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By using a newhybridmethod, a strong convergence theorem for finding a common element of the set of solutions of an equilibrium
problem and the set of fixed points of Bregman strongly nonexpansive mappings in a reflexive Banach space is proved.

1. Introduction

Throughout this paper, we denote by R and R+ the set of all
real numbers and all nonnegative real numbers, respectively.
We also assume that 𝐸 is a real reflexive Banach space, 𝐸∗ is
the dual space of 𝐸, 𝐶 is a nonempty closed convex subset
of 𝐸, and ⟨⋅, ⋅⟩ is the pairing between 𝐸 and 𝐸

∗. Let Θ be a
bifunction from 𝐶 × 𝐶 → R. The equilibrium problem is to
find

𝑥
∗

∈ 𝐶 such that Θ(𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (1)

The set of such solutions 𝑥∗ is denoted by EP(Θ).
Recall that a mapping 𝑇 : 𝐶 → 𝐶 is said to be

nonexpansive, if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

We denote by 𝐹(𝑇) the set of fixed points of 𝑇.
Numerous problems in physics, optimization, and eco-

nomics reduce to find a solution of the equilibrium problem.
Some methods have been proposed to solve the equilibrium
problem in a Hilbert spaces; see, for instance, Blum and
Oettli [1], Combettes and Hirstoaga [2], and Moudafi [3].
Recently, Tada and Takahashi [4, 5] and S. Takahashi and
W. Takahashi [6] obtained weak and strong convergence
theorems for finding a common element of the set of solutions
of an equilibrium problem and the set of fixed points of

a nonexpansive mapping in a Hilbert space. In particular,
Tada and Takahashi [4] established a strong convergence
theorem for finding a common element of two sets by using
the hybrid method introduced by Nakajo and Takahashi [7].
The authors also proved such a strong convergence theorem
in a uniformly convex and uniformly smooth Banach space.

In this paper, motivated by Takahashi et al. [8], we
prove a strong convergence theorem for finding a common
element of the set of solutions of an equilibrium problem and
the set of fixed points of a Bregman strongly nonexpansive
mapping in a real reflexive Banach space by using the
shrinking projection method. Using this theorem, we obtain
two new strong convergence results for finding a solution
of an equilibrium problem and a fixed point of Bregman
strongly nonexpansive mappings in a real reflexive Banach
space.

2. Preliminaries and Lemmas

In the sequel, we begin by recalling some preliminaries and
lemmas which will be used in the proof.

Let 𝐸 be a real reflexive Banach space with the norm
‖ ⋅ ‖ and 𝐸

∗ the dual space of 𝐸. Throughout this paper,
𝑓 : 𝐸 → (−∞, +∞] is a proper, lower semicontinuous, and
convex function. We denote by dom 𝑓 the domain of 𝑓, that
is, the set {𝑥 ∈ 𝐸 : 𝑓(𝑥) < +∞}.
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Let 𝑥 ∈ int dom𝑓. The subdifferential of 𝑓 at 𝑥 is the
convex set defined by

𝜕𝑓 (𝑥) = {𝑥
∗

∈ 𝐸
∗

: 𝑓 (𝑥) + ⟨𝑥
∗

, 𝑦 − 𝑥⟩

≤ 𝑓 (𝑦) , ∀𝑦 ∈ 𝐸} ,

(3)

where the Fenchel conjugate of 𝑓 is the function 𝑓
∗
: 𝐸
∗

→

(−∞, +∞] defined by

𝑓
∗

(𝑥
∗

) = sup {⟨𝑥
∗

, 𝑥⟩ − 𝑓 (𝑥) : 𝑥 ∈ 𝐸} . (4)

We know that the Young-Fenchel inequality holds:

⟨𝑥
∗

, 𝑥⟩ ≤ 𝑓 (𝑥) + 𝑓
∗

(𝑥
∗

) , ∀𝑥 ∈ 𝐸, 𝑥
∗

∈ 𝐸
∗

. (5)

A function 𝑓 on 𝐸 is coercive [9] if the sublevel set of 𝑓 is
bounded; equivalently,

lim
‖𝑥‖→+∞

𝑓 (𝑥) = +∞. (6)

A function 𝑓 on 𝐸 is said to be strongly coercive [10] if

lim
‖𝑥‖→+∞

𝑓 (𝑥)

‖𝑥‖
= +∞. (7)

For any 𝑥 ∈ int dom𝑓 and 𝑦 ∈ 𝐸, the right-hand
derivative of 𝑓 at 𝑥 in the direction 𝑦 is defined by

𝑓
∘

(𝑥, 𝑦) := lim
𝑡→0
+

𝑓 (𝑥 + 𝑡𝑦) − 𝑓 (𝑥)

𝑡
. (8)

The function 𝑓 is said to be Gâteaux differentiable at 𝑥 if
lim
𝑡→0
+((𝑓(𝑥 + 𝑡𝑦) − 𝑓(𝑥))/𝑡) exists for any 𝑦. In this case,

𝑓
∘
(𝑥, 𝑦) coincides with ∇𝑓(𝑥), the value of the gradient ∇𝑓

of 𝑓 at 𝑥. The function 𝑓 is said to be Gâteaux differentiable
if it is Gâteaux differentiable for any 𝑥 ∈ int dom𝑓. The
function 𝑓 is said to be Fréchet differentiable at 𝑥 if this
limit is attained uniformly in ‖𝑦‖ = 1. Finally, 𝑓 is said to
be uniformly Fréchet differentiable on a subset 𝐶 of 𝐸 if
the limit is attained uniformly for 𝑥 ∈ 𝐶 and ‖𝑦‖ = 1. It
is known that if 𝑓 is Gâteaux differentiable (resp., Fréchet
differentiable) on int dom𝑓, then 𝑓 is continuous and its
Gâteaux derivative ∇𝑓 is norm-to-weak∗ continuous (resp.,
continuous) on int dom𝑓 (see also [11, 12]). We will need the
following result.

Lemma 1 (see [13]). If 𝑓 : 𝐸 → R is uniformly Fréchet
differentiable and bounded on bounded subsets of 𝐸, then ∇𝑓 is
uniformly continuous on bounded subsets of 𝐸 from the strong
topology of 𝐸 to the strong topology of 𝐸∗.

Definition 2 (see [14]). The function 𝑓 is said to be

(i) essentially smooth, if 𝜕𝑓 is both locally bounded and
single valued on its domain,

(ii) essentially strictly convex, if (𝜕𝑓)
−1 is locally bounded

on its domain and𝑓 is strictly convex on every convex
subset of dom 𝜕𝑓,

(iii) Legendre if it is both essentially smooth and essen-
tially strictly convex.

Remark 3. Let 𝐸 be a reflexive Banach space. Then we have
the following.

(i) 𝑓 is essentially smooth if and only if 𝑓∗ is essentially
strictly convex (see [14, Theorem 5.4]).

(ii) (𝜕𝑓)
−1

= 𝜕𝑓
∗ (see [12]).

(iii) 𝑓 is Legendre if and only if 𝑓∗ is Legendre (see [14,
Corollary 5.5]).

(iv) If 𝑓 is Legendre, then ∇𝑓 is a bijection satisfying
∇𝑓 = (∇𝑓

∗
)
−1, ran∇𝑓= dom∇𝑓

∗
= int dom𝑓

∗, and
ran∇𝑓

∗
= dom∇𝑓 = int dom𝑓 (see [14, Theorem

5.10]).

Examples of Legendre functions were given in [14,
15]. One important and interesting Legendre function is
(1/𝑝)‖ ⋅ ‖

𝑝

(1 < 𝑝 < ∞) when 𝐸 is a smooth and strictly
convex Banach space. In this case, the gradient ∇𝑓 of 𝑓 is
coincident with the generalized duality mapping of 𝐸; that is,
∇𝑓 = 𝐽

𝑝
(1 < 𝑝 < ∞). In particular, ∇𝑓 = 𝐼 the identity

mapping in Hilbert spaces. In the rest of this paper, we always
assume that 𝑓 : 𝐸 → (−∞, +∞] is Legendre.

Let 𝑓 : 𝐸 → (−∞, +∞] be a convex and Gâteaux differ-
entiable function. The function 𝐷

𝑓
: dom𝑓 × int dom𝑓 →

[0, +∞) defined as

𝐷
𝑓
(𝑦, 𝑥) := 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥) , 𝑦 − 𝑥⟩ (9)

is called the Bregman distance with respect to 𝑓 [16].
Recall that the Bregman projection [17] of 𝑥 ∈ int dom𝑓

onto the nonempty closed and convex set 𝐶 ⊂ dom𝑓 is the
necessarily unique vector 𝑃𝑓

𝐶
(𝑥) ∈ 𝐶 satisfying

𝐷
𝑓
(𝑃
𝑓

𝐶
(𝑥) , 𝑥) = inf {𝐷

𝑓
(𝑦, 𝑥) : 𝑦 ∈ 𝐶} . (10)

Concerning the Bregman projection, the following are well
known.

Lemma 4 (see [18]). Let 𝐶 be a nonempty, closed, and convex
subset of a reflexive Banach space 𝐸. Let 𝑓 : 𝐸 → R be a
Gâteaux differentiable and totally convex function and let 𝑥 ∈

𝐸. Then

(a) 𝑧 = 𝑃
𝑓

𝐶
(𝑥) if and only if ⟨∇𝑓(𝑥)−∇𝑓(𝑧), 𝑦−𝑧⟩ ≤ 0, for

all 𝑦 ∈ 𝐶.
(b)

𝐷
𝑓
(𝑦, 𝑃
𝑓

𝐶
(𝑥)) + 𝐷

𝑓
(𝑃
𝑓

𝐶
(𝑥) , 𝑥) ≤ 𝐷

𝑓
(𝑦, 𝑥) ,

∀𝑥 ∈ 𝐸, 𝑦 ∈ 𝐶.

(11)

Let 𝑓 : 𝐸 → (−∞, +∞] be a convex and Gâteaux
differentiable function.Themodulus of total convexity of𝑓 at
𝑥 ∈ int dom𝑓 is the function ]

𝑓
(𝑥, ⋅) : [0, +∞) → [0, +∞]

defined by

]
𝑓
(𝑥, 𝑡) := inf {𝐷

𝑓
(𝑦, 𝑥) : 𝑦 ∈ dom𝑓,

𝑦 − 𝑥
 = 𝑡} . (12)

The function 𝑓 is called totally convex at 𝑥 if ]
𝑓
(𝑥, 𝑡) > 0

whenever 𝑡 > 0. The function 𝑓 is called totally convex if
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it is totally convex at any point 𝑥 ∈ int dom𝑓 and is said
to be totally convex on bounded sets if ]

𝑓
(𝐵, 𝑡) > 0 for any

nonempty bounded subset 𝐵 of 𝐸 and 𝑡 > 0, where the
modulus of total convexity of the function 𝑓 on the set 𝐵 is
the function ]

𝑓
: int dom𝑓×[0, +∞) → [0, +∞] defined by

]
𝑓
(𝐵, 𝑡) := inf {]

𝑓
(𝑥, 𝑡) : 𝑥 ∈ 𝐵 ∩ dom𝑓} . (13)

The next lemma will be useful in the proof of our main
results.

Lemma 5 (see [19]). If 𝑥 ∈ dom𝑓, then the following state-
ments are equivalent.

(i) The function 𝑓 is totally convex at 𝑥.
(ii) For any sequence {𝑦

𝑛
} ⊂ dom𝑓,

lim
𝑛→+∞

𝐷
𝑓
(𝑦
𝑛
, 𝑥) = 0 ⇒ lim

𝑛→+∞

𝑦𝑛 − 𝑥
 = 0. (14)

Recall that the function𝑓 is called sequentially consistent
[18] if, for any two sequences {𝑥

𝑛
} and {𝑦

𝑛
} in 𝐸 such that the

first one is bounded,

lim
𝑛→+∞

𝐷
𝑓
(𝑦
𝑛
, 𝑥
𝑛
) = 0 ⇒ lim

𝑛→+∞

𝑦𝑛 − 𝑥
𝑛

 = 0. (15)

Lemma 6 (see [20]). The function 𝑓 is totally convex on
bounded sets if and only if the function 𝑓 is sequentially
consistent.

Lemma7 (see [21]). Let𝑓:𝐸 → R be aGâteaux differentiable
and totally convex function. If 𝑥

0
∈ 𝐸 and the sequence

{𝐷
𝑓
(𝑥
𝑛
, 𝑥
0
)} is bounded, then the sequence {𝑥

𝑛
} is bounded too.

Lemma8 (see [21]). Let𝑓:𝐸 → R be aGâteaux differentiable
and totally convex function, 𝑥

0
∈ 𝐸, and let 𝐶 be a nonempty,

closed, and convex subset of 𝐸. Suppose that the sequence {𝑥
𝑛
}

is bounded and any weak subsequential limit of {𝑥
𝑛
} belongs

to 𝐶. If 𝐷
𝑓
(𝑥
𝑛
, 𝑥
0
) ≤ 𝐷

𝑓
(𝑃
𝑓

𝐶
𝑥
0
, 𝑥
0
) for any 𝑛 ∈ N, then {𝑥

𝑛
}

converges strongly to 𝑃
𝑓

𝐶
𝑥
0
.

Let 𝐶 be a convex subset of int dom𝑓 and let 𝑇 be a self-
mapping of 𝐶. A point 𝑝 ∈ 𝐶 is called an asymptotic fixed
point of 𝑇 (see [22, 23]) if 𝐶 contains a sequence {𝑥

𝑛
} which

converges weakly to 𝑝 such that lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0. We

denote by 𝐹(𝑇) the set of asymptotic fixed points of 𝑇.

Definition 9. Amapping𝑇with a nonempty asymptotic fixed
point set 𝐹(𝑇) is said to be

(i) Bregman strongly nonexpansive (see [24, 25]) with
respect to 𝐹(𝑇) if

𝐷
𝑓
(𝑝, 𝑇𝑥) ≤ 𝐷

𝑓
(𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) , (16)

and if, whenever {𝑥
𝑛
} ⊂ 𝐶 is bounded, 𝑝 ∈ 𝐹(𝑇) and

lim
𝑛→∞

(𝐷
𝑓
(𝑝, 𝑥
𝑛
) − 𝐷
𝑓
(𝑝, 𝑇𝑥

𝑛
)) = 0, (17)

it follows that

lim
𝑛→∞

𝐷
𝑓
(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (18)

(ii) Bregman firmly nonexpansive [26] if, for all 𝑥, 𝑦 ∈ 𝐶,

⟨∇𝑓 (𝑇𝑥) − ∇𝑓 (𝑇𝑦) , 𝑇𝑥 − 𝑇𝑦⟩

≤ ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦) , 𝑇𝑥 − 𝑇𝑦⟩

(19)

or, equivalently,

𝐷
𝑓
(𝑇𝑥, 𝑇𝑦) + 𝐷

𝑓
(𝑇𝑦, 𝑇𝑥) + 𝐷

𝑓
(𝑇𝑥, 𝑥) + 𝐷

𝑓
(𝑇𝑦, 𝑦)

≤ 𝐷
𝑓
(𝑇𝑥, 𝑦) + 𝐷

𝑓
(𝑇𝑦, 𝑥) .

(20)

The existence and approximation of Bregman firmly
nonexpansivemappings were studied in [26]. It is also known
that if 𝑇 is Bregman firmly nonexpansive and 𝑓 is Legendre
function which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subsets of 𝐸, then 𝐹(𝑇) =

𝐹(𝑇) and 𝐹(𝑇) is closed and convex (see [26]). It also
follows that every Bregman firmly nonexpansive mapping is
Bregman strongly nonexpansive with respect to𝐹(𝑇) = 𝐹(𝑇).

Lemma 10 (see [27]). Let 𝐸 be a real reflexive Banach space
and 𝑓 : 𝐸 → (−∞, +∞] a proper lower semicontinuous
function; then 𝑓

∗
: 𝐸
∗

→ (−∞, +∞] is a proper weak∗ lower
semicontinuous and convex function. Thus, for all 𝑧 ∈ 𝐸, we
have

𝐷
𝑓
(𝑧, ∇𝑓

∗

(

𝑁

∑

𝑖=1

𝑡
𝑖
∇𝑓 (𝑥
𝑖
))) ≤

𝑁

∑

𝑖=1

𝑡
𝑖
𝐷
𝑓
(𝑧, 𝑥
𝑖
) . (21)

In order to solve the equilibrium problem, let us assume
that a bifunction Θ : 𝐶 × 𝐶 → R satisfies the following
conditions [28]:

(A
1
) Θ(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶.

(A
2
) Θ is monotone; that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0, for all
𝑥, 𝑦 ∈ 𝐶.

(A
3
) lim sup

𝑡↓0
Θ(𝑥 + 𝑡(𝑧 − 𝑥), 𝑦) ≤ Θ(𝑥, 𝑦) for all 𝑥, 𝑧, 𝑦 ∈

𝐶.

(A
4
) The function 𝑦 → Θ(𝑥, 𝑦) is convex and lower
semicontinuous.

The resolvent of a bifunctionΘ [29] is the operator Res𝑓
Θ
:

𝐸 → 2
𝐶 defined by

Res𝑓
Θ
(𝑥) = {𝑧 ∈ 𝐶 : Θ (𝑧, 𝑦) + ⟨∇𝑓 (𝑧) − ∇𝑓 (𝑥) , 𝑦 − 𝑧⟩

≥ 0, ∀𝑦 ∈ 𝐶} .

(22)

FromLemma 1 in [24], if𝑓 : 𝐸 → (−∞, +∞] is a strongly
coercive and Gâteaux differentiable function and Θ satisfies
conditions (A

1
–A
4
), then dom (Res𝑓

Θ
) = 𝐸. We also know the

following lemmawhich gives us some characterizations of the
resolvent Res𝑓

Θ
.
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Lemma 11 (see [24]). Let 𝐸 be a real reflexive Banach space
and 𝐶 a nonempty closed convex subset of 𝐸. Let 𝑓 : 𝐸 →

(−∞, +∞] be a Legendre function. If the bifunction Θ : 𝐶 ×

𝐶 → R satisfies the conditions (A
1
)–(A
4
), then the followings

hold:

(i) 𝑅𝑒𝑠𝑓
Θ
is single-valued;

(ii) 𝑅𝑒𝑠𝑓
Θ
is a Bregman firmly nonexpansive operator;

(iii) 𝐹(𝑅𝑒𝑠𝑓
Θ
) = 𝐸𝑃(Θ);

(iv) 𝐸𝑃(Θ) is a closed and convex subset of 𝐶;

(v) for all 𝑥 ∈ 𝐸 and for all 𝑞 ∈ 𝐹(𝑅𝑒𝑠
𝑓

Θ
), we have

𝐷
𝑓
(𝑞, 𝑅𝑒𝑠

𝑓

Θ
(𝑥)) + 𝐷

𝑓
(𝑅𝑒𝑠
𝑓

Θ
(𝑥) , 𝑥) ≤ 𝐷

𝑓
(𝑞, 𝑥) . (23)

3. Strong Convergence Theorem

In this section, we proved a strong convergence theorem
for finding a common element of the set of solutions of an
equilibrium problem and a fixed point of Bregman strongly
nonexpansive mapping in a real reflexive Banach space by
using the shrinking projection method.

Theorem12. Let𝐶 be a nonempty, closed, and convex subset of
a real reflexive Banach space𝐸 and𝑓 : 𝐸 → R a strongly coer-
cive Legendre function which is bounded, uniformly Fréchet
differentiable, and totally convex on bounded subsets of 𝐸. Let
𝑔 be a bifunction from 𝐶 ×𝐶 toR satisfying (A

1
)–(A
4
) and let

𝑇 be a Bregman strongly nonexpansive mapping from 𝐶 into
itself such that 𝐹(𝑇) = 𝐹(𝑇) and 𝐺 = 𝐹(𝑇) ∩ 𝐸𝑃(𝑔) ̸= 0. Let
{𝑥
𝑛
} be a sequence generated by 𝑥

0
= 𝑥 ∈ 𝐶, 𝐶

0
= 𝐶 and

𝑦
𝑛
= ∇𝑓
∗

(𝛼
𝑛
∇𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) ∇𝑓 (𝑇𝑥

𝑛
)) ,

𝑢
𝑛
∈ 𝐶 such that

𝑔 (𝑢
𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑛
) − ∇𝑓 (𝑦

𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝐷
𝑓
(𝑧, 𝑢
𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
)} ,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛+1

𝑥

(24)

for every 𝑛 ∈ N ∪ {0}, where {𝛼
𝑛
} ⊂ [0, 1] satisfies

lim inf
𝑛→∞

(1 − 𝛼
𝑛
) > 0. Then, {𝑥

𝑛
} converges strongly to

𝑃
𝑓

𝐹(𝑇)∩𝐸𝑃(𝑔)
𝑥, where 𝑃

𝑓

𝐹(𝑇)∩𝐸𝑃(𝑔)
is the Bregman projection of 𝐸

onto 𝐹(𝑇) ∩ 𝐸𝑃(𝑔).

Proof. We divide the proof of Theorem 12 into five steps.
(I) We first prove that 𝐺 and 𝐶

𝑛
both are closed and

convex subset of 𝐶 for all 𝑛 ≥ 0. In fact, it follows from
Lemma 11 and by Reich and Sabach [26] that EP(𝑔) and 𝐹(𝑇)

both are closed and convex. Therefore, 𝐺 is a closed and
convex subset in 𝐶. Furthermore, it is obvious that 𝐶

0
= 𝐶

is closed and convex. Suppose that 𝐶
𝑛
is closed and convex

for some 𝑛 ≥ 1. Since the inequality 𝐷
𝑓
(𝑧, 𝑢
𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
) is

equivalent to

⟨∇𝑓 (𝑥
𝑛
) , 𝑧 − 𝑥

𝑛
⟩ − ⟨∇𝑓 (𝑢

𝑛
) , 𝑧 − 𝑢

𝑛
⟩ ≤ 𝑓 (𝑢

𝑛
) − 𝑓 (𝑥

𝑛
) .

(25)

Therefore, we have

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: ⟨∇𝑓 (𝑥

𝑛
) , 𝑧 − 𝑥

𝑛
⟩ − ⟨∇𝑓 (𝑢

𝑛
) , 𝑧 − 𝑢

𝑛
⟩

≤ 𝑓 (𝑢
𝑛
) − 𝑓 (𝑥

𝑛
)} .

(26)

This implies that 𝐶
𝑛+1

is closed and convex. The desired
conclusions are proved. These in turn show that 𝑃𝑓

𝐹(𝑇)∩EP(𝑔)𝑥

and 𝑃
𝑓

𝐶
𝑛

𝑥 are well defined.
(II) we prove that 𝐺 := 𝐹(𝑇) ∩ EP(𝑔) ⊂ 𝐶

𝑛
for all 𝑛 ≥ 0.

Indeed, it is obvious that 𝐺 = 𝐹(𝑇) ∩ EP(𝑔) ⊂ 𝐶
0
= 𝐶.

Suppose that 𝐺 ⊂ 𝐶
𝑛
for some 𝑛 ∈ N. Let 𝑢 ∈ 𝐺 ⊂ 𝐶

𝑛
; since

𝑢
𝑛
= Res𝑓

𝑔
(𝑦
𝑛
), by Lemma 11 and (21), we have

𝐷
𝑓
(𝑢, 𝑢
𝑛
) = 𝐷

𝑓
(𝑢,Res𝑓

𝑔
𝑦
𝑛
) ≤ 𝐷

𝑓
(𝑢, 𝑦
𝑛
)

= 𝐷
𝑓
(𝑢, ∇𝑓

∗

(𝛼
𝑛
∇𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) ∇𝑓 (𝑇𝑥

𝑛
)))

≤ 𝛼
𝑛
𝐷
𝑓
(𝑢, 𝑥
𝑛
) + (1 − 𝛼

𝑛
)𝐷
𝑓
(𝑢, 𝑇𝑥

𝑛
)

≤ 𝛼
𝑛
𝐷
𝑓
(𝑢, 𝑥
𝑛
) + (1 − 𝛼

𝑛
)𝐷
𝑓
(𝑢, 𝑥
𝑛
)

= 𝐷
𝑓
(𝑢, 𝑥
𝑛
) .

(27)

Hence, we have 𝑢 ∈ 𝐶
𝑛+1

. This implies that

𝐹 (𝑇) ∩ EP (𝑔) ⊂ 𝐶
𝑛
, ∀𝑛 ∈ N ∪ {0} . (28)

So, {𝑥
𝑛
} is well defined.

(III) We prove that {𝑥
𝑛
} is a bounded sequence in 𝐶.

By the definition of 𝐶
𝑛
, we have 𝑥

𝑛
= 𝑃
𝑓

𝐶
𝑛

𝑥 for all 𝑛 ≥ 0. It
follows from Lemma 4(b) that

𝐷
𝑓
(𝑥
𝑛
, 𝑥) = 𝐷

𝑓
(𝑃
𝑓

𝐶
𝑛

𝑥, 𝑥) ≤ 𝐷
𝑓
(𝑢, 𝑥) − 𝐷

𝑓
(𝑢, 𝑃
𝑓

𝐶
𝑛

𝑥)

≤ 𝐷
𝑓
(𝑢, 𝑥) , ∀𝑛 ≥ 0, 𝑢 ∈ 𝐺.

(29)

This implies that {𝐷
𝑓
(𝑥
𝑛
, 𝑥)} is bounded. By Lemma 7, {𝑥

𝑛
}

is bounded. Since 𝑓 : 𝐸 → R is uniformly Fréchet differen-
tiable and bounded on bounded subsets of 𝐸, by Lemma 1∇𝑓
is uniformly continuous and bounded on bounded subsets of
𝐸. This implies that {∇𝑓(𝑥

𝑛
)} is bounded.

(IV) Now we proved that lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0.

From 𝑥
𝑛+1

∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
and 𝑥

𝑛
= 𝑃
𝑓

𝐶
𝑛

𝑥, we have

𝐷
𝑓
(𝑥
𝑛
, 𝑥) ≤ 𝐷

𝑓
(𝑥
𝑛+1

, 𝑥) , ∀𝑛 ∈ N ∪ {0} . (30)

Thus, {𝐷
𝑓
(𝑥
𝑛
, 𝑥)} is nondecreasing. So, the limit of {𝐷

𝑓
(𝑥
𝑛
,

𝑥)} exists. Since 𝐷
𝑓
(𝑥
𝑛+1

, 𝑥
𝑛
) = 𝐷

𝑓
(𝑥
𝑛+1

, 𝑃
𝑓

𝐶
𝑛

𝑥) ≤ 𝐷
𝑓
(𝑥
𝑛+1

,

𝑥) − 𝐷
𝑓
(𝑃
𝑓

𝐶
𝑛

𝑥, 𝑥) = 𝐷
𝑓
(𝑥
𝑛+1

, 𝑥) − 𝐷
𝑓
(𝑥
𝑛
, 𝑥) for all 𝑛 ≥ 0, we
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have lim
𝑛→∞

𝐷
𝑓
(𝑥
𝑛+1

, 𝑥
𝑛
) = 0. From 𝑥

𝑛+1
= 𝑃
𝑓

𝐶
𝑛+1

𝑥 ∈ 𝐶
𝑛+1

,
we have

𝐷
𝑓
(𝑥
𝑛+1

, 𝑢
𝑛
) ≤ 𝐷

𝑓
(𝑥
𝑛+1

, 𝑥
𝑛
) , ∀𝑛 ∈ N ∪ {0} . (31)

Therefore, we have

lim
𝑛→∞

𝐷
𝑓
(𝑥
𝑛+1

, 𝑢
𝑛
) = 0. (32)

From Lemma 5, we have

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = lim
𝑛→∞

𝑥𝑛+1 − 𝑢
𝑛

 = 0. (33)

So, we have

lim
𝑛→∞

𝑥𝑛 − 𝑢
𝑛

 = 0. (34)

This means that the sequence {𝑢
𝑛
} is bounded. Since 𝑓 is

uniformly Fréchet differentiable, it follows from Lemma 1
that ∇𝑓 is uniformly continuous. Therefore, we have

lim
𝑛→∞

∇𝑓 (𝑥
𝑛
) − ∇𝑓 (𝑢

𝑛
)
 = 0. (35)

Since 𝑓 is uniformly Fréchet differentiable on bounded
subsets of 𝐸, then 𝑓 is uniformly continuous on bounded
subsets of 𝐸 (see [30, Theorem 1.8]). It follows that

lim
𝑛→∞

𝑓 (𝑥
𝑛
) − 𝑓 (𝑢

𝑛
)
 = 0. (36)

From the definition of the Bregman distance, we obtain
that

𝐷
𝑓
(𝑢, 𝑥
𝑛
) − 𝐷
𝑓
(𝑢, 𝑢
𝑛
)

= [𝑓 (𝑢) − 𝑓 (𝑥
𝑛
) − ⟨∇𝑓 (𝑥

𝑛
) , 𝑢 − 𝑥

𝑛
⟩]

− [𝑓 (𝑢) − 𝑓 (𝑢
𝑛
) − ⟨∇𝑓 (𝑢

𝑛
) , 𝑢 − 𝑢

𝑛
⟩]

= (𝑓 (𝑢
𝑛
) − 𝑓 (𝑥

𝑛
)) + ⟨∇𝑓 (𝑢

𝑛
) − ∇𝑓 (𝑥

𝑛
) , 𝑢 − 𝑢

𝑛
⟩

+ ⟨∇𝑓 (𝑥
𝑛
) , 𝑥
𝑛
− 𝑢
𝑛
⟩

(37)

for any 𝑢 ∈ 𝐺.
It follows from (34)–(37) that

lim
𝑛→∞

(𝐷
𝑓
(𝑢, 𝑥
𝑛
) − 𝐷
𝑓
(𝑢, 𝑢
𝑛
)) = 0. (38)

On the other hand, from 𝑢
𝑛
= Res𝑓

𝑔
𝑦
𝑛
and Lemma 11(v), for

any 𝑢 ∈ 𝐺 we have that

𝐷
𝑓
(𝑢
𝑛
, 𝑦
𝑛
) = 𝐷

𝑓
(Res𝑓
𝑔
𝑦
𝑛
, 𝑦
𝑛
)

≤ 𝐷
𝑓
(𝑢, 𝑦
𝑛
) − 𝐷
𝑓
(𝑢,Res𝑓

𝑔
𝑦
𝑛
)

≤ 𝐷
𝑓
(𝑢, 𝑥
𝑛
) − 𝐷
𝑓
(𝑢,Res𝑓

𝑔
𝑦
𝑛
)

= 𝐷
𝑓
(𝑢, 𝑥
𝑛
) − 𝐷
𝑓
(𝑢, 𝑢
𝑛
) .

(39)

So, we have from (38) that

lim
𝑛→∞

𝐷
𝑓
(𝑢
𝑛
, 𝑦
𝑛
) = 0. (40)

From Lemma 5, we have

lim
𝑛→∞

𝑢𝑛 − 𝑦
𝑛

 = 0. (41)

So, from (34) and (41),we have

lim
𝑛→∞

𝑥𝑛 − 𝑦
𝑛

 = 0. (42)

This means that the sequence {𝑦
𝑛
} is bounded. Since 𝑓 is

uniformly Fréchet differentiable, it follows from Lemma 1
that

lim
𝑛→∞

∇𝑓 (𝑥
𝑛
) − ∇𝑓 (𝑦

𝑛
)
 = 0. (43)

Since 𝑓 is uniformly Fréchet differentiable on bounded
subsets of 𝐸, then 𝑓 is uniformly continuous on bounded
subsets of 𝐸 (see [30]). It follows that

lim
𝑛→∞

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)
 = 0. (44)

From the definition of the Bregman distance, we obtain
that

𝐷
𝑓
(𝑢, 𝑦
𝑛
) − 𝐷
𝑓
(𝑢, 𝑥
𝑛
)

= [𝑓 (𝑢) − 𝑓 (𝑦
𝑛
) − ⟨∇𝑓 (𝑦

𝑛
) , 𝑢 − 𝑦

𝑛
⟩]

− [𝑓 (𝑢) − 𝑓 (𝑥
𝑛
) − ⟨∇𝑓 (𝑥

𝑛
) , 𝑢 − 𝑥

𝑛
⟩]

= (𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)) − ⟨∇𝑓 (𝑦

𝑛
) − ∇𝑓 (𝑥

𝑛
) , 𝑢 − 𝑦

𝑛
⟩

+ ⟨∇𝑓 (𝑥
𝑛
) , 𝑦
𝑛
− 𝑥
𝑛
⟩

(45)

for any 𝑢 ∈ 𝐺.
It follows from (42) to (45) that

lim
𝑛→∞

(𝐷
𝑓
(𝑢, 𝑦
𝑛
) − 𝐷
𝑓
(𝑢, 𝑥
𝑛
)) = 0. (46)

On the other hand, for any 𝑢 ∈ 𝐺 we have

𝐷
𝑓
(𝑢, 𝑦
𝑛
) − 𝐷
𝑓
(𝑢, 𝑥
𝑛
)

= 𝐷
𝑓
(𝑢, ∇𝑓

∗

(𝛼
𝑛
∇𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) ∇𝑓 (𝑇𝑥

𝑛
)))

− 𝐷
𝑓
(𝑢, 𝑥
𝑛
)

≤ 𝛼
𝑛
𝐷
𝑓
(𝑢, 𝑥
𝑛
) + (1 − 𝛼

𝑛
)𝐷
𝑓
(𝑢, 𝑇𝑥

𝑛
) − 𝐷
𝑓
(𝑢, 𝑥
𝑛
)

= (1 − 𝛼
𝑛
) (𝐷
𝑓
(𝑢, 𝑇𝑥

𝑛
) − 𝐷
𝑓
(𝑢, 𝑥
𝑛
)) .

(47)

This together with (46), (16), and lim
𝑛→∞

𝛼
𝑛
< 1 shows that

lim
𝑘→∞

(𝐷
𝑓
(𝑢, 𝑇𝑥

𝑛
) − 𝐷
𝑓
(𝑢, 𝑥
𝑛
)) = 0. (48)

Since 𝑇 is Bregman strongly nonexpansive, it follows from
(48) that

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑥
𝑛

 = 0. (49)

(V) Next, we prove that every weak subsequential limit of
{𝑥
𝑛
} belongs to 𝐺 = 𝐹(𝑇) ∩ EP(𝑔).
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Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑘

}

of {𝑥
𝑛
} such that 𝑥

𝑛
𝑘

⇀ 𝑥
∗. Since 𝑇 is a Bregman strongly

nonexpansive mapping with 𝐹(𝑇)=𝐹(𝑇), we have 𝑥∗ ∈𝐹(𝑇).
From 𝑥

𝑛
𝑘

⇀ 𝑥
∗ and (34), we have 𝑢

𝑛
𝑘

⇀ 𝑥
∗.

By 𝑢
𝑛
= Res𝑓

𝑔
𝑦
𝑛
, we have

𝑔 (𝑢
𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑛
) − ∇𝑓 (𝑦

𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(50)

Replacing 𝑛 by 𝑛
𝑘
, we have from (A

2
) that

⟨∇𝑓 (𝑢
𝑛
𝑘

) − ∇𝑓 (𝑦
𝑛
𝑘

) , 𝑦 − 𝑢
𝑛
𝑘

⟩ ≥ −𝑔 (𝑢
𝑛
𝑘

, 𝑦) ≥ 𝑔 (𝑦, 𝑢
𝑛
𝑘

) ,

∀𝑦 ∈ 𝐶.

(51)

Since 𝑔(𝑥, ⋅) is convex and lower semicontinuous, it is also
weakly lower semicontinuous. So, letting 𝑘 → ∞, we have
from (35), (43), and (A

4
) that

𝑔 (𝑦, 𝑥
∗

) ≤ 0, ∀𝑦 ∈ 𝐶. (52)

For 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶, letting 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑥

∗, there
are 𝑦
𝑡
∈ 𝐶 and 𝑔(𝑦

𝑡
, 𝑥
∗
) ≤ 0. By condition (A

1
) and (A

4
), we

have

0 = 𝑔 (𝑦
𝑡
, 𝑦
𝑡
) ≤ 𝑡𝑔 (𝑦

𝑡
, 𝑦) + (1 − 𝑡) 𝑔 (𝑦

𝑡
, 𝑥
∗

) ≤ 𝑡𝑔 (𝑦
𝑡
, 𝑦) .

(53)

Dividing both sides of the above equation by 𝑡, we have
𝑔(𝑦
𝑡
, 𝑦) ≥ 0, for all 𝑦 ∈ 𝐶. Letting 𝑡 ↓ 0, from condition

(A
3
), we have

𝑔 (𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (54)

Therefore, 𝑥∗ ∈ EP(𝑔).
(VI) Now, we prove 𝑥

𝑛
→ 𝑃
𝑓

𝐹(𝑇)∩EP(𝑔)𝑥.
Let 𝑤 = 𝑃

𝑓

𝐹(𝑇)∩EP(𝑔)𝑥. From 𝑤 ∈ 𝐹(𝑇) ∩ EP(𝑔) ⊂ 𝐶
𝑛+1

,
we have𝐷

𝑓
(𝑥
𝑛+1

, 𝑥) ≤ 𝐷
𝑓
(𝑤, 𝑥).Therefore, Lemma 8 implies

that {𝑥
𝑛
} converges strongly to 𝑤 = 𝑃

𝑓

𝐹(𝑇)∩EP(𝑔)𝑥, as claimed.
This completes the proof of Theorem 12.

Corollary 13. Let 𝐶 be a nonempty, closed, and convex
subset of a real reflexive Banach space 𝐸 and 𝑓 : 𝐸 →

R a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable, and totally convex on bounded
subsets of 𝐸. Let 𝑔 be a bifunction from 𝐶 × 𝐶 to R satisfying
(A
1
)–(A
4
). Let {𝑥

𝑛
} be a sequence generated by 𝑥

0
= 𝑥 ∈

𝐶, 𝐶
0
= 𝐶, and

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝑔 (𝑢
𝑛
, 𝑦) + ⟨∇𝑓 (𝑢

𝑛
) − ∇𝑓 (𝑥

𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝐷
𝑓
(𝑧, 𝑢
𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
)} ,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛+1

𝑥

(55)

for every 𝑛 ∈ N ∪ {0}. Then, {𝑥
𝑛
} converges strongly to 𝑃

𝑓

𝐸𝑃(𝑔)
𝑥,

where 𝑃𝑓
𝐸𝑃(𝑔)

is the Bregman projection of 𝐸 onto 𝐸𝑃(𝑔).

Proof. Putting 𝑇 = 𝐼 in Theorem 12, we obtain Corollary 13.

Corollary 14. Let 𝐶 be a nonempty, closed, and convex
subset of a real reflexive Banach space 𝐸 and 𝑓 : 𝐸 →

R a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable, and totally convex on bounded
subsets of𝐸. let𝑇 be a Bregman strongly nonexpansivemapping
from 𝐶 into itself such that 𝐹(𝑇) = 𝐹(𝑇) and 𝐺 = 𝐹(𝑇) ∩

𝐸𝑃(𝑔) ̸= 0. Let {𝑥
𝑛
} be a sequence generated by 𝑥

0
= 𝑥 ∈

𝐶, 𝐶
0
= 𝐶, and

𝑢
𝑛
= 𝑃
𝑓

𝐶
∇𝑓
∗

(𝛼
𝑛
∇𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) ∇𝑓 (𝑇𝑥

𝑛
)) ,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝐷
𝑓
(𝑧, 𝑢
𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
)} ,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛+1

𝑥

(56)

for every 𝑛 ∈ N ∪ {0}, where {𝛼
𝑛
} ⊂ [0, 1] satisfies

lim inf
𝑛→∞

(1 − 𝛼
𝑛
) > 0. Then, {𝑥

𝑛
} converges strongly to

𝑃
𝑓

𝐹(𝑇)
𝑥, where 𝑃𝑓

𝐹(𝑇)
is the Bregman projection of 𝐸 onto 𝐹(𝑇).

Proof. Putting 𝑔(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝐶 in Theorem 12, we
obtain Corollary 14.
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