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This paper is devoted to investigating the limit properties of distances and the existence and uniqueness of fixed points, best
proximity points and existence, and uniqueness of limit cycles, to which the iterated sequences converge, of single-valued, and so-
called, contractive precyclic self-mappings which are proposed in this paper. Such self-mappings are defined on the union of a finite
set of subsets of uniformly convex Banach spaces under generalized contractive conditions. Each point of a subset is mapped either
in some point of the same subset or in a point of the adjacent subset. In the general case, the contractive condition of contractive
precyclic self-mappings is admitted to be point dependent and it is only formulated on a complete disposal, rather than on each
individual subset, while it involves a condition on the number of iterations allowed within each individual subset before switching
to its adjacent one. It is also allowed that the distances in-between adjacent subsets can be mutually distinct including the case of
potential pairwise intersection for only some of the pairs of adjacent subsets.

1. Introduction

A relevant attention has been recently devoted to the research
of existence and uniqueness of fixed points of self-mappings
as well as to the investigation of associate relevant proper-
ties like, for instance, stability of the iterations [1–3]. The
extension of such topics to the existence of either fixed
points of multivalued self-mappings [1, 4–19], in generalized
metric spaces [20, 21], or to the existence of common
fixed points of several multivalued mappings or operators
is receiving an important attention, for example, [7, 8, 15–
19, 22] and references therein. Relevant properties on the
existence and uniqueness of fixed points and best proximity
points formultivalued cyclic self-mappings have been studied
under general contractive-type conditions based on the
Hausdorff metric between subsets of a metric space. See,
for instance, [4, 7–9], including as a relevant particular case
the contractive condition on contractive single-valued self-
mappings, [1, 4–10], as well as concerns related to their
extension to cyclic self-mappings. See, for instance, [7, 8,

11] and references there in. The various related performed
researches include the cases of strict contractive cyclic self-
mappings and Meir-Keeler type cyclic contractions [23, 24].
Also, some of the existing background fixed point results
on contractive single and multivalued self-mappings, [1,
4, 5, 9, 10, 25–28] and references therein, under some
types of contractive conditions, have been revisited and
extended in [4]. There is also a wide sample of fixed
point type results available on fixed points and asymptotic
properties of the iterations for self-mappings satisfying a
number of contractive-type conditions while being endowed
with partial order conditions. See [18, 19] and references
therein.

The main objective of this paper is the investigation
of the properties of the distances as well as the existence
and uniqueness of fixed points and best proximity points
related to contractive so-called single-valued contractive
𝑝(≥2)-precyclic self-mappings 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
.

Such a concept extends that of contractive 𝑝(≥2)-cyclic self-
mappings.
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The concept of precyclic self-mapping generalizes that
of cyclic self-mappings in the sense that a finite set of con-
secutive iterations are optionally allowed within a particular
subset of the cyclic disposal of interest before a switching
of the image of the self-mapping to the adjacent subset of
its pre-image in the iterated sequence. It can also eventually
happen that some sequence enters a certain subset and
the solution remains permanent within such a subset. The
precyclic self-mappings are contractive if they are subject to
contractive conditions of similar types to those arising in
contractive cyclic self-mappings.

Precyclic contractive self-mappings allow the generation
of iterated sequences under constraints of the form 𝑇

𝑗
(𝐴
𝑖
) ⊆

𝐴
𝑖
∪ 𝐴
𝑖+1

for 𝑗 = 𝑗(𝑖, 𝑥) being less than a prescribed positive
integer number 𝑗 = 𝑗 (𝑖, 𝑥); for all 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
, for all 𝑖 ∈ 𝑝

which can be set and point dependent, while 𝑇𝑗(𝐴
𝑖
) ⊆ 𝐴

𝑖+1
;

for all 𝑖 ∈ 𝑝.The ordering of the subsets for switching between
pairs of adjacent subsets to perform the 𝑝-precyclic self-
mapping is, so-called, in the sequel a 𝑝-precyclic disposal.

Let R
0+

= R
+

∪ {0} be the set of nonnegative real
numbers and Z

0+
= Z
+
∪ {0} the set of nonnegative integer

numbers. Consider a metric space (𝑋, 𝑑) endowed with a
metric 𝑑 : 𝑋 × 𝑋 → R

0+
and a finite set of nonempty

subsets 𝐴
𝑖
; 𝑖 ∈ 𝑝 = {1, 2, . . . 𝑝} of 𝑋 and a so-called 𝑝(≥2)-

precyclic self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
such that

𝑇(𝐴
𝑖
) ⊆ 𝐴

𝑖
∪ 𝐴
𝑖+1

; for all 𝑖 ∈ 𝑝, where 𝐴
𝑖

= 𝐴
𝑗
for

𝑖, 𝑗 ∈ 𝑝 under the congruence relation 𝑗 ≡ 𝑖(mod𝑝), that
is 𝐴
𝑝𝑛+𝑖

= 𝐴
𝑖
; for all 𝑛 ∈ Z

0+
, for all 𝑖 ∈ 𝑝. Note that

the previous concept of precyclic self-mapping generalizes
that of a 𝑝-cyclic self-mapping which satisfies the stronger
constraint 𝑇(𝐴

𝑖
) ⊆ 𝐴

𝑖+1
; for all 𝑖 ∈ 𝑝. Let 𝐷

𝑖,𝑗
= 𝑑(𝐴

𝑖
, 𝐴
𝑗
)

be the distance in-between any two subsets 𝐴
𝑖
, 𝐴
𝑗
⊂ 𝑋; for

all 𝑖, 𝑗 ∈ 𝑝. Note that, compared to a cyclic self-mapping,
an iterated sequence from a precyclic self-mapping might
contain iterated subsequences of finite or infinite cardinals in
a single subset 𝐴

𝑖
⊂ 𝑋 (𝑖 ∈ 𝑝) even if ⋂

𝑖∈𝑝
𝐴
𝑖

̸= ⌀. Also,
certain iterated sequences generated from 𝑝-precyclic self-
mappings can converge to a fixed point, rather than oscillate
in-between sets of distinct best proximity points, even if
⋂
𝑖∈𝑝

𝐴
𝑖
= ⌀, provided that the iterated points all stay in the

same subset 𝐴
𝑖
⊂ 𝑋, for some 𝑖 ∈ 𝑝, after a finite number of

iterations.
For each given 𝑥 ∈ 𝐴

𝑖
, define the following nondecreas-

ing strictly ordered (in general, point dependent) switching
sequence of nonnegative integers:

𝑆
∗

𝑖
(𝑥) = {𝑗

∗

𝑖−1
(𝑥) = 0, 𝑗

∗

𝑖
(𝑥) , 𝑗
∗

𝑖+1
(𝑥) , . . . , 𝑗

∗

𝑝
(𝑥) ,

𝑗
∗

1+𝑝
(𝑥) , . . . , 𝑗

∗

𝑖+𝑗+ℓ𝑝
(𝑥) , . . .} ; ∀𝑖 ∈ 𝑝

(1)

containing the numbers of consecutive iterations within
each individual subset 𝐴

𝑖
⊆ 𝑋;for all 𝑖 ∈ 𝑝, before

switching to the successive adjacent subsets 𝐴
𝑖+1

, 𝐴
𝑖+2

,

. . . , 𝐴
𝑖−1

, 𝐴
𝑖
, 𝐴
𝑖+1

, 𝐴
𝑖+2

, . . ., and so forth for 𝑗 ∈ 𝑝 of the
iterated sequence

𝑃
𝑖 (𝑥)

= {{𝑇
𝑗
∗

𝑖−1
(𝑥)

𝑥 (=𝑥) ,

𝑇
𝑗
∗

𝑖−1
+1(𝑥)

𝑥 (=𝑇𝑥) , . . . , 𝑇
𝑗
∗

𝑖
(𝑥)−1

𝑥} (⊆𝐴
𝑖
) , . . . ,

{𝑇
𝑗
∗

𝑖+𝑗+ℓ𝑝
(𝑥)

𝑥, . . . , 𝑇
𝑗
∗

𝑖+𝑗+ℓ𝑝+1
(𝑥)−1

𝑥} (⊆ 𝐴
𝑖+𝑗+1

) , . . . } .

(2)

For all 𝑖 ∈ 𝑝 such that

𝑗
∗

𝑖+𝑗+ℓ𝑝
(𝑥) = {

min (𝑘 (≥ 𝑗 + ℓ𝑝) ∈ Z
0+

: 𝑇
𝑘
𝑥 ∈ 𝐴

𝑖+𝑗+1
\ 𝐴
𝑖+𝑗

) ; ∀𝑖 ∈ 𝑝, ∀ℓ ∈ Z
0+
, if 0 ≤ 𝑗 ≤ 𝑝 − 𝑖 − 1

min (𝑘 (≥ 𝑗 + ℓ𝑝) ∈ Z
0+

: 𝑇
𝑘
𝑥 ∈ 𝐴

𝑖+𝑗+1−𝑝
\ 𝐴
𝑖+𝑗−𝑝

) ; ∀ 𝑖 ∈ 𝑝, ∀ℓ ∈ Z
0+
, if 𝑝 ≥ 𝑗 > 𝑝 − 𝑖 − 1

(3)

for any given 𝑥 ∈ 𝐴
𝑖
and, either 𝑗∗

𝑘+1
(𝑥) − 𝑗

∗

𝑘
(𝑥) < ∞; for

all 𝑘 ∈ Z
0+

with card𝑆∗
𝑖
(𝑥) = 𝜒

0
(i.e., infinite cardinal of a

numerable set) or there is 𝑗
∗

𝑘
∗
(𝑥)

(𝑥) < ∞ for some existing
finite 𝑘

∗
= 𝑘
∗
(𝑥) ∈ Z

0+
and then 𝑆

∗

𝑖
(𝑥) = {𝑗

∗

𝑖−1
(𝑥) =

0, 𝑗
∗

𝑖
(𝑥), 𝑗
∗

𝑖+1
(𝑥), . . . , 𝑗

∗

𝑘
∗
(𝑥)

(𝑥) < ∞} is a finite set, that is,
card𝑆∗
𝑖
(𝑥) = 𝑘

∗
(𝑥) − 𝑖(𝑥) + 2 < 𝜒

0
with 𝑇

𝑗
∗

𝑘
∗
(𝑥)
+𝑘
𝑥 being in the

same subset 𝐴
𝑖
⊂ 𝑋 as 𝑇𝑗

∗

𝑘
∗
(𝑥)𝑥; for all 𝑘(≤ card𝑆∗

𝑖
(𝑥)) ∈ Z

0+
;

for all 𝑖 ∈ 𝑝. If card 𝑆
∗

𝑖
(𝑥) = 1 for any𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
, for all 𝑖 ∈ 𝑝,

then only one iteration stays at each subset before switching
to the adjacent one so that the 𝑝-precyclic self-mapping is a
standard 𝑝-cyclic one. Note, for instance, that if 𝑗∗

𝑖
(𝑥) = 1

in (2) and 𝑥 ∈ 𝐴
𝑖
, then 𝑇𝑥 ∈ 𝐴

𝑖+1
. If this occurs for each

𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, then 𝑇 on ⋃

𝑖∈𝑝
𝐴
𝑖
is a usual 𝑝-precyclic self-

mapping.
We will establish the formulation in metric spaces (𝑋, 𝑑).

It might be pointed out that it is usual to state formulations
related to differential or dynamic systems and their stability,

including those being formulated in a fractional calculus
framework, in normed or Banach spaces since their dynamics
evolve through time described by their state vectors [14, 29–
39]. A possibility to focus on the study of their equilibrium
points in a formal and structured fashion as well as their limit
solutions, provided that they exist, (for instance, the presence
of possible limit cycles) is through fixed point theory since
the equilibrium points are fixed points of certain mappings
and the limit cycles are repeated portions of limit state space
trajectories. See, for instance, [33] and references therein. In
the subsequently formulated and proved results, where the
convexity of sets of 𝑋 is required, it will be assumed that
(𝑋, ‖ ‖) is a normed space with associated metric space (𝑋, 𝑑)

for a norm-induced metric 𝑑 : 𝑋 × 𝑋 → R
0+
, [29]. If

(𝑋, ‖ ‖) is a Banch space, then (𝑋, 𝑑) is a complete metric
space.The converses are not true without invoking additional
assumptions. For instance, if (𝑋, 𝑑) is a metric space (resp., a
complete metric space) endowed with a homogeneous and
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translation -invariant metric 𝑑 : 𝑋 × 𝑋 → R
0+
, then the

metric-induced norm ‖ ‖ exists so that (𝑋, ‖ ‖) is a normed
(resp., Banach) space endowed with such a metric-induced
norm.

Example 1. For some given 𝜀 ∈ R
0+
, define the real intervals

𝐴
1
= R
𝜀+

= {𝑧 ∈ R : 𝑧 ≥ 𝜀} ;

𝐴
2
= R
𝜀−

= {𝑧 ∈ R : 𝑧 ≤ −𝜀}
(4)

and consider the scalar sequence

𝑥
𝑛+1

= {
𝑥
𝑛+1

, if 𝑥𝑛+1
 ≥ 𝜀,

−𝜀 sgn𝑥
𝑛
, otherwise,

(5)

where

𝑥
𝑛+1

= (−1)
𝑛+1

𝑎
𝑛
𝑥
𝑛
; ∀𝑛 ∈ Z

0+
with initial condition

satisfying 𝑥0
 ≥ 𝜀

(6)

with {𝑎
𝑛
} ⊂ R

0+
. Note that, if 𝜀 = 0, then 𝐴

1
∩ 𝐴
2
= {0} and

{0} can be a candidate for fixed point depending on certain
simple contractive or, at least, nonexpansive conditions on
the sequence {𝑎

𝑛
}. If 𝜀 ̸= 0, then the convergence of the

sequences {𝑥
2𝑛
} and {𝑥

2𝑛+1
} (but not that of {𝑥

𝑛
} which

is not convergent) can be possible only to best proximity
points ±𝜀. The self-mapping 𝑇 on 𝐴

1
∪ 𝐴
2
defining the

solution sequence is a 2-cyclic one since the solution points
are alternately in 𝐴

1
and 𝐴

2
. However, the modification

𝑥
𝑛+1+𝑖

= {
𝑥
𝑛+1+𝑖

, if 𝑥𝑛+1
 ≥ 𝜀,

−𝜀]
𝑛+𝑖

sgn𝑥
𝑛
, otherwise,

(7)

where

𝑥
𝑛+1+𝑖

= (−1)
𝑛+1

]
𝑛+𝑖

𝑎
𝑛
𝑥
𝑛

]
𝑛+𝑖

= {
(−1)
𝑛+1

, if 0 ≤ 𝑖 ≤ 𝑗
∗
= 2,

1, if 𝑖 = 𝑗
∗
.

(8)

For all 𝑛 ∈ Z
0+

with initial value |𝑥
0
| ≥ 𝜀 is a 2-precyclic (but

no a 2-cyclic) self-mapping which generates two consecutive
iterations in both 𝐴

1
and 𝐴

2
before switching to the other

subset. Several extended variants are possible; that is, 𝑗∗ =

𝑗
∗

0
= 𝑗
∗

1
= 2 is constant in this case. For instance, 𝑗∗ can

be dependent on the solution point 𝑥(𝑛) or on the initial
condition. If 𝑗∗(𝑥(𝑛

0
)) is infinity, then the trajectory solution

remains in either 𝐴
1
(resp., in 𝐴

2
) for 𝑛 ≥ 𝑛

0
if 𝑥(𝑛

0
) ∈

𝐴
1
(resp., 𝑥(𝑛

0
) ∈ 𝐴
2
). In this case, depending on conditions

on the parameterization sequence {𝑎
𝑛
}, the convergence of

the solution in one of the subsets could be possible, even if
𝜀 ̸= 0, when 𝑗

∗ is infinity in at least one of the sets 𝐴
1
and 𝐴

2

for some subset of values of the solution so that the solution
enters such a set and remains in it for all later iterations.
If𝑗∗ = 1 for any point of the solution sequence at any iteration,
then the solution trajectory switches in-between the subsets
𝐴
1
and 𝐴

2
so that the 2-precyclic self-mapping is also a 2-

cyclic one.

2. Convergence of Iterated Sequences to
Fixed Points

The following assumptions are made.
(1) There are 𝑝 bounded real functions 𝐾

𝑖
: 𝐴
𝑖
→ 𝐾
𝑖
∈

(0, 𝐾
𝑖
]; for all 𝑖 ∈ 𝑝 fulfilling 𝐾

𝑖
(𝑥) = 𝐾

𝑗
(𝑥) in⋃

𝑖∈𝑝
𝐴
𝑖
under

the congruence relation 𝑗 ≡ 𝑖 (mod𝑝) for some 𝑖 = 𝑖(𝑗) ∈ 𝑝

and any given 𝑗 ∈ Z
+
such that

𝑑 (𝑇𝑥, 𝑇
2
𝑥) ≤ 𝐾

𝑖 (𝑥) 𝑑 (𝑥, 𝑇𝑥) + (1 − 𝐾
𝑖 (𝑥)) ]𝑖 (𝑥)𝐷𝑖 (9)

for 𝑥 ∈ 𝐴
𝑖
where ]

𝑖
: 𝐴
𝑖
→ {0, 1} are binary functions; for

all 𝑖 ∈ 𝑝 such that ]
𝑖
(𝑥) = 0 if 𝑇𝑥 ∈ 𝐴

𝑖
and ]

𝑖
(𝑥) = 1 if

𝑇𝑥 ∈ 𝐴
𝑖+1

\ 𝐴
𝑖
; for all 𝑥 ∈ 𝐴

𝑖
, for all 𝑖 ∈ 𝑝. The notation

to be used does not distinguish explicitly the cases when
the contractive-like functions are real constants or point-
dependent functions, but this can be easily deduced from
context.

(2) If𝐷
𝑖
> 0, that is, if𝐴

𝑖
∩𝐴
𝑖+1

= ⌀, then𝐾
𝑖
< 1; for all

𝑖 ∈ 𝑝.
(3) If card 𝑆

∗
(𝑥) < 𝜒

0
, then𝐾

𝑘
∗
(𝑥)

≤ 1, where 𝑘∗(𝑥) ≡ 𝑖 +

𝑗 (mod 𝑝); for all 𝑥 ∈ 𝐴
𝑖
, for all 𝑖 ∈ 𝑝, provided that 𝐴

𝑖+𝑗
is

closed
(4)

lim sup
𝑘→∞

(

𝑘

∑

𝑗=0

[𝐾
𝑗
∗

𝑖+𝑗
(𝑥)

𝑖+𝑗
]) ≤ 1; 𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑖, 𝑗 ∈ 𝑝. (10)

If (𝑥, 𝑦 ̸= 𝑇𝑥) ∈ 𝐴
𝑖
× 𝐴
𝑖+1

for some 𝑖 ∈ 𝑝, then
the constraint (9) is replaced with its following standard
counterpart stated for 𝑝-cyclic self-mappings:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝐾
𝑖 (𝑥) 𝑑 (𝑥, 𝑦) + (1 − 𝐾

𝑖 (𝑥))𝐷𝑖. (11)

Note that the previous condition holds if 𝑇𝑥 ∈ 𝐴
𝑖+1

and
𝑇𝑦 ∈ 𝐴

𝑖+2
but also if 𝑇𝑥, 𝑇𝑦 ∈ 𝐴

𝑖+1
in its particular version

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝐾
𝑖
(𝑥)𝑑(𝑥, 𝑦), since 𝐷

𝑖
≥ 0, and that it contains

(9) for iterated sequences generated from 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→

⋃
𝑖∈𝑝

𝐴
𝑖
as a particular case. Note also the following.

(a) A particular pair (𝑥, 𝑇𝑥) can satisfy simultaneously
several constraints (9). For instance, assume that
𝑥, 𝑇𝑥 ∈ 𝐴

𝑖
∩ 𝐴
𝑖+1

( ̸=⌀) for some 𝑖 ∈ 𝑝. Then

𝑑(𝑇𝑥, 𝑇
2
𝑥) ≤ min (𝐾

𝑖 (𝑥) , 𝐾𝑖+1 (𝑥)) 𝑑 (𝑥, 𝑇𝑥) . (12)

(b) If card 𝑆
∗
(𝑥) < 𝜒

0
, then there is some set 𝐴

𝑗
(𝑗 ∈

𝑝) such that 𝑇
𝑘
𝑥 ⊆ 𝐴

𝑗
; for all 𝑘 ≥ 𝑘

0
and

some finite 𝑘
0

= 𝑘
0
(𝑥) ∈ Z

0+
for each given

𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
. Then, 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is

nonexpansive and {𝑇
𝑘
𝑥}
𝑘∈Z
0+

is bounded. Note that
Assumption 4 is guaranteed directly by Assumption
3 if card 𝑆

∗
(𝑥) < 𝜒

0
. If card 𝑆

∗
(𝑥) = 𝜒

0
, then

Assumption 3 is not invoked; however, Assumption
4 guarantees that {𝑇𝑘𝑥}

𝑘∈Z
0+

is bounded with 𝑇
𝑘
𝑥 ∈

⋃
𝑖∈𝑝

𝐴
𝑖
.

(c) Assumption 4 implies that the 𝑝-precyclic self-
mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is asymptotically

nonexpansive.
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(d) Any 𝑝-precyclic self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→

⋃
𝑖∈𝑝

𝐴
𝑖
is also a 𝑝-cyclic self-mapping.

In the following, fix(𝐺) denotes the set of fixed points of
the self-mapping 𝐺 : 𝑋 → 𝑋. The following results hold.

Theorem 2. Let 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
be a 𝑝-precyclic self-

mapping. Assume also that the constraint (9) is extended for
any 𝑥 ∈ 𝐴

𝑖
and 𝑦 ∈ 𝐴

𝑗
; for all 𝑖, 𝑗 ∈ 𝑝 as follows:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ max (𝐾
𝑖 (𝑥) , 𝐾𝑗 (𝑦)) 𝑑 (𝑥, 𝑦)

+ (1 −max (𝐾
𝑖 (𝑥) , 𝐾𝑗 (𝑦))) ]𝑖𝑗 (𝑥)𝐷𝑖𝑗,

(13)

where 𝐷
𝑖𝑗
= 𝑑(𝐴

𝑖
, 𝐴
𝑗
) and ]

𝑖𝑗
(𝑥) = 1 if 𝑇𝑥 ∈ 𝐴

𝑖+1
\ 𝐴
𝑖
and

𝑇𝑦 ∈ 𝐴
𝑗+1

\ 𝐴
𝑗
and ]
𝑖𝑗
(𝑥) = 0, otherwise; for all 𝑥 ∈ 𝐴

𝑖
, for

all 𝑦 ∈ 𝐴
𝑗
.

Then, the following properties hold.

(i) 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a 𝑝-cyclic self-mapping if

and only if 𝑇(𝐴
𝑖
) ⊆ 𝐴

𝑖+1
; for all 𝑖 ∈ 𝑝.

(ii) If 𝐷
𝑖
> 0; for all 𝑖 ∈ 𝑝 and card 𝑆

∗
(𝑥) = 𝜒

0
; for all

𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, then 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
has no

fixed point in⋃
𝑖∈𝑝

𝐴
𝑖
.

(iii) If card 𝑆
∗
(𝑥) < 𝜒

0
for some 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
, then

𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
has a fixed point in a subset

𝐴
𝑗
⊂ 𝑋, for some 𝑗 ∈ 𝑝, to which the iterated sequence

{𝑥, 𝑇𝑥, . . . , 𝑇
𝑘
𝑥, . . .} converges if (𝑋, 𝑑) is complete,

𝐾
𝑗
< 1 and 𝐴

𝑗
is closed. If 𝑥 ∈ 𝐴

𝑖
for some 𝑖 ∈ 𝑝, then

the iterated sequence {𝑥, 𝑇𝑥, . . . , 𝑇𝑘𝑥, . . .} converges to
a fixed point 𝑥∗

𝑖+𝑗
∈ 𝐴
𝑖+𝑗

of 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖

for some 𝑗 ∈ 𝑝 − 𝑖 with 𝐾
𝑖+𝑗

< 1 such that 𝑘∗(𝑥) ≡

𝑖 + 𝑗(mod𝑝), provided that 𝐴
𝑖+𝑗

is closed, or to a fixed
point 𝑥∗

𝑗
∈ 𝐴
𝑗
for some 𝑗 ∈ 𝑖 − 1 with 𝐾

𝑗
< 1 and

𝑘
∗
(𝑥) ≡ 𝑖 + 𝑗(mod𝑝) provided that 𝐴

𝑗
is closed. If,

furthermore, 𝑥∗
𝑖+𝑗

∈ 𝐴
𝑖+𝑗

for 𝑗 ∈ 𝑝 − 𝑖, respectively,
𝑥
∗

𝑗
∈ 𝐴
𝑗
for 𝑗 ∈ 𝑖 are convex then the corresponding

fixed point is unique.

Proof. 𝑇(𝐴
𝑖
) ∩ 𝐴

𝑖
̸= ⌀ for some 𝑖 ∈ 𝑝; then ∃𝑥 ∈ 𝐴

𝑖
such

that 𝑇𝑥 ∉ 𝐴
𝑖+1

. Then, 𝑇(𝐴
𝑖
) ⊆ 𝐴

𝑖
∪ 𝐴
𝑖+1

is not a cyclic self-
mapping. Hence, Property (i) follows.

Note that 𝐷
𝑖
> 0; for all 𝑖 ∈ 𝑝 ⇔ 𝐴

𝑖
∩ 𝐴
𝑖+1

= Ø; for all
𝑖 ∈ 𝑝. If card 𝑆

∗
(𝑥) = 𝜒

0
, then 𝑆

∗
(𝑥) is an infinite sequence

of switches in-between adjacent subsets of𝑋which are never
intersecting.Thus, 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
has no fixed point

in⋃
𝑖∈𝑝

𝐴
𝑖
. Hence, Property (ii) follows.

To prove Property (iii), first note that

𝐴
𝑖+𝑗+ℓ𝑝

= 𝐴
𝑖+𝑗

= 𝐴
𝑘
; ∀ℓ ∈ Z

0+
; ∀𝑖, 𝑗 ∈ 𝑝 (14)

such that

𝑖 + 𝑗 + ℓ𝑝 ≡ 𝑖 + 𝑗 (mod 𝑝)

≡ 𝑘 (= 𝑖 + 𝑗 − 𝑝; 𝑘 ∈ Z
+
) (mod 𝑝) .

(15)

Note also that, if card 𝑆
∗
(𝑥) < 𝜒

0
for some 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
,

then the iterated sequence 𝑆(𝑥) = {𝑥, 𝑇𝑥, . . . , 𝑇
𝑘
𝑥, . . .} built

from such an initial point 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
through 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
remains in 𝐴

𝑗
⊂ 𝑋, for such a 𝑗 ∈ 𝑝,

for all 𝑘 ≥ 𝑗
∗

𝑘
∗
(𝑥)

and some finite integer 𝑗
∗

𝑘
∗
(𝑥)
. Then, the

asymptotically nonexpansive self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→

⋃
𝑖∈𝑝

𝐴
𝑖
is asymptotically contractive from Assumption 4

and also contractive after a finite number of iterations since
𝐾
𝑗
< 1. Thus, 𝑆(𝑥) is bounded and has a Cauchy convergent

subsequence since (𝑋, 𝑑) is complete. Since the subset𝐴
𝑗
⊂ 𝑋

is nonempty and closed for such 𝑗 ∈ 𝑝, there is a fixed point of
𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
from Banach contraction principle

and such a fixed point is unique if the subset is, furthermore,
convex.

Now, the following result is proven for a class of contrac-
tive 𝑝-precyclic self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
.

Theorem 3. Assume that (𝑋, ‖ ‖) is a normed space with
associated metric space (𝑋, 𝑑) for a norm-induced metric 𝑑 :

𝑋 × 𝑋 → R
0+
. Let 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
be a 𝑝-

precyclic self-mapping and 𝐷
𝑖
= 0; for all 𝑖 ∈ 𝑝. If 𝐴

𝑖
⊂ 𝑋

are nonempty, bounded, closed, and convex; for all 𝑖 ∈ 𝑝 and

𝐾 = ∏
𝑖∈𝑝

[𝐾
𝑗
∗

𝑖

𝑖
] < 1, where 𝑗

∗

𝑖
= sup

𝑥∈𝐴
𝑖

𝑗
∗

𝑖
(𝑥). Then 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
has a unique fixed point 𝑥∗ ∈ ⋂

𝑖∈𝑝
𝐴
𝑖
.

If 𝐴
𝑖
⊂ 𝑋 is not closed for some 𝑖 ∈ 𝑝 while (𝑋, ‖ ‖) is a

Banach space, and then (𝑋, 𝑑) is a complete metric space, then
𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
has a unique fixed point in⋂

𝑖∈𝑝
𝑐𝑙𝐴
𝑖
.

Proof. It follows that

lim
𝑛→∞

𝑑 (𝑇
𝑝𝑛𝑗
∗

𝑥, 𝑇
𝑝𝑛𝑗
∗

−1
𝑥) ≤ lim
𝑛→∞

(𝐾
𝑛

) 𝑑 (𝑇𝑥, 𝑥) = 0;

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖

(16)

since 𝑑(𝑥, 𝑇𝑥) < ∞ for any finite 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, since ⋃

𝑖∈𝑝
𝐴
𝑖

is bounded, where

𝑗
∗

=

𝑝

∑

𝑖=1

𝑗
∗

𝑖

= max
𝑖∈𝑝

sup
𝑥∈𝐴
𝑖

(𝑗
∗

𝑖
(𝑥)+𝑗

∗

𝑖+1
(𝑇
𝑗
∗

𝑖
+1
𝑥)+ ⋅ ⋅ ⋅ +𝑗

∗

𝑝
(𝑇
∑
𝑝−1

𝑗=𝑖
𝑗
∗

𝑗
+1
𝑥)

+ 𝑗
∗

1
(𝑇
∑
𝑝

𝑗=𝑖
𝑗
∗

𝑗
+1
𝑥)

+ ⋅ ⋅ ⋅ + 𝑗
∗

𝑖−1
(𝑇
∑
𝑝

𝑗=𝑖
𝑗
∗

𝑗
+∑
𝑝−1

𝑗=𝑝−𝑖+1
𝑗
∗

𝑗
+1
𝑥)) ;

(17)

that is, the distance between any two consecutive elements
of any such a sequence converges asymptotically to zero.
Furthermore, since the subsets𝐴

𝑖
⊂ 𝑋 are nonempty, closed,

all of them intersect and the composite self-mapping 𝑇
𝑝𝑗
∗

:

⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is uniformly Lipschitz -continuous in

⋃
𝑖∈𝑝

𝐴
𝑖
, since it is contractive with constant 𝐾 < 1, the
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sequence {𝑇
𝑝𝑛𝑗
∗

𝑥} converges to 𝑥
∗

𝑖
= 𝑥
∗

𝑖
(𝑥) ∈ 𝐴

𝑖
for some

𝑖 ∈ 𝑝, which is a unique fixed point of the composite 𝑇
𝑝𝑗
∗

:

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
in 𝐴
𝑖
; for all 𝑖 ∈ 𝑝. To prove uniqueness,

proceed by contradiction. Assume that there are two fixed
points 𝑥

∗

𝑖
= 𝑇
𝑝𝑗
∗

𝑥
∗

𝑖
, 𝑦∗
𝑖
( ̸= 𝑥
∗

𝑖
) = 𝑇

𝑝𝑗
∗

𝑦
∗

𝑖
in 𝐴
𝑖
of 𝑇𝑝𝑗

∗

:

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
.

Then,

𝑑 (𝑥
∗

𝑖
, 𝑦
∗

𝑖
) = 𝑑 (𝑇

𝑝𝑛𝑗
∗

𝑥
∗

𝑖
, 𝑇
𝑝𝑛𝑗
∗

𝑦
∗

𝑖
)

≤ 𝑑 (𝑇
𝑝𝑛𝑗
∗

+1
𝑥
∗

𝑖
, 𝑇
𝑝𝑛𝑗
∗

𝑥
∗

𝑖
)

+ 𝑑 (𝑇
𝑝𝑛𝑗
∗

+1
𝑥
∗

𝑖
, 𝑇
𝑝𝑛𝑗
∗

+1
𝑦
∗

𝑖
)

+ 𝑑 (𝑇
𝑝𝑛𝑗
∗

+1
𝑦
∗

𝑖
, 𝑇
𝑝𝑛𝑗
∗

𝑦
∗

𝑖
)

≤ 𝐾
𝑛

(𝑑 (𝑇𝑥
∗

𝑖
, 𝑥
∗

𝑖
) + 𝑑 (𝑇𝑥

∗

𝑖
, 𝑇𝑦
∗

𝑖
) + 𝑑 (𝑇𝑦

∗

𝑖
, 𝑦
∗

𝑖
))

= 𝐾
𝑛

𝑑 (𝑥
∗

𝑖
, 𝑦
∗

𝑖
) < 𝑑 (𝑥

∗

𝑖
, 𝑦
∗

𝑖
) ; ∀𝑛 ∈ Z

+

(18)

which leads to the contradiction that 𝑥∗
𝑖
= 𝑦
∗

𝑖
.Thus, there is a

unique fixed point of 𝑇𝑝𝑗
∗

: ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
in 𝐴
𝑖
. Also,

one gets from (16) that

lim
𝑛→∞

𝑑 (𝑇
𝑝𝑛𝑗
∗

+𝑗
𝑥, 𝑇
𝑝𝑛𝑗
∗

+𝑗−1
𝑥)

≤ lim
𝑛→∞

(𝐾
𝑛

)(

𝑗

∏

ℓ=1

[𝐾
ℓ
])𝑑 (𝑇𝑥, 𝑥) = 0; ∀𝑗 ∈ 𝑝

(19)

for any 𝑗 ∈ 𝑝. As a result,
lim
𝑛→∞

𝑑(𝑇
𝑝𝑛𝑗
∗

+𝑗
𝑥, 𝑇
𝑝𝑛𝑗
∗

+𝑗−1
𝑥) = 0 and {𝑇

𝑝𝑛𝑗
∗

+𝑗
𝑥} → 𝑥

∗

𝑖
=

𝑇
𝑝𝑗
∗

𝑥
∗

𝑖
with some unique 𝑥∗

𝑖
∈ 𝐴
𝑖
for some 𝑖 ∈ 𝑝; for all 𝑗 ∈

𝑝. Now, assume that there are two distinct fixed points 𝑥∗
𝑖
∈

𝐴
𝑖
and 𝑥

∗

𝑗
( ̸=𝑥
∗

𝑖
) ∈ 𝐴

𝑗
( ̸=𝐴
𝑖
) of for some 𝑖, 𝑗( ̸=𝑖) ∈ 𝑝. Since

𝐴
𝑖
⊆ 𝑋 is nonempty, closed, and convex for any 𝑖 ∈ 𝑝, then

𝐴
𝑖
∩ 𝐴
𝑗
is nonempty, closed, and convex; for all 𝑖, 𝑗( ̸= 𝑖) ∈ 𝑝.

From the convexity of𝐴
𝑖
∩ 𝐴
𝑗
, there is 𝑧( ̸= 𝑥

∗

𝑖
, 𝑥
∗

𝑗
) ∈ 𝐴
𝑖
∩𝐴
𝑗

such that 𝑑(𝑥∗
𝑖
, 𝑧) = 𝜆𝑑(𝑥

∗

𝑖
, 𝑥
∗

𝑗
) with some real constant 𝜆 ∈

(0, 1) and 𝑥
∗

𝑖
, 𝑧 ∈ 𝐴

𝑖
. Then,

𝑑 (𝑥
∗

𝑖
, 𝑇
𝑝𝑛𝑗
∗

𝑧)

= 𝑑 (𝑇
𝑝𝑛𝑗
∗

𝑥
∗

𝑖
, 𝑇
𝑝𝑛𝑗
∗

𝑧) ≤ 𝐾
𝑛

𝑑 (𝑥
∗

𝑖
, 𝑧) = 𝜆 𝐾

𝑛

𝑑 (𝑥
∗

𝑖
, 𝑥
∗

𝑗
)

(20)

so that 𝑑(𝑥∗
𝑖
, 𝑇
𝑝𝑛𝑗
∗

𝑧) → 0 as 𝑛 → ∞ and, since 𝑇
𝑝𝑗
∗

:

⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is uniformly Lipschitz continuous in

⋃
𝑖∈𝑝

𝐴
𝑖
, the sequence {𝑇

𝑝𝑛𝑗
∗

𝑧}
𝑛∈Z
0+

converges to 𝑥
∗

𝑖
∈ 𝐴
𝑖
.

But 𝑧 ∈ 𝐴
𝑗
so that we can repeat the previous reasoning

with 𝑑(𝑥
∗

𝑗
, 𝑧) = 𝜆


𝑑(𝑥
∗

𝑖
, 𝑥
∗

𝑗
), 𝑥∗
𝑗
, 𝑧 ∈ 𝐴

𝑗
and some real

constant 𝜆 ∈ (0, 1) to conclude that 𝑑(𝑥∗
𝑗
, 𝑇
𝑝𝑛𝑗
∗

𝑧) → 0 as

𝑛 → ∞ and {𝑇
𝑝𝑛𝑗
∗

𝑧}
𝑛∈Z
0+

converges to 𝑥
∗

𝑗
( ̸= 𝑥
∗

𝑖
) ∈ 𝐴
𝑗
which

is a contradiction to its convergence to 𝑥
∗

𝑖
∈ 𝐴
𝑖
. Then, there

is a unique fixed point in the nonempty, closed, and convex
set 𝐴
𝑖
∩ 𝐴
𝑗
. By extending the same reasoning to any pair of

subsets 𝐴
𝑖
and 𝐴

𝑗
of 𝑋, one concludes that the composite

self-mapping 𝑇
𝑝𝑗
∗

: ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
has a unique fixed

point 𝑥∗ ∈ {𝑥
∗
} = Fix (𝑇𝑝𝑗

∗

) ⊆ ⋂
𝑖∈𝑝

𝐴
𝑖
.

It remains to be proved that the unique fixed point of
the composite mapping is also the unique fixed point of 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
. Since the subsets 𝐴

𝑖
⊆ 𝑋 intersect, one

gets from (16) that

(𝑑 (𝑇
2𝑝𝑗
∗

+1
𝑥
∗
, 𝑇
2𝑝𝑗
∗

𝑥
∗
) ≤ 𝐾


𝐾𝑑(𝑇

𝑝𝑗
∗

𝑥
∗
, 𝑥
∗
) = 0)

⇒ (𝑑 (𝑇 (𝑇
2𝑝𝑗
∗

) 𝑥
∗
, 𝑥
∗
) = 𝑑 (𝑇𝑥

∗
, 𝑥
∗
) = 0)

⇒ (𝑇𝑥
∗
= 𝑥
∗
) ⇐⇒ (𝑥

∗
∈ Fix (𝑇𝑝𝑗

∗

))

⇒ (𝑥
∗
∈ Fix (𝑇))

(21)

since 𝑇𝑝𝑗
∗

𝑥
∗
= 𝑥
∗, where𝐾 = max

𝑖∈𝑝
𝐾
𝑖
. Also,

(𝑥
∗
∈ Fix (𝑇))

⇒ (𝑑 (𝑇𝑥
∗
, 𝑥
∗
) = 𝑑 (𝑥

∗
, 𝑥
∗
) = 𝑑 (𝑇

2
𝑥
∗
, 𝑇𝑥
∗
)

= ⋅ ⋅ ⋅ = 𝑑 (𝑇
𝑛+1

𝑥
∗
, 𝑇
𝑛
𝑥
∗
) = 0; ∀𝑛 ∈ Z)

⇐⇒ (𝑥
∗
∈ Fix (𝑇𝑛) ; ∀𝑛 ∈ Z

+
) ⇒ (𝑥

∗
∈ Fix (𝑇𝑝𝑗

∗

))

(22)

so that 𝑥∗ ∈ Fix (𝑇) and it is the unique fixed point of 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
. If some 𝐴

𝑖
𝑖 ∈ 𝑝 is not closed, then

all Cauchy sequences have a limit in 𝑋 if (𝑋, 𝑑) is complete
so that there is still a unique fixed point in ⋂

𝑖∈𝑝
𝑐𝑙𝐴
𝑖
of 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
and 𝑇

𝑝𝑗
∗

: ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
.

The following result is now proven for a class of nonex-
pansive 𝑝-precyclic self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
.

Corollary 4. Assume the hypothesis of Theorem 3 with the

modified weaker condition 𝐾 = ∏
𝑖∈𝑝

[𝐾
𝑗
∗

𝑖

𝑖
] ≤ 1 of nonexpan-

sive self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
. Then, {𝑇𝑛𝑥}

𝑛∈Z
0+

is bounded; for all 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
there is a subsequence

{𝑇
𝑝𝑗
∗

𝑛
𝑘𝑥}
𝑛
𝑘
∈𝑍
𝑠
⊆Z
0+

⊆ {𝑇
𝑛
𝑥}
𝑛∈Z
0+

, for some strictly ordered
subset 𝑍

𝑠
of Z
0+
, such that 𝑑(𝑇𝑝𝑗

∗

𝑛
𝑘𝑥, 𝑇
𝑝𝑗
∗

𝑛
𝑘+1𝑥) → 𝐶 =

𝐶(𝑥) as 𝑘 → ∞; for all 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
for some real 𝐶 ∈ R

0+
. If,

in addition, 𝐾
𝑖
≤ 1; for all 𝑖 ∈ 𝑝, then 𝑑(𝑇

𝑛+1
𝑥, 𝑇
𝑛
𝑥) → 𝐶 =

𝐶(𝑥) as 𝑛 → ∞; for all 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
.

Proof. 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
is always finite since ⋃

𝑖∈𝑝
𝐴
𝑖
is bounded

and then {𝑇
𝑛
𝑥}
𝑛∈Z
0+

⊆ ⋃
𝑖∈𝑝

𝐴
𝑖
is a bounded sequence; for

all 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
. Also, 𝑑(𝑇𝑝𝑗

∗

𝑛
𝑥, 𝑇
𝑝𝑗
∗

𝑛+1
𝑥) ≤ 𝑑(𝑥, 𝑇𝑥); for
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all 𝑛 ∈ Z
0+
, for all 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
since 𝐾 = ∏

𝑖∈𝑝
[𝐾
𝑗
∗

𝑖

𝑖
] ≤ 1.

Thus, lim sup
𝑛→∞

𝑑(𝑥, 𝑇
𝑛+1

𝑥) < ∞; for all 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖

since {𝑇
𝑛
𝑥}
𝑛∈Z
0+

is bounded and 𝑑(𝑇
𝑛
𝑥, 𝑇
𝑛+1

𝑥) < ∞; for all
𝑛 ∈ Z

0+
from the properties of distances since 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖

is finite. Thus, there is a subsequence {𝑇
𝑝𝑗
∗

𝑛
𝑘𝑥}
𝑛
𝑘
∈𝑍
𝑠
⊆Z
0+

⊆

{𝑇
𝑘
𝑥}
𝑘∈Z
0+

for which 𝑑(𝑇
𝑝𝑗
∗

𝑛
𝑘𝑥, 𝑇
𝑝𝑗
∗

𝑛
𝑘+1𝑥) converges as 𝑘 →

∞. If, in addition, 𝐾
𝑖
≤ 1; for all 𝑖 ∈ 𝑝, then 𝑑(𝑇

𝑛+1
𝑥, 𝑇
𝑛
𝑥) ≤

(max
𝑖∈𝑝

𝐾
𝑖
)𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑇𝑥); for all 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
, so that

𝑑(𝑇
𝑛+1

𝑥, 𝑇
𝑛
𝑥) → 𝐶 = 𝐶(𝑥) as 𝑛 → ∞; for all 𝑥 ∈

⋃
𝑖∈𝑝

𝐴
𝑖
.

The subsequent result is related to convergence to a
unique fixed point in one of the subsets 𝐴

𝑖
⊆ 𝑋 (𝑖 ∈ 𝑝)

of the precyclic disposal even if the subsets do not intersect,
provided that the self-mapping is asymptotically contractive
in one of the subsets.

Corollary 5. Assume the hypothesis of Theorem 3 with the
subsequent further hypothesis on the 𝑝-precyclic self-mapping
𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
:

(1) ⋂
𝑖∈𝑝

𝐴
𝑖
= ⌀; card𝑆∗

𝑖
(𝑥) < 𝜒

0

(2) ∃𝑗 ∈ 𝐽
0

= 𝐽
0
(𝑥) ⊆ 𝑝 (nonnecessarily unique; that

is, 𝐽
0
can have a cardinal greater than one) such that

lim sup
ℓ→∞

𝐾
𝑗
(𝑇
𝑖+𝑗+ℓ𝑝+1

𝑥) < 1 for some given initial
point 𝑥 ∈ 𝐴

𝑖
.

Then, the iterated sequence𝑃
𝑖
(𝑥), (2), converges to a fixed point

in 𝐴
𝑘
⊂ 𝑋 for a unique 𝑘 = min(𝑗 ∈ 𝐽

𝑖≺
: 𝑗 ∈ 𝐽

0
) ∈ 𝑝, where

𝐽
𝑖≺

= 𝐽
𝑖≺ (𝑥)

= {𝑖 (≺ 𝑖 + 1) , 𝑖 + 1 (≺𝑖 + 2) , 𝑖 + 2 (≺ 𝑖 + 3) , . . . ,

𝑝 − 1 (≺𝑝) , 𝑝 (≺, 1) , 1 (≺2) , . . . , 𝑖 − 1 ≺ (𝑖)}

(23)

is a strictly ordered finite set of card 𝐽
𝑖≺

= 𝑝, containing all the
𝑝 elements of the set 𝑝, with the strict order relation ≺ defined
by its enumeration order defined by 𝑎 ≺ 𝑏 for any 𝑎, 𝑏 ∈ 𝐽 if
a precedes 𝑏 in the previous enumeration definition of the set
𝐽.

Proof. Since card 𝑆
∗

𝑖
(𝑥) < 𝜒

0
; ∃𝑗 ∈ 𝑝 such that for the given

𝑥 ∈ 𝐴
𝑖
𝑗
∗

𝑖+𝑗+ℓ𝑝+1
(𝑥) → ∞ as ℓ → ∞ if 0 ≤ 𝑗 ≤ 𝑝 − 𝑖 − 1,

or 𝑗∗
𝑘+ℓ𝑝

(𝑥) → ∞ as ℓ → ∞ if 2𝑝 ≥ 𝑗 > 𝑝 − 𝑖 − 1 for any
nonnegative integer 𝑘 > 𝑖 − 1 such that 𝑗 ≡ 𝑘 − 𝑖 − 1(mod𝑝).
This is obvious since, if such a𝑗 ∈ 𝑝 does not exist, then
the iterated sequence 𝑃

𝑖
(𝑥), (2), with starting point 𝑥 ∈ 𝐴

𝑖

for the given 𝑖 ∈ 𝑝 has infinitely many switches in-between
consecutive adjacent subsets 𝐴

𝑖
⊂ 𝑋; then the switching

sequence 𝑆
∗

𝑖
(𝑥) associated with such an iterated sequence

𝑃
𝑖
(𝑥) is finite so that card 𝑆

∗

𝑖
(𝑥) = 𝜒

0
.

From the extra previous hypothesis 2, there is a nonempty
set 𝐽
0
(𝑥) ⊆ 𝑝 for which lim sup

ℓ→∞
𝐾
𝑗
(𝑇
𝑖+𝑗+ℓ𝑝+1

𝑥) < 1 for
the given 𝑥 ∈ 𝐴

𝑖
. Note that the 𝑝-precyclic self-mapping

𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is asymptotically contractive, for

the given 𝑥 ∈ 𝐴
𝑖
on 𝐴

𝑘
⊂ 𝑋, where 𝑘 = min(𝑗 ∈

𝐽
𝑖≺
(𝑥) : 𝑗 ∈ 𝐽

0
(𝑥)) ∈ 𝑝 is unique (even if 𝐽

0
(𝑥) is

of cardinal greater than one) from the fact that 𝐽
𝑖≺
(𝑥) in

(23) is of finite cardinal, strictly ordered, then with unique
minimal and maximal elements which are then a unique
𝑖 ∈ 𝑝 minimum and maximum 𝑖 − 1 ∈ 𝑝 − 1 ∪ {0},
respectively. From the previous part of this proof, it also
turns out that 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is, furthermore,

(strictly) contractive on such a subset𝐴
𝑘
⊂ 𝑋 for any infinite

subsequence 𝑃
𝑖
(𝑇
𝑗
∗

𝑖+𝑗+ℓ𝑝
(𝑥)

𝑥) ⊆ 𝑃
𝑖
(𝑥). Therefore, such a sub-

sequence 𝑃
𝑖
(𝑇
𝑗
∗

𝑖+𝑗+ℓ𝑝
(𝑥)

𝑥) is itself a Cauchy sequence fulfilling
lim
𝑛→∞

𝑑(𝑇
𝑛
𝑥, 𝑇
𝑛+1

𝑥) = 0 and then being bounded and
convergent in 𝐴

𝑘
(since {𝑇

𝑛
𝑥}
𝑛≥𝑗
∗

𝑖+𝑗+ℓ𝑝
(𝑥)

satisfies a Lipschitz-
continuous property) to a fixed point 𝑥∗ ∈ 𝐴

𝑘
, since 𝐴

𝑘
is

nonempty, bounded (then𝑥 is bounded), and closed, which is
unique since𝐴

𝑘
is convex. Since the sequence 𝑃

𝑖
(𝑥) contains,

by construction, all the elements of the subsequence alter
a finite number of iterations, it also converges to the same
unique fixed point 𝑥∗.

Remark 6. (1) Note that Corollary 5 is stated for a certain
iterated sequence being built from a starting point since the
contractive conditions a point-to-point condition. Point-to-
point contractivity-type conditions have been also used in
the literature for the characterization of fixed point properties
of contractive self-mappings. See, for instance, [40, 41]
and references therein. It can be generalized directly under
generalization for any starting point in any of the subsets or in
some subset of its union. It can be reformulated, in particular,
if lim sup

ℓ→∞
𝐾
𝑗
(𝑇
𝑖+𝑗+ℓ𝑝+1

𝑥) < 1; for all 𝑥 ∈ 𝐴
𝑖
. In such a

case, it follows the convergence of the sequence of iterates to
the same unique fixed point in𝐴

𝑘
built from any initial point

𝑥 ∈ 𝐴
𝑖
.

(2) Note that the uniqueness of the final set 𝐴
𝑘
from the

initial set 𝐴
𝑖
, such that 𝑥 ∈ 𝐴

𝑖
, arises from the fact that the

first subset where the iterations remain after a finite number
of them is the relevant one for the final reached limit if the
precyclic self-mapping stops to transfer the iterated sequence
to the next adjacent subset.

(3) Note that, if the convexity assumption is onlymade on
the subset 𝐴

𝑘
, then Corollary 5 still holds.

(4) Note also that, if the convexity assumption on the
subsets is removed in Corollary 5, then the existence of the
fixed point is still proven although that one is not necessarily
unique.

The subsequent result is a consequence of direct proof of
Corollaries 4 and 5.

Corollary 7. Assume the hypothesis of Corollary 5 under the
weaker lim sup

ℓ→∞
𝐾
𝑗
(𝑇
𝑖+𝑗+ℓ𝑝+1

𝑥) ≤ 1 condition of asymp-
totic nonexpansivness of the self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→

⋃
𝑖∈𝑝

𝐴
𝑖
in some of the subsets 𝐴

𝑘
⊆ 𝑋 for some given initial

point 𝑥 ∈ 𝐴
𝑖
. Then, 𝑑(𝑇𝑛+1𝑥, 𝑇𝑛𝑥) → 𝐶 = 𝐶(𝑥) and

{𝑇
𝑛
𝑥}
𝑛≥𝑛
0

⊆ 𝐴
𝑘
for some finite 𝑛

0
∈ Z
0+

and a unique 𝑘 ∈ 𝑝

as defined in Corollary 5.
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Some extensions of Corollary 7 can be directly obtained
from Remark 6 (3)-(4).

3. Convergence to Best Proximity Points

The following preliminary technical result concerning the
convergence for distances in-between consecutive iterates
through the self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is now

given in the case that the subsets 𝐴
𝑖
⊂ 𝑋 do not necessarily

intersect.

Theorem 8. Assume that the following constraints hold.

(1) 𝐷
𝑖

̸= 0; for all 𝑖 ∈ 𝑝.

(2) 𝐾
𝑖
∈ (0,∞) is constant within each subset 𝐴

𝑖
⊂ 𝑋

and the switching sequences

𝑆
∗

𝑖
= {𝑗
∗

𝑖−1
= 0, 𝑗
∗

𝑖
, 𝑗
∗

𝑖+1
, . . . , 𝑗

∗

𝑝
, 𝑗
∗

1+𝑝
, . . . , 𝑗

∗

𝑖+𝑗+ℓ𝑝
, . . .}

= {𝑗
∗

𝑖−1
= 0, 𝑗
∗

𝑖
, 𝑆
∗

𝑖+1
\ 𝑗
∗

𝑖
} ; ∀𝑖 ∈ 𝑝

(24)

are not point dependent on the given 𝑥 ∈ 𝐴
𝑖
; for all 𝑖 ∈ 𝑝 so

that, in addition,

𝑗
∗

𝑖
= 𝑗
∗

𝑖+𝑛𝑝
= sup
𝑥∈𝐴
𝑖

𝑗
∗

𝑖
(𝑥) = 𝑗

∗

𝑖+𝑛𝑝
∀𝑛 ∈ Z

0+
. (25)

(3)

𝐾 = ∏

𝑖∈𝑝

[𝐾
𝑗
∗

𝑖

𝑖
] < 1. (26)

(4)

𝐷
0

:=

∑
𝑝

𝑗=1
(∏
𝑝

𝑖=𝑗+1
[𝐾
𝑗
∗

𝑖

𝑖
]) (1 − 𝐾

𝑗
)𝐷
𝑗

1 − ∏
𝑝

𝑖=1
[𝐾
𝑗
∗

𝑖

𝑖
]

. (27)

Then, the following properties hold for any 𝑥 ∈ 𝐴
𝑖
:

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗

𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗−1

𝑥) ≤ 𝐾
𝑗−1

𝑖
𝐷
0

𝑓𝑜𝑟 𝑗 = 1, 2, . . . , 𝑗
∗

𝑖

(28)

𝐷
𝑖+𝑘

≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

ℓ=𝑖
𝑗
∗

ℓ
+𝑗+1

𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

𝑖
+𝑗
𝑥)

≤ (

𝑘

∏

ℓ=𝑖

[𝐾
ℓ
])𝐷
0
+

𝑘

∑

𝑗=𝑖

(

𝑘

∏

ℓ=𝑗+1

[𝐾
𝑗
∗

ℓ

ℓ
]) (1 − 𝐾

𝑗
)𝐷
𝑗
;

(29)

for all 𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, 𝑗 = 0, 1, . . . , 𝑗

∗

𝑘+1
− 1, for all 𝑘 ∈ 𝑝.

If, in addition, Assumption 5

(5)

𝐷
1
= 𝐾
𝑗
∗

1
−1

1
𝐷
0
;

𝐷
𝑘
= 𝐾
𝑗
∗

𝑘
−1

𝑘
(

𝑘−1

∏

𝑖=1

[𝐾
𝑗
∗

𝑖

𝑖
])𝐷
0
≥

𝑘−1

∏

𝑖=1

[𝐾
𝑗
∗

𝑖

𝑖
]𝐷
𝑘

for 𝑘 ≥ 2

(30)

Holds; then,

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖 𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
−1
𝑥) ≤ 𝐷

𝑘

(31)

∃ lim
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖 𝑥) = 𝐷
𝑘
;

∀𝑘 ∈ 𝑝

(32)

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘+1

𝑖=1
𝑗
∗

𝑖
+𝑗+1

𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘+1

𝑖=1
𝑗
∗

𝑖
+𝑗
𝑥)

= 𝐾
1+𝑗−𝑗

∗

𝑘

𝑘
𝐷
𝑘
; 𝑗 = 1, . . . , 𝑗

∗

𝑘+1
− 1, ∀𝑘 ∈ 𝑝; ∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
.

(33)

Proof. Take any 𝑥 ∈ 𝐴
1
. Thus, one gets from (9)

𝑑 (𝑇
2
𝑥 , 𝑇𝑥) ≤ 𝐾

1
𝑑 (𝑥, 𝑇𝑥)

𝑑 (𝑇
𝑗
∗

1 𝑥, 𝑇
𝑗
∗

1
−1
𝑥) ≤ 𝐾

𝑗
∗

1
−1

1
𝑑 (𝑥, 𝑇𝑥)

𝐷
1
≤ 𝑑 (𝑇

𝑗
∗

1
+1
𝑥, 𝑇
𝑗
∗

1 𝑥) ≤ 𝐾
𝑗
∗

1

1
𝑑 (𝑥, 𝑇𝑥) + (1 − 𝐾

1
)𝐷
1

𝑑 (𝑇
𝑗
∗

1
+2
𝑥, 𝑇
𝑗
∗

1
+1
𝑥) ≤ 𝐾

2
𝑑 (𝑇
𝑗
∗

1
+1
𝑥, 𝑇
𝑗
∗

1 𝑥)

≤ 𝐾
2
[𝐾
𝑗
∗

1

1
𝑑 (𝑥, 𝑇𝑥) + (1 − 𝐾

1
)𝐷
1
]

𝑑 (𝑇
𝑗
∗

1
+𝑗
∗

2 𝑥, 𝑇
𝑗
∗

1
+𝑗
∗

2
−1
𝑥) ≤ 𝐾

𝑗
∗

2
−1

2
[𝐾
𝑗
∗

1

1
𝑑 (𝑥, 𝑇𝑥) + (1 − 𝐾

1
)𝐷
1
]

𝐷
2
≤ 𝑑 (𝑇

𝑗
∗

1
+𝑗
∗

2
+1
𝑥, 𝑇
𝑗
∗

1
+𝑗
∗

2 𝑥)

≤ 𝐾
𝑗
∗

2

2
[𝐾
𝑗
∗

1

1
𝑑 (𝑥, 𝑇𝑥) + (1 − 𝐾

1
)𝐷
1
] + (1 − 𝐾

2
)𝐷
2

𝑑 (𝑇
∑
𝑝

𝑖=1
𝑗
∗

𝑖 𝑥, 𝑇
∑
𝑝

𝑖=1
𝑗
∗

𝑖
−1
𝑥)

≤ 𝐾
𝑗
∗

𝑝
−1

𝑝 ((

𝑝−1

∏

𝑖=1

[𝐾
𝑗
∗

𝑖

𝑖
])𝑑 (𝑥, 𝑇𝑥)

+

𝑝−1

∑

𝑗=1

(

𝑝−1

∏

𝑖=𝑗+1

[𝐾
𝑗
∗

𝑖

𝑖
]) (1 − 𝐾

𝑗
)𝐷
𝑗
)

𝐷
𝑝
≤ 𝑑 (𝑇

∑
𝑝

𝑖=1
𝑗
∗

𝑖
+1
𝑥, 𝑇
∑
𝑝

𝑖=1
𝑗
∗

𝑖 𝑥) ≤ 𝐾𝑑 (𝑥, 𝑇𝑥) + 𝑀,

(34)
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where

𝐾 =

𝑝

∏

𝑖=1

[𝐾
𝑗
∗

𝑖

𝑖
] < 1;

𝑀 =

𝑝

∑

𝑗=1

(

𝑝

∏

𝑖=𝑗+1

[𝐾
𝑗
∗

𝑖

𝑖
]) (1 − 𝐾

𝑗
)𝐷
𝑗
.

(35)

Then, since𝐾 < 1,

𝐷
𝑝
≤ 𝑑 (𝑇

𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+1

𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)
𝑥)

≤ 𝐾
𝑛
𝑑 (𝑥, 𝑇𝑥) +

1 − 𝐾
𝑛

1 − 𝐾
𝑀,

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1 𝑥)

≤ 𝐾
𝑗
∗

1

1
(𝐾
𝑛
𝑑 (𝑥, 𝑇𝑥) +

1 − 𝐾
𝑛

1 − 𝐾
𝑀) + (1 − 𝐾

1
)𝐷
1

(36)

with 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
+1
𝑥 ∈ 𝐴

2
. Now, since

𝐷
0
=

∑
𝑝

𝑗=1
(∏
𝑝

𝑖=𝑗+1
[𝐾
𝑗
∗

𝑖

𝑖
]) (1 − 𝐾

𝑗
)𝐷
𝑗

1 − ∏
𝑝

𝑖=1
[𝐾
𝑗
∗

𝑖

𝑖
]

=
𝑀

1 − 𝐾
, (37)

it follows that

𝐷
𝑝
≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+1

𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)
𝑥) ≤ 𝐷

0

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+2

𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+1

𝑥) ≤ 𝐾
1
𝐷
0

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
−1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
−2
𝑥) ≤ 𝐾

𝑗
∗

1
−2

1
𝐷
0

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1 𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
−1
𝑥) ≤ 𝐾

𝑗
∗

1
−1

1
𝐷
0

𝐷
1
≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1 𝑥)

≤ 𝐾
𝑗
∗

1

1
𝐷
0
+ (1 − 𝐾

1
)𝐷
1
.

(38)

Thus, if 𝐷
1
= 𝐾
𝑗
∗

1
−1

1
𝐷
0
, then one gets from the previous

relationships

∃ lim
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1 𝑥) = 𝐷
1

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1 𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
−1
𝑥) ≤ 𝐷

1

∃ lim
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+𝑗
∗

1 𝑥)

≤ 𝐾
𝑗
∗

1

1
𝐷
0
+ (1 − 𝐾

1
)𝐷
1
= 𝐷
1

lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+1+𝑗

∗

1
+𝑗
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
) +𝑗
∗

1
+𝑗
𝑥)

≤ 𝐾
𝑗+𝑗
∗

1

1
𝐷
0
= 𝐾
1+𝑗

1
𝐷
1
; 𝑗 = 1, . . . , 𝑗

∗

2
− 1.

(39)

In the same way, if the constraint 𝐷
1

= 𝐾
𝑗
∗

1
−1

1
𝐷
0
is

extended to 𝐷
1
= 𝐾
𝑗
∗

1
−1

𝑘
𝐷
0
; 𝐷
𝑘
= 𝐾
𝑗
∗

𝑘
−1

𝑘
(∏
𝑘−1

𝑖=1
[𝐾
𝑗
∗

𝑖

𝑖
])𝐷
0
; for

all 𝑘(≥2) ∈ 𝑝, then one gets from (34) and (38) that

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖 𝑥)

≤

𝑘

∏

𝑖=1

[𝐾
𝑗
∗

𝑖

𝑖
] (𝐾
𝑛
𝑑 (𝑥, 𝑇𝑥) +

1 − 𝐾
𝑛

1 − 𝐾
𝑀) + (1 − 𝐾

𝑘
)𝐷
𝑘
;

(40)

for all 𝑘 ∈ 𝑝. Thus,

𝐷
𝑘
≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖 𝑥)

≤ lim
𝑛→∞

(

𝑘

∏

𝑖=1

[𝐾
𝑗
∗

𝑖

𝑖
] (𝐾
𝑛
𝑑 (𝑥, 𝑇𝑥) +

1 − 𝐾
𝑛

1 − 𝐾
𝑀))

+ (1 − 𝐾
𝑘
)𝐷
𝑘

=

∏
𝑘

𝑖=1
[𝐾
𝑗
∗

𝑖

𝑖
]

1 − 𝐾
𝑀 + (1 − 𝐾

𝑘
)𝐷
𝑘

= 𝐷
0
(

𝑘

∏

𝑖=1

[𝐾
𝑗
∗

𝑖

𝑖
]) + (1 − 𝐾

𝑘
)𝐷
𝑘

= 𝐾
𝑘
𝐷
𝑘
+ (1 − 𝐾

𝑘
)𝐷
𝑘
= 𝐷
𝑘
; ∀𝑘 ∈ 𝑝

(41)

with 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥 ∈ 𝐴

𝑘+1
. Then, (31)–(33) follow and

the result is proven for 𝑥 ∈ 𝐴
1
. Such a choice can be made

with no loss in generality since, if, instead, 𝑥 ∈ 𝐴
𝑖
for

any given 𝑖 ∈ 𝑝, then the previous result still holds with
𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥 ∈ 𝐴

𝑘+1
with 𝑘 + 1 + 𝑖 ≡ 𝑗(mod𝑝) for

a unique integer 𝑗 ∈ 𝑝. On the other hand (28)-(29) are a
consequence of (36) which is independent of the constraints
𝐷
𝑘
= 𝐾
𝑗
∗

𝑘
−1

𝑘
(∏
𝑘−1

𝑖=1
[𝐾
𝑗
∗

𝑖

𝑖
])𝐷
0
; for all 𝑘 ∈ 𝑝.

Remark 9. (1) Note thatTheorem 8 requires a set of necessary
constraints on the 𝐾

𝑖
and 𝑗
∗

𝑖
; for all 𝑖 ∈ 𝑝 which are induced

by Assumptions 4-5 as follows:

𝜎
𝑖
=

𝐷
𝑖+1

𝐷
𝑖

= 𝐾
𝑗
∗

𝑖+1
−1

𝑖+1
𝐾
𝑖

(𝑖 = 2, 3, . . . , 𝑝) (42)

(1 − 𝐾)𝐷0

= [

[

𝑝

∑

𝑗=2

{

{

{

(

𝑝

∏

𝑖=𝑗+1

[𝐾
𝑗
∗

𝑖

𝑖
]) (1 − 𝐾

𝑗
)(

𝑗−1

∏

𝑘=1

[𝜎
𝑘
])

}

}

}

+

𝑝

∏

𝑖=2

[𝐾
𝑗
∗

𝑖

𝑖
] (1 − 𝐾

1
)]

]

𝐷
1
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= [

[

𝑝

∑

𝑗=2

{

{

{

(

𝑝

∏

𝑖=𝑗+1

[𝐾
𝑗
∗

𝑖

𝑖
]) (1 − 𝐾

𝑗
)

×(

𝑗−1

∏

𝑘=1

[𝐾
𝑗
∗

𝑘+1
−1

𝑘+1
𝐾
𝑘
])

}

}

}

+

𝑝

∏

𝑖=2

[𝐾
𝑗
∗

𝑖

𝑖
] (1 − 𝐾

1
) ]

]

𝐷
1

(43)

with 𝐾 = ∏
𝑝

𝑖=1
[𝐾
𝑗
∗

𝑖

𝑖
].

(2) Note that if 𝐾
𝑖
= 𝐾 < 1, 𝑗∗

𝑖
= 1 and 𝐷

𝑖
= 𝐷; for all

𝑖 ∈ 𝑝, then 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a contractive 𝑝-cyclic

and

𝐷
0
=

∑
𝑝−1

𝑖=0
𝐾
𝑖

1 − 𝐾𝑝
(1 − 𝐾)𝐷 =

1

1 − 𝐾𝑝

1 − 𝐾
𝑝

1 − 𝐾
(1 − 𝐾)𝐷 = 𝐷.

(44)

If (29) is evaluated in this case, then the limit superior is
also the limit inferior of the obtained expression leading to
the existence of the limit being equal to 𝐷, the distance in-
between al, the adjacent subsets 𝐷

𝑖
⊂ 𝑋; for all 𝑖 ∈ 𝑝. This

is a well- known result for contractive 𝑝-cyclic self-mappings
𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
, [23, 24, 42].

(3) Note that the first property of (32) is a convergence of
the iterated sequences of distances to best proximity points of
adjacent subsets provided that Assumptions 1–5 ofTheorem 8
hold implying, in particular, a strict contractive constant on
a composite self-mapping 𝑇

∑
𝑝

𝑖=1
𝑗
∗

𝑖 : ⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖

(see Assumption 3) and a set of further constraints on the
distances in-between adjacent subsets even if such distances
are not identical (see Assumptions 4-5). The following result
is supported by parallel results in [42] (see also [43]) for cyclic
self-mappings. It establishes the asymptotic convergence of
the iterated sequences to cycles containing best proximity
points in-between adjacent subsets in uniformly convex
Banach spaces.

Theorem 10. Assume that (𝑋, ‖ ‖) is a uniformly convex
Banach space with the subsets 𝐴

𝑖
⊂ 𝑋 being all disjoint,

bounded, closed, and convex for all 𝑖 ∈ 𝑝 and that 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is a 𝑝-precyclic self-mapping subject to

Assumptions 1–5 of Theorem 8.
Then, the subsequences {𝑇

𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖 𝑥}
𝑛∈Z
0+

⊆ 𝐴
𝑘

and {𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥}
𝑛∈Z
0+

⊆ 𝐴
𝑘+1

converge to respective
unique best proximity points 𝑥∗

𝑘
in𝐴
𝑘
and 𝑥

∗

𝑘+1
= 𝑇𝑥
∗

𝑘
in𝐴
𝑘+1

for each starting point 𝑥 ∈ 𝐴
𝑖
; for all 𝑖, 𝑘 ∈ 𝑝. The sequence

{𝑇
𝑛
𝑥}
𝑛∈Z
0+

converges asymptotically to a unique cycle of 𝑞 =

∑
𝑝

𝑖=1
𝑥
∗

𝑖
points:

𝑥
∗
:= (𝑥
11
, 𝑥
12

= 𝑇𝑥
11
, . . . , 𝑥

1𝑗
∗

1

= 𝑇
𝑗
∗

1
−1
𝑥
11

= 𝑥
∗

1
,

𝑥
21

= 𝑇𝑥
∗

1
, . . . , 𝑥

∗

𝑝−1
, 𝑥
𝑝1

= 𝑇𝑥
∗

𝑝−1
, . . . , 𝑥

𝑝𝑗
∗

𝑝

= 𝑥
∗

𝑝
)

(45)

which contains the p best proximity points.

Proof (Outline of Proof). Note that (𝑋, 𝑑) is a completemetric
space for a ‖ ‖ (norm-) induced metric 𝑑 : 𝑋 × 𝑋 → R

0+

since (𝑋, ‖ ‖) is a Banach space. Thus, Theorem 8 remains
true for such a metric. Since the subsets 𝐴

𝑖
⊂ 𝑋 are

nonempty, bounded, and closed (then compact and also
boundedly compact), there exist 𝑥∗

𝑖
∈ 𝐴
𝑖
, 𝑇𝑥
∗

𝑖
𝐴
𝑖+1

such that
𝑑(𝑥
∗

𝑖
, 𝑇𝑥
∗

𝑖
) = ‖𝑥

∗

𝑖
− 𝑇𝑥
∗

𝑖
‖ = 𝐷

𝑖
for each 𝑖 ∈ 𝑝 so that 𝑥∗

𝑖

and 𝑇𝑥
∗

𝑖
are the best proximity points in 𝐴

𝑖
to 𝐴
𝑖+1

and 𝐴
𝑖+1

from to 𝐴
𝑖
, respectively [42]. If𝐷

𝑖
= 0 and 𝑗

∗

𝑖
= 1, then both

of them are confluent in the fixed point 𝑥∗
𝑖
= 𝑇𝑥
∗

𝑖
∈ 𝐴
𝑖
∩𝐴
𝑖+1

;
𝑖 ∈ 𝑝. From the relation (32) of Theorem 8, it follows that

∃ lim
𝑛→∞

𝑑 (𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥, 𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖 𝑥) = 𝐷
𝑘
;

∀𝑥 ∈ 𝐴
𝑖
; ∀𝑖, 𝑘 ∈ 𝑝.

(46)

The composite self-mapping 𝑇
∑
𝑝

𝑖=1
𝑗
∗

𝑖 : ⋃
𝑖∈𝑝

𝐴
𝑖

→

⋃
𝑖∈𝑝

𝐴
𝑖

Lipschitz with constant 𝐾 = ∏
𝑖∈𝑝

[𝐾
𝑗
∗

𝑖

𝑖
]

everywhere in its definition domain ⋃
𝑖∈𝑝

𝐴
𝑖
. Thus,

the limit of the distance and the distance of limits
of the sequences {𝑇

𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖 𝑥}
𝑛∈Z
0+

⊆ 𝐴
𝑘

and
{𝑇
𝑛(∑
𝑝

𝑖=1
𝑗
∗

𝑖
)+∑
𝑘

𝑖=1
𝑗
∗

𝑖
+1
𝑥}
𝑛∈Z
0+

⊆ 𝐴
𝑘+1

can be interchanged in
(45) if the limits of such sequences exist. But such limits exist
for any initial iteration point 𝑥 ∈ 𝐴

𝑖
since both sequences

are Cauchy sequences and convergent since (𝑋, 𝑑) ≡ (𝑋, ‖ ‖)

is a uniformly convex Banach space (Lemmas 3.7, 3.8 of
[42]) The whole sequences and their limits are within the
corresponding subsets since such subsets are closed and
(𝑋, 𝑑) ≡ (𝑋, ‖ ‖) is complete. The uniqueness of the best
proximity points in each of the subsets follows from the
fact that the subsets 𝐴

𝑖
⊂ 𝑋; for all 𝑖 ∈ 𝑝 are convex. The

convergence of the sequences {𝑇𝑛𝑥}
𝑛∈Z
0+

to a unique cycle 𝑥∗

of the form (45), containing 𝑞 = ∑
𝑝

𝑖=1
𝑥
∗

𝑖
points, follows from

the convergence of the above subsequences to unique best
proximity points taking part of such a cycle and the fact that
𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃
𝑖∈𝑝

𝐴
𝑖
is a single-valued self-mapping.

Example 11. Consider the following nonlinear difference
sequence:

𝑥
2𝑛+𝑖−1

= (1 − 𝛼
2𝑛+𝑖−2

) 𝑥
2𝑛+𝑖−2

+ 𝜔
2𝑛+𝑖−2

,

𝑥
2𝑛+𝑗
∗ = 𝑥
2𝑚𝑛+1

= −𝛽
2𝑚𝑛

𝑥
2𝑚𝑛

; ∀𝑛 ∈ Z
+

if 𝑥
1
∈ 𝐴
1
(≡ R
0+
)
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𝑥
2𝑛+𝑗
∗
+1

= 𝑥
2𝑚𝑛+2

= −𝛽
2𝑚𝑛+1

𝑥
2𝑚𝑛+1

,

𝑥
2𝑛+𝑖

= (1 − 𝛼
2𝑛+𝑖−1

) 𝑥
2𝑛+𝑖−1

+ 𝜔
2𝑛+𝑖−1

; ∀𝑛 ∈ Z
+

if 𝑥
1
∈ R
0−

(≡ −R
0+

≡ 𝐴
2
)

(47)

for 𝑖 ∈ 𝑗∗ with 𝑗
∗
= 𝑗
∗

1
= 𝑗
∗

𝑛
= 𝑗
∗

𝑛
(𝑚) = 2(𝑚 − 1)𝑛 + 1, when

𝑥
𝑛
∈ 𝐴
1
≡ R
0−
, and 𝑗

∗

2
= 1 (that is, only one iteration remains

in 𝐴
2
≡ R
0−

before each switching to R
0+
) defined for some

positive integer𝑚 = 𝑚(𝑛) under the following constraints:

{𝜔
𝑛
} is a nonnegative real summable sequence

{𝛼
𝑛
} ⊂ [0, 1] is a real sequence, ∑∞

𝑛=0
𝛼
𝑛

= ∞ and
𝛼
𝑛
→ 0 as 𝑛 → ∞

{𝜔
𝑛
} ⊂ R
0+

is a real sequence and ∑
∞

𝑛=0
𝜔
𝑛
< ∞

{𝛽
𝑛
} ⊂ [0, 𝛽] is a bounded real sequence fulfilling

𝛽
2𝑚𝑛+2

≤ 𝛽
2𝑛𝑚+1

𝑥
2𝑛𝑚+1

/𝑥
2𝑚𝑛+2

, for all 𝑛 ∈ Z
+
if

𝑥
1
∈ R
0+

and 𝛽
2𝑚𝑛+1

≤ 𝛽
2𝑚𝑛−1

𝑥
2𝑚𝑛−1

/𝑥
2𝑚𝑛+1

; for all
𝑛 ∈ Z
+
, otherwise.

Note that the difference equation is generated by a 2-precyclic
self-mapping on R = R

0+
∪ R
0−

defined by the solution got
from any initial condition. If 𝑚 = 𝑗

∗

𝑛
= 1, then the solution

point simply alternates in-between the subsets R
0+

and R
0−

of R and the mapping becomes a 2-cyclic self-mapping. If
𝑚 > 1, the solution remains 𝑗∗

𝑛
= 2(𝑚 − 1)𝑛 + 1 consecutive

iterations in R
0+

after entering it before the next switching to
R
−
if𝑚(𝑛) is infinity; for all 𝑛 ≥ 𝑛

0
and some finite 𝑛

0
∈ Z
0+
,

then the solution remains in R
0+

after a given finite iteration.
The following nonexpansive condition holds:


𝑥
2𝑛+𝑗
∗
(𝑛)+1


≤ 𝛽
2𝑚(𝑛)𝑛+1

(

2𝑚(𝑛)

∏

𝑖=2𝑛−1

[1 − 𝛼
𝑖
])

𝑥2𝑛


+

2𝑚(𝑛)

∑

𝑖=2𝑛−1

2𝑚(𝑛)

∏

𝑗=𝑖+1

[1 − 𝛼
𝑗
] 𝜔
2𝑖
;

(48)

for all 𝑛 ≥ 𝑛
1
since {𝜔

𝑛
} is nonnegative, summable, and

then converges to zero, so that it has some strictly decreasing
subsequence {𝜔

𝑛
} and then 𝜔

2𝑛
− 𝜔
2𝑛−1

< 0; for all 𝑛 ≥ 𝑛
1

for some finite positive integer 𝑛
1
. It follows, since 𝛼

𝑛
→ 0 as

𝑛 → ∞, that
(a) if 𝛽

𝑛
→ 1 as 𝑛 → ∞, then the solution is weakly

2-precyclic asymptotically nonexpansive since 𝛼
𝑛

→ 0 and
𝜔
𝑛

→ 0 as 𝑛 → ∞ and then lim sup
𝑛→∞

(|𝑥
2𝑛+𝑗
∗
(𝑛)+1

| −

|𝑥
2𝑛
|) ≤ 0, lim inf

𝑛→∞
(|𝑥
2𝑛+𝑗
∗
(𝑛)+1

| − |𝑥
2𝑛
|) ≥ 0 and {𝑥

𝑛
}

converges.
If 𝑗
∗

𝑛
(𝑥) = 1 for any 𝑛 ∈ Z

0+
and 𝑥 ∈ R, then the

mapping defining the solution is also 2-cyclic asymptotically
nonexpansive.

(b) If 𝛽
𝑛
→ 1 as 𝑛 → ∞ and there are no subsequences

of {𝜔
𝑛
} and {𝛼

𝑛
} being simultaneously zero, then the solution

is 2-precyclic (2-cyclic if 𝑗
∗

𝑛
is identically unity) weakly

asymptotically contractive so that it converges to zero which
is the fixed point being a confluent best proximity point of
R
0+

and R
0−
.

If 𝛼
𝑛

→ 𝛼 ∈ (0, 1) or if lim sup
𝑛→∞

𝛼
𝑛

≤ 𝛼 < 1,
then the solution is 2-precyclic (2-cyclic if 𝑗∗

𝑛
is identically

unity) strongly asymptotically contractive so that it converges
to zero. If there is some finite positive integer 𝑛

0
such that 𝑗∗

𝑛
0

is infinite, then the solution is permanent and nonnegative
in R
0+

after a finite number of iterations and converges
asymptotically to zero.

It is now proven that, in the most general considered
case when the solutionmapping is weakly 2-precyclic asymp-
totically nonexpansive, the fixed point (which is also stable
equilibrium point and best proximity point on both subsets)
is 𝑥 = 0.

Define 𝑥
1
= 𝑥
1
, if 𝑥
1
∈ R
0+

and 𝑥
1
= 𝑥
2
, then 𝑥

0
∈ R
0+
,

if 𝑥
1
∈ R
−
and build the sequence {𝑥

𝑛
} by 𝑥

𝑛
= 𝑥
𝑛
if 𝑥
𝑛
≥ 0

and 𝑥
𝑛
= 0, otherwise. Then, one gets

−∞ < −𝑥
1
= lim
𝑛→∞

(𝑥
𝑛+1

− 𝑥
1
) = lim
𝑛→∞

(

𝑛

∑

𝑖=1

(𝜔
𝑖
− 𝛼
𝑖
𝑥
𝑖
))

(49)

so that ∑∞
𝑛=1

(𝛼
𝑛
𝑥
𝑛
− 𝜔
𝑛
) = 𝑥
1
< ∞. Since {𝜔

𝑛
} is summable

and ∑
∞

𝑖=1
𝛼
𝑛
= ∞, one gets

(min
𝑛∈Z
+

𝑥
𝑛
)(

∞

∑

𝑖=1

𝛼
𝑛
) ≤

∞

∑

𝑖=1

𝛼
𝑛
𝑥
𝑛
= 𝑥
1
+

∞

∑

𝑛=1

𝜔
𝑛
< ∞

⇒ min
𝑛∈Z
+

𝑥
𝑛
= min
𝑛∈Z
+

𝑥
𝑛
= 0.

(50)

Also, max
𝑛∈Z
−

(|𝑥
𝑛
|) ≤ lim

𝑛→∞
(𝛽
𝑛
)min
𝑛∈Z
0+

𝑥
𝑛

≤

min
𝑛∈Z
0+

𝑥
𝑛

= 0. As a result, the fixed point, and also
equilibrium point, is 𝑥 = 0 and 𝑥

𝑛
→ 0 as 𝑛 → ∞ for

any initial condition 𝑥
1
∈ R.
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