑒 − 4
−1.8688𝑒 − 2𝑖

2.0564𝑒 − 4
+1.8688𝑒 − 2𝑖

−3.9167𝑒 − 4
+5.2447𝑒 − 2𝑖

−3.9167𝑒 − 4
−5.2447𝑒 − 2𝑖

−9.5377𝑒 − 3
−3.4587𝑒 − 1𝑖

3.3666𝑒 − 5
+1.4966𝑒 − 6𝑖

3.3666𝑒 − 5
−1.4966𝑒 − 6𝑖

−1.7466𝑒 − 4
−1.1910𝑒 − 5𝑖

−1.7466𝑒 − 4
+1.1910𝑒 − 5𝑖

−1.0552𝑒 − 3
+5.7213𝑒 − 5𝑖

3.3666𝑒 − 5
+1.4966𝑒 − 6𝑖

3.3666𝑒 − 5
−1.4966𝑒 − 6𝑖

−1.7466𝑒 − 4
−1.1910𝑒 − 5𝑖

−1.7466𝑒 − 4
+1.1910𝑒 − 5𝑖

−1.0552𝑒 − 3
+5.7213𝑒 − 5𝑖

7.3452𝑒 − 1 7.3452𝑒 − 1 9.0427𝑒 − 1 9.0427𝑒 − 1 4.6611𝑒 − 1
−6.4586𝑒 − 1
−8.1957𝑒 − 4𝑖

−6.4586𝑒 − 1
+8.1957𝑒 − 4𝑖

2.3200𝑒 − 1
−3.7356𝑒 − 3𝑖

2.3200𝑒 − 1
+3.7356𝑒 − 3𝑖

4.5189𝑒 − 1
−6.5990𝑒 − 4𝑖

1.8114𝑒 − 1
+2.3984𝑒 − 3𝑖

1.8114𝑒 − 1
−2.3984𝑒 − 3𝑖

−3.1975𝑒 − 1
−3.6663𝑒 − 3𝑖

−3.1975𝑒 − 1
+3.6663𝑒 − 3𝑖

4.2755𝑒 − 1
−1.7674𝑒 − 3𝑖

−1.5236𝑒 − 5
+3.2631𝑒 − 4𝑖

−1.5236𝑒 − 5
−3.2631𝑒 − 4𝑖

7.6868𝑒 − 5
−1.0646𝑒 − 3𝑖

7.6868𝑒 − 5
+1.0646𝑒 − 3𝑖

−4.0125𝑒 − 5
−1.3052𝑒 − 3𝑖

−1.5236𝑒 − 5
+3.2631𝑒 − 4𝑖

−1.5236𝑒 − 5
−3.2631𝑒 − 4𝑖

7.6868𝑒 − 5
−1.0646𝑒 − 3𝑖

7.6868𝑒 − 5
+1.0646𝑒 − 3𝑖

−4.0125𝑒 − 5
−1.3052𝑒 − 3𝑖

First-order derivatives

4.9349𝑒 − 3
+4.1090𝑒 − 3𝑖

1.8620𝑒 − 4
+1.6593𝑒 − 6𝑖

−7.1896𝑒 − 6
−1.0523𝑒 − 6𝑖

−6.7317𝑒 − 6
−3.0627𝑒 − 7𝑖

−3.0855𝑒 − 6
+3.7924𝑒 − 5𝑖

1.0543𝑒 − 2
+4.9187𝑒 − 3𝑖

3.1679𝑒 − 4
−8.3544𝑒 − 5𝑖

−7.4393𝑒 − 6
−1.9432𝑒 − 6𝑖

−4.9700𝑒 − 6
+5.0936𝑒 − 7𝑖

−3.9019𝑒 − 6
+3.1021𝑒 − 5𝑖

6.9776𝑒 − 3
−1.5213𝑒 − 3𝑖

1.2503𝑒 − 4
−1.5632𝑒 − 4𝑖

−9.1416𝑒 − 6
−3.4699𝑒 − 6𝑖

−6.7761𝑒 − 7
+3.0202𝑒 − 6𝑖

−5.3973𝑒 − 6
+2.1570𝑒 − 5𝑖

1.2865𝑒 − 8
−5.3235𝑒 − 8𝑖

−6.7567𝑒 − 6
−1.3890𝑒 − 7𝑖

4.3822𝑒 − 4
−7.3751𝑒 − 3𝑖

4.3945𝑒 − 4
−7.3752𝑒 − 3𝑖

−4.1661𝑒 − 2
−2.4195𝑒 − 3𝑖

−1.2865𝑒 − 8
+5.3235𝑒 − 8𝑖

6.7567𝑒 − 6
+1.3890𝑒 − 7𝑖

4.3822𝑒 − 4
−7.3751𝑒 − 3𝑖

4.3945𝑒 − 4
−7.3752𝑒 − 3𝑖

−4.1661𝑒 − 2
−2.4195𝑒 − 3𝑖

−4.0427𝑒 − 2
−1.5051𝑒 − 2𝑖

−1.1609𝑒 − 3
+4.0699𝑒 − 4𝑖

4.9009𝑒 − 6
+2.4447𝑒 − 5𝑖

−2.3870𝑒 − 6
+1.5967𝑒 − 5𝑖

1.1140𝑒 − 4
+7.8994𝑒 − 6𝑖

−2.3209𝑒 − 2
+3.7847𝑒 − 2𝑖

1.9018𝑒 − 4
+1.2372𝑒 − 3𝑖

1.7448𝑒 − 5
+2.6237𝑒 − 5𝑖

−1.1561𝑒 − 5
+4.3792𝑒 − 6𝑖

9.9583𝑒 − 5
+1.0880𝑒 − 5𝑖

1.2020𝑒 − 2
+5.5792𝑒 − 3𝑖

3.5070𝑒 − 4
−9.4669𝑒 − 5𝑖

−1.0988𝑒 − 5
+2.4234𝑒 − 5𝑖

1.4771𝑒 − 5
+4.6761𝑒 − 6𝑖

5.8350𝑒 − 5
−1.5286𝑒 − 5𝑖

1.4840𝑒 − 9
+4.4428𝑒 − 8𝑖

4.0257𝑒 − 7
−1.6972𝑒 − 7𝑖

−2.0897𝑒 − 2
−6.1056𝑒 − 5𝑖

−2.0897𝑒 − 2
−5.7389𝑒 − 5𝑖

−1.6748𝑒 − 4
+1.1803𝑒 − 1𝑖

−1.4840𝑒 − 9
−4.4428𝑒 − 8𝑖

−4.0257𝑒 − 7
+1.6972𝑒 − 7𝑖

−2.0897𝑒 − 2
−6.1056𝑒 − 5𝑖

−2.0897𝑒 − 2
−5.7389𝑒 − 5𝑖

−1.6748𝑒 − 4
+1.1803𝑒 − 1𝑖

6 7 8 9 10

Generalized
eigenvectors

−8.8391𝑒 − 3
+3.7710𝑒 − 1𝑖

2.1782𝑒 − 4
−1.6872𝑒 − 5𝑖

2.1782𝑒 − 4
+1.6872𝑒 − 5𝑖

−2.1190𝑒 − 17
−2.9349𝑒 − 18𝑖

−2.1190𝑒 − 17
+2.9349𝑒 − 18𝑖

−9.1033𝑒 − 3
+3.6559𝑒 − 1𝑖

1.8288𝑒 − 4
−1.8087𝑒 − 5𝑖

1.8288𝑒 − 4
+1.8087𝑒 − 5𝑖

−1.6163𝑒 − 17
−6.5559𝑒 − 19𝑖

−1.6163𝑒 − 17
+6.5559𝑒 − 19𝑖

−9.5377𝑒 − 3
+3.4587𝑒 − 1𝑖

1.2866𝑒 − 4
−1.9205𝑒 − 5𝑖

1.2866𝑒 − 4
+1.9205𝑒 − 5𝑖

−1.3628𝑒 − 17
−1.3204𝑒 − 17𝑖

−1.3628𝑒 − 17
+1.3204𝑒 − 17𝑖

−1.0552𝑒 − 3
−5.7213𝑒 − 5𝑖

−1.3333𝑒 − 2
−2.3533𝑒 − 1𝑖

−1.3333𝑒 − 2
+2.3533𝑒 − 1𝑖

1.2667𝑒 − 2
+2.3536𝑒 − 1𝑖

1.2667𝑒 − 2
−2.3536𝑒 − 1𝑖

−1.0552𝑒 − 3
−5.7213𝑒 − 5𝑖

−1.3333𝑒 − 2
−2.3533𝑒 − 1𝑖

−1.3333𝑒 − 2
+2.3533𝑒 − 1𝑖

−1.2667𝑒 − 2
−2.3536𝑒 − 1𝑖

−1.2667𝑒 − 2
+2.3536𝑒 − 1𝑖

4.6611𝑒 − 1 1.2794𝑒 − 5
+6.1779𝑒 − 4𝑖

1.2794𝑒 − 5
−6.1779𝑒 − 4𝑖

1.9126𝑒 − 17
−2.8812𝑒 − 17𝑖

1.9126𝑒 − 17
+2.8812𝑒 − 17𝑖
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Table 1: Continued.

Mode

6 7 8 9 10
4.5189𝑒 − 1
+6.5990𝑒 − 4𝑖

2.1815𝑒 − 5
+5.1933𝑒 − 4𝑖

2.1815𝑒 − 5
−5.1933𝑒 − 4𝑖

2.7275𝑒 − 17
+1.0443𝑒 − 16𝑖

2.7275𝑒 − 17
−1.0443𝑒 − 16𝑖

4.2755𝑒 − 1
+1.7674𝑒 − 3𝑖

3.3649𝑒 − 5
+3.6639𝑒 − 4𝑖

3.3649𝑒 − 5
−3.6639𝑒 − 4𝑖

−5.0624𝑒 − 17
+6.1754𝑒 − 17𝑖

−5.0624𝑒 − 17
−6.1754𝑒 − 17𝑖

−4.0125𝑒 − 5
+1.3052𝑒 − 3𝑖

6.6667𝑒 − 1
−6.1319𝑒 − 15𝑖

6.6667𝑒 − 1
+6.1319𝑒 − 15𝑖

−6.6667𝑒 − 1
+1.9880𝑒 − 14𝑖

−6.6667𝑒 − 1
−1.9880𝑒 − 14𝑖

−4.0125𝑒 − 5
+1.3052𝑒 − 3𝑖 6.6667𝑒 − 1 6.6667𝑒 − 1 6.6667𝑒 − 1 6.6667𝑒 − 1

First-order derivatives

1.7349𝑒 − 4
−1.6163𝑒 − 4𝑖

3.9518𝑒 − 4
−3.7717𝑒 − 4𝑖

−6.6110𝑒 − 6
−6.2260𝑒 − 7𝑖

−1.3023𝑒 − 4
+4.9260𝑒 − 5𝑖

−3.0598𝑒 − 6
+3.8496𝑒 − 5𝑖

2.0752𝑒 − 4
−3.4405𝑒 − 4𝑖

4.7933𝑒 − 4
−8.0841𝑒 − 4𝑖

−4.6504𝑒 − 6
−1.2688𝑒 − 6𝑖

−3.0853𝑒 − 4
+1.7329𝑒 − 4𝑖

−3.4365𝑒 − 6
+3.2083𝑒 − 5𝑖

−1.9104𝑒 − 5
−2.4330𝑒 − 4𝑖

−5.3099𝑒 − 5
−5.6976𝑒 − 4𝑖

−1.2556𝑒 − 7
−4.0572𝑒 − 6𝑖

−6.5242𝑒 − 5
+2.1995𝑒 − 4𝑖

−4.4476𝑒 − 6
+2.2222𝑒 − 5𝑖

−1.7809𝑒 − 7
−6.5745𝑒 − 6𝑖

−4.1770𝑒 + 7
−1.4953𝑒 + 7𝑖

4.3894𝑒 − 4
−7.3760𝑒 − 3𝑖

1.1347𝑒 − 7
+1.1973𝑒 − 7𝑖

−4.1661𝑒 − 2
−2.4196𝑒 − 3𝑖

1.7809𝑒 − 7
+6.5745𝑒 − 6𝑖

4.1770𝑒 − 7
+1.4953𝑒 − 7𝑖

4.3894𝑒 − 4
−7.3760𝑒 − 3𝑖

−1.1347𝑒 − 7
−1.1973𝑒 − 7𝑖

−4.1661𝑒 − 2
−2.4196𝑒 − 3𝑖

−6.8458𝑒 − 4
+1.3706𝑒 − 3𝑖

−1.5683𝑒 − 3
+3.1981𝑒 − 3𝑖

−3.6769𝑒 − 6
+2.1007𝑒 − 5𝑖

8.6146𝑒 − 4
−6.5660𝑒 − 4𝑖

1.0981𝑒 − 4
+3.3384𝑒 − 6𝑖

1.2345𝑒 − 3
+9.1495𝑒 − 4𝑖

2.8941𝑒 − 3
+2.1296𝑒 − 3𝑖

−1.3319𝑒 − 5
+2.6782𝑒 − 5𝑖

−3.5926𝑒 − 4
−1.2558𝑒 − 3𝑖

9.4929𝑒 − 5
+6.8591𝑒 − 6𝑖

2.1805𝑒 − 4
−3.7015𝑒 − 4𝑖

5.1275𝑒 − 4
−8.8146𝑒 − 4𝑖

−5.2960𝑒 − 6
−1.9547𝑒 − 6𝑖

−4.6276𝑒 − 4
+2.3522𝑒 − 4𝑖

6.2620𝑒 − 5
−7.5296𝑒 − 6𝑖

2.1276𝑒 − 7
−4.9301𝑒 − 7𝑖

4.8581𝑒 − 7
−1.1570𝑒 − 8𝑖

−2.0895𝑒 − 2
−5.8814𝑒 − 5𝑖

−3.5540𝑒 − 7
+3.0228𝑒 − 7𝑖

−1.6732𝑒 − 4
+1.1803𝑒 − 1𝑖

−2.1276𝑒 − 7
+4.9301𝑒 − 7𝑖

−4.8581𝑒 − 7
+1.1570𝑒 − 8𝑖

−2.0895𝑒 − 2
−5.8814𝑒 − 5𝑖

3.5540𝑒 − 7
−3.0228𝑒 − 7𝑖

−1.6732𝑒 − 4
+1.1803𝑒 − 1𝑖

z2

z1m1

k1

m2

k2

k5

k4k3

c2

c6

c4

c5

c3

c1
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y

θ4

θ5

L

L
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Figure 1: 5-DOF spring-mass system.
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Suppose

𝑚
1
= 300 kg, 𝑚

2
= 750 kg, 𝑚

3
= 1500 kg,

𝑘
1
= 15000N/m, 𝑘

2
= 30000N/m,

𝑘
3
= 1000N/m, 𝑘

4
= 1000N/m,

𝑘
5
= 1000N/m, 𝑘

6
= 1000N/m,

𝑐
1
= 6Ns/m, 𝑐

2
= 9Ns/m,

𝑐
3
= 40Ns/m, 𝑐

4
= 40Ns/m,

(33)

𝑐
5
= 40Ns/m, 𝑐

6
= 40Ns/m. (34)

Thus,

M =(

300 0 0 0 0
0 750 0 0 0
0 0 1500 0 0
0 0 0 125 0
0 0 0 0 125

),

K =(

15000 −15000 0 0 0
−15000 45000 −30000 0 0
0 0 34000 0 0
0 0 0 1000 0
0 0 0 0 1000

),

C =(

6 −6 0 0 0
−6 15 −9 0 0
0 −9 169 0 0
0 0 0 40 0
0 0 0 0 40

).

(35)

The system has two 2-repeated eigenvalues: −0.1600 +
2.8239𝑖, and −0.1600 − 2.8239𝑖 and distinct eigenvalues
−0.0218±9.6935𝑖, −0.0248±6.0969𝑖, −0.0297±1.2353𝑖. Here,
the damper 𝑐

6
is taken as the design parameter. Evaluation of

eigenvectors and the first-order derivatives with respect to 𝑐
6

will be illustrated for Δ𝑐
6
/𝑐
6
= 0.1 in Table 1.

6. Conclusion

The extension of CA method is outlined to enable the
calculation of eigenvectors sensitivity analysis for general
linear damped vibration systems with repeated eigenvalues.
CA method developed recently is suitable for efficient-
accurate evaluation of the structural response at various
modified designs.The difficulty of applying the CA approach
to calculate the first-order derivatives is the singularity of
characteristic matrix. A relaxation factor embedded in the
CA method is used to keep the reversibility. And this
makes it possible and effective to deal with the problems
of sensitivity analysis for systems with multiple eigenval-
ues. Unlike common procedures of structural response, the
approach proposed is not based on calculation of derivatives.
Rather, approximations of modified eigenvectors are used to
evaluate the modified first-order derivatives. Similar compu-
tational procedures are employed for evaluating eigenvectors
and first-order derivatives of eigenvectors. The presented

approach here is simple and general in nature. A numerical
example of 5-DOF spring-mass system demonstrates the
accuracy and efficiency of the proposed method.
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