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This paper introduces a new series of three-dimensional chaotic systems with cross-product nonlinearities. Based on some
conditions, we analyze the globally exponentially or globally conditional exponentially attractive set and positive invariant set
of these chaotic systems. Moreover, we give some known examples to show our results, and the exponential estimation is explicitly
derived. Finally, we construct some three-dimensional chaotic systems with cross-product nonlinearities and study the switching
system between them.

1. Introduction

Since Lorenz discovered the well-known Lorenz chaotic sys-
tem, many other chaotic systems have been found, including
the well-known Rössler system and Chua’s circuit, which
serve as models of the study of chaos [1–12].

The Lorenz system plays an important role in the study
of nonlinear science and chaotic dynamics [13–18]. We know
that it is extremely difficult to obtain the information of
chaotic attractor directly from system. Most of the results
in the literature are based on computer simulations. When
calculating the Lyapunov exponents of the system, one needs
to assume that the system is bounded in order to conclude
chaos.Therefore, the study of the globally attractive set of the
Lorenz system is not only theoretically significant but also
practically important. Moreover, Liao et al. [19, 20] gave
globally exponentially attractive set and positive invariant set
for the classical Lorenz system and the generalized system by
constructive proofs. In addition, Yu et al. [21] studied the
problem of invariant set of systems, which was considered as
a more generalized Lorenz system.

In this paper, we consider the following three-dimen-
sional autonomous systems with cross-product nonlineari-
ties:

𝑥̇ = 𝐴𝑥 + 𝑓 (𝑥) + 𝐶, (1)
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∈ 𝑅, 𝑖, 𝑗, 𝑘 = 1, 2, 3.This second-order dynam-

ic systemmay be regarded as themost general Lorenz system.
For such system, we can choose Lyapunov function:
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which is obviously positive definite and radially unbounded,
where 𝑑

𝑖
, 𝜆

𝑖
, 𝑖 = 1, 2, 3 are undetermined parameters. In this

paper, we will study this more general Lorenz system (1) than
the classical system and the generalized Lorenz system. The
result obtained contains earlier results as its special cases.

This paper is organized as follows. In Section 2, we define
the globally exponentially attractive set and positive invariant
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set and the globally conditional exponentially attractive set
and positive invariant set of the three-dimensional chaotic
systems with cross-product nonlinearities. In Section 3, the
qualitative analysis of the exponentially attractive set and
positive invariant set of the chaotic systems has been done.
In Section 4, we also suggest an idea to construct chaotic
systems, and some new chaotic systems and switched chaotic
systems are illustrated.

2. Preliminaries

In this section, we present some basic definitions which
are needed for proving all theorems in the next section.
For convenience, denote 𝑋 := (𝑥

1
, 𝑥

2
, 𝑥

3
) and 𝑋(𝑡) :=
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0
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0
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Definition 1. For the three-dimensional autonomous systems
with cross-product nonlinearities (1), if there exists compact
(bounded and closed) set Ω ∈ 𝑅

3 such that for all 𝑋
0
∈ 𝑅

3,
the following condition: 𝜌(𝑋(𝑡), Ω) := inf

𝑌∈Ω
‖𝑋(𝑡)−𝑌‖ → 0

as 𝑡 → +∞, holds, then the set Ω is said to be globally
attractive. That is, system (1) is ultimately bounded; namely,
system (1) is globally stable in the sense of Lagrange or
dissipative with ultimate bound.

Furthermore, if for all 𝑋
0
∈ Ω

0
⊆ Ω ⊂ 𝑅

3, 𝑋(𝑡, 𝑡
0
, 𝑋

0
) ⊆

Ω

0
, thenΩ

0
for 𝑡 ≥ 0 is called the positive invariant set of the

system (1).

Definition 2. For the three-dimensional autonomous systems
with cross-product nonlinearities (1), if there exist compact
set Ω ⊂ 𝑅

3 such that for all 𝑋
0
∈ 𝑅

3 and constants 𝑀 >

0, 𝛼 > 0 such that 𝜌(𝑋(𝑡), Ω) ≤ 𝑀𝑒

−𝛼(𝑡−𝑡0), then the three-
dimensional autonomous systems with cross-product non-
linearities system (1) are said to have globally exponentially
attractive set, or the system (1) is globally exponentially
stable in the sense of Lagrange, and Ω is called the globally
exponentially attractive set.

Definition 3. For the three-dimensional autonomous systems
with cross-product nonlinearities (1), if there exist compact
set Ω ⊂ 𝑅

3, a constant 𝛼 > 0, and a bounded function
𝑀(𝑥
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system (1) is said to have globally conditional exponentially
attractive set, or the system (1) is globally conditional expo-
nentially stable in the sense of Lagrange, and Ω is called the
globally conditional exponentially attractive set.

In general, from the definitionwe see that a globally expo-
nential attractive set is not necessarily a positive invariant set.
But our results obtained in the next section indeed show that
a globally exponentially attractive set is a positive invariant
set.

Note that it is difficult to verify the existence of Ω in
Definition 2. Since the Lyapunov direct method is still a pow-
erful tool in the study of asymptotic behaviour of nonlinear
dynamical systems, the following definition is more useful in
applications.

Definition 4. For three-dimensional autonomous systems
with cross-product nonlinearities (1), if there exist a positive
definite and radially unbounded Lyapunov function 𝑉(𝑋(𝑡))
and positive numbers 𝐿 > 0, 𝛼 > 0 such that the following
inequality
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Definition 5. For the three-dimensional autonomous systems
with cross-product nonlinearities (1), if there exist a positive
definite and radially unbounded Lyapunov function 𝑉(𝑋(𝑡))
and a bounded function 𝐿(𝑥
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conditional exponentially attractive or globally conditional
exponentially stable in the sense of Lagrange, and Ω := {𝑋 |
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0
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exponentially attractive set.

3. Qualitative Analysis

We call the dynamic system (1) the first class three-dimen-
sional chaotic system with cross-product nonlinearities (1), if
there are some nonzero numbers {𝜆
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Condition (6) is satisfied by some known three-dimen-
sional quadratic autonomous chaotic systems, the well-
known Lorenz system [1–3], the Rössler system [5], the
Rucklidge system [6], and the Chen system [7, 8]. Lorenz
systems are widely studied and the references therein [9–
12, 19–21]. For example, consider the classical Lorenz system

𝑥̇ = 𝜎 (𝑦 − 𝑥) ,

̇𝑦 = 𝜌𝑥 − 𝛾𝑦 − 𝑥𝑧,

𝑧̇ = 𝑥𝑦 − 𝛽𝑧,

(7)
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and the general Lorenz systems

𝑥̇ = −𝑎𝑥 + 𝑏𝑦 + 𝑦𝑧,
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Thus it can be seen that condition (6) is very important
in qualitative analysis of the exponentially attractive set and
positive invariant set of Lorenz systems.

We will research this dynamic system in two cases.
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The construction techniques of this kind of Lorenz
systems are to pay attention to satisfing formula
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where 𝜆
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where 𝜇
𝑖
, 𝑖 = 1, 2, 3 are undetermined parameters. And we

always assume that the supremum 𝑓(𝜇,𝑋) < +∞ in the
paper.

Lemma 6. Suppose 𝜆
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holds, and the set
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is the globally exponentially attractive set and positive invariant
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× (

3

∑

𝑗=1

𝑎

1𝑗
𝑥

𝑗
+ 𝜇

1
𝜆

−1

1
(𝜆

1
𝑥

1
− 𝑑

1
)

+ (𝑏

123
+ 𝑏

132
) 𝑥

2
𝑥

3
+ 𝑐

1
)

+ 𝜆

2
(𝜆

2
𝑥

2
− 𝑑

2
)

× (

3

∑

𝑗=1

𝑎

2𝑗
𝑥

𝑗
+ 𝜇

2
𝜆

−1

2
(𝜆

2
𝑥

2
− 𝑑

2
)

+ (𝑏

213
+ 𝑏

231
) 𝑥

1
𝑥

3
+ 𝑐

2
)

+ 𝜆

3
(𝜆

3
𝑥

3
− 𝑑

3
)

× (

3

∑

𝑗=1

𝑎

3𝑗
𝑥

𝑗
+ 𝜇

3
𝜆

−1

3
(𝜆

3
𝑥

3
− 𝑑

3
)

+ (𝑏

312
+ 𝑏

321
) 𝑥

1
𝑥

2
+ 𝑐

3
)

≤ −𝜂

3

∑

𝑗=1

(𝜆

𝑗
𝑥

𝑗
− 𝑑

𝑗
)

2

+ 𝑓 (𝜇,𝑋)

≤ −𝜂

3

∑

𝑗=1

(𝜆

𝑗
𝑥

𝑗
− 𝑑

𝑗
)

2

+𝑀

+

≤ −2𝜂 [𝑉 (𝑋 (𝑡)) −

1

2𝜂

𝑀

+
] ≤ 0,

when 𝑉 (𝑋 (𝑡)) > 1

2𝜂

𝑀

+
,

(19)

where 𝜇
𝑗
> 0, 𝑗 = 1, 2, 3. Integrating both sides of (19) yields

(16) and (17). By the definition, taking into account limit on
both sides of the above inequality (16) as 𝑡 → +∞ results in
inequality (18).

Now, the characters of some of the chaotic systems known
are analysed by condition (6). When 𝑎

11
= −𝜎, 𝑎

12
= 𝜎, 𝑎

21
=

𝜌, 𝑎
22
= −𝛾, 𝑎

33
= −𝛽, 𝑏

213
= −1, 𝑏

312
= 1, else 𝑎

𝑖𝑗
= 0, 𝑏
𝑖𝑗𝑘
=

0, 𝑐
1
= 𝑐

2
= 𝑐

3
= 0, and 𝜆

1
=

√

𝜆, 𝜆
2
= 𝜆

3
= 1, 𝑑

1
= 𝑑

2
=

0, 𝑑
3
= 𝜆𝜎 + 𝜌, 𝜇

1
= 𝜎, 𝜇

2
= 𝛾, 𝜇

3
= min{𝜎, 𝛾}, 𝜂 = 𝜂

1
= 𝜇

3
,

𝛽 > 𝜂

1
, system (10) can be rewritten as system (7):

𝑉 (𝑋 (𝑡)) =

1

2

[𝜆𝑥

2

1
+ 𝑥

2

2
+ (𝑥

3
− 𝜆𝜎 − 𝜌)

2
] ,

𝑓 (𝜇,𝑋) = − (𝛽 − 𝜂

1
) 𝑥

2

3
+ (𝛽 − 2𝜂

1
) (𝜆𝜎 + 𝜌) 𝑥

3

+ 𝜂

1
(𝜆𝜎 + 𝜌)

2
.

(20)

We have𝑀 = 𝛽

2
(𝜆𝜎 + 𝜌)

2
/4(𝛽 − 𝜂

1
). Thus

[𝑉 (𝑋 (𝑡)) −

𝛽

2
(𝜆𝜎 + 𝜌)

2

8 (𝛽 − 𝜂

1
) 𝜂

1

]

≤ [𝑉 (𝑋 (𝑡

0
)) −

𝛽

2
(𝜆𝜎 + 𝜌)

2

8 (𝛽 − 𝜂

1
) 𝜂

1

] 𝑒

−2𝜂1(𝑡−𝑡0)
,

Ω

1
= {𝑋 | 𝑉 (𝑋) ≤

𝛽

2
(𝜆𝜎 + 𝜌)

2

8 (𝛽 − 𝜂

1
) 𝜂

1

}

= {𝑋 | 𝜆𝑥

2

1
+ 𝑥

2

2
+ (𝑥

3
− 𝜆𝜎 − 𝜌)

2
≤

𝛽

2
(𝜆𝜎 + 𝜌)

2

4 (𝛽 − 𝜂

1
) 𝜂

1

}

(21)

is the globally exponentially attractive set and positive invari-
ant set of system (7).

Example 8. Further, taking ito accout 𝜇
1
= 𝜎, 𝜇

2
= 𝛾, 𝜇

3
=

𝛽/2, 𝜂 = 𝜂
2
= min{𝜎, 𝛾, 𝛽/2}, the estimate

[𝑉 (𝑋 (𝑡)) −

𝛽(𝜆𝜎 + 𝜌)

2

4𝜂

2

]

≤ [𝑉 (𝑋 (𝑡

0
)) −

𝛽(𝜆𝜎 + 𝜌)

2

4𝜂

2

] 𝑒

−2𝜂2(𝑡−𝑡0)

(22)
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holds and that

Ω

2
={𝑋 | 𝑉 (𝑋) ≤

𝛽(𝜆𝜎 + 𝜌)

2

4𝜂

2

}

={𝑋 | 𝜆𝑥

2

1
+ 𝑥

2

2
+ (𝑥

3
− 𝜆𝜎 − 𝜌)

2
≤

𝛽(𝜆𝜎 + 𝜌)

2

2𝜂

2

}

(23)

is the globally uniform exponentially attractive set and posi-
tive invariant set of system (7).

Proof. Again applying Lyapunov function given in (19) and
evaluating the derivative of 𝑑𝑉

1
/𝑑𝑡 along the trajectory of

system (16) lead to

𝑓 (𝜇,𝑋) = −

𝑥

2

3
𝛽

2

+

(𝜆𝜎 + 𝜌)

2
𝛽

2

,

𝑀 =

𝛽(𝜆𝜎 + 𝜌)

2

2

.

(24)

The conclusion of Example 9 is obtained.

Example 9. Furthermore, choose𝜇
1
= 𝜎, 𝜇

2
= 𝛾, 𝜇

3
= 𝛽, 0 <

𝜉

1
< 𝛽, 𝜂 = 𝜂

3
= min{𝜎, 𝛾, 𝜉

1
}. Get

𝑓 (𝜇,𝑋) = − (𝛽 − 𝜂

3
) 𝑥

2

3
+ (𝛽 − 2𝜂

3
) (𝜆𝜎 + 𝜌) 𝑥

3

+ 𝜂

2
(𝜆𝜎 + 𝜌)

2
,

𝑀 =

𝛽

2
(𝜆𝜎 + 𝜌)

2

4 (𝛽 − 𝜂

3
)

.

(25)

Then, the estimate

[𝑉 (𝑋 (𝑡)) −

𝛽

2
(𝜆𝜎 + 𝜌)

2

8 (𝛽 − 𝜂

3
) 𝜂

3

]

≤ [𝑉 (𝑋 (𝑡

0
)) −

𝛽

2
(𝜆𝜎 + 𝜌)

2

8 (𝛽 − 𝜂

3
) 𝜂

3

] 𝑒

−2𝜂3(𝑡−𝑡0)

(26)

holds and that

Ω

3
= {𝑋 | 𝑉 (𝑋) ≤

𝛽

2
(𝜆𝜎 + 𝜌)

2

8 (𝛽 − 𝜂

3
) 𝜂

3

}

= {𝑋 | 𝜆𝑥

2

1
+ 𝑥

2

2
+ (𝑥

3
− 𝜆𝜎 − 𝜌)

2
≤

𝛽

2
(𝜆𝜎 + 𝜌)

2

4 (𝛽 − 𝜂

3
) 𝜂

3

}

(27)

is the globally exponentially attractive set and positive invari-
ant set of system (7).

Example 10. Taking 𝑎
11
= −𝑎, 𝑎

12
= 𝑏, 𝑎

21
= 𝑐, 𝑎

22
= −1,

𝑎

32
= 𝑑, 𝑎

33
= −1, 𝑏

123
= 𝑏

312
= 1, 𝑏

213
= −1 else 𝑎

𝑖𝑗
= 0,

𝑏

𝑖𝑗𝑘
= 0, 𝑐
1
= 𝑐

2
= 𝑐

3
= 0, and 𝜆

1
= 𝜆

3
= 1, 𝜆

2
=
√
2, 𝑑
1
= 𝑑,

𝑑

2
= 0, 𝑑

3
= 𝑏 + 2𝑐, system (6), 𝑉(𝑋(𝑡)), and 𝑓(𝑢,𝑋) can be

rewritten as system (8):

𝑉 (𝑋 (𝑡)) =

1

2

[(𝑥

1
− 𝑑)

2
+ 2𝑥

2

2
+ (𝑥

3
− 𝑏 − 2𝑐)

2
] ,

𝑓 (𝜇,𝑋) = − (𝑎 − 𝜇

1
) 𝑥

2

1
+ (𝑎 − 2𝜇

1
) 𝑑𝑥

1
− 2 (1 − 𝜇

2
) 𝑥

2

2

− 2 (𝑏 + 𝑐) 𝑑𝑥2
− (1 − 𝜇

3
) 𝑥

2

3

+ (𝑏 + 2𝑐) (1 − 2𝜇3
) 𝑥

3
+ 𝜇

1
𝑑

2
+ 𝜇

3(
𝑏 + 2𝑐)

2
.

(28)

Thus

𝑀 =

(𝑎 − 2𝜇

1
)

2
𝑑

2

4 (𝑎 − 𝜇

1
)

+

(𝑏 + 𝑐)

2
𝑑

2

2 (1 − 𝜇

2
)

+

(𝑏 + 2𝑐)

2
(1 − 2𝜇

3
)

4 (1 − 𝜇

3
)

+ 𝜇

1
𝑑

2
+ 𝜇

3(
𝑏 + 2𝑐)

2
.

(29)

We have

𝑉 (𝑥 (𝑡)) − 𝑀 ≤ [𝑉 (𝑥 (𝑡

0
)) − 𝑀] 𝑒

−2𝜂(𝑡−𝑡0)
,

(30)

then

Ω

4
= {𝑋 | 𝑉 (𝑥 (𝑡)) − 𝑀}

= {𝑋 | (𝑥

1
− 𝑑)

2
+ 2𝑥

2

2
+ (𝑥

3
− 𝑏 − 2𝑐)

2
≤ 2𝑀}

(31)

is the estimation of the globally exponentially attractive and
positive invariant sets of system (8).

If 𝑏
111

= 𝑏

222
= 𝑏

333
= 0, ∃𝑏

𝑖𝑗𝑗
̸= 0, 𝑖, 𝑗 = 1, 2, 3, the

dynamic system (1) is shown as

𝑥̇

1
=

3

∑

𝑗=1

𝑎

1𝑗
𝑥

𝑗
+ ∑

𝑖=2,3

𝑏

1𝑖𝑖
𝑥

2

𝑖
+

3

∑

𝑖 ̸= 𝑗=1

(𝑏

1𝑖𝑗
+ 𝑏

1𝑗𝑖
) 𝑥

𝑖
𝑥

𝑗
+ 𝑐

1
,

𝑐𝑥̇

2
=

3

∑

𝑗=1

𝑎

2𝑗
𝑥

𝑗
+ ∑

𝑖=1,3

𝑏

2𝑖𝑖
𝑥

2

𝑖
+

3

∑

𝑖 ̸= 𝑗=1

(𝑏

2𝑖𝑗
+ 𝑏

2𝑗𝑖
) 𝑥

𝑖
𝑥

𝑗
+ 𝑐

2
,

𝑥̇

3
=

3

∑

𝑗=1

𝑎

3𝑗
𝑥

𝑗
+ ∑

𝑖=1,2

𝑏

3𝑖𝑖
𝑥

2

𝑖
+

3

∑

𝑖 ̸= 𝑗=1

(𝑏

3𝑖𝑗
+ 𝑏

3𝑗𝑖
) 𝑥

𝑖
𝑥

𝑗
+ 𝑐

3
.

(32)

In this case, we can take into account

𝑓 (𝜇,𝑋) =

3

∑

𝑖=1

[𝜆

2

𝑖
(𝑎

𝑖𝑖
+ 𝜇

𝑖
) + 𝜆

[𝑖+1]3
𝑑

[𝑖+1]3
𝑏

[𝑖+1]3,𝑖𝑖

+𝜆

[𝑖+2]3
𝑑

[𝑖+2]3
𝑏

[𝑖+2]3 ,𝑖𝑖
] 𝑥

2

𝑖
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+

3

∑

𝑖<𝑗,1

(𝜆

2

𝑖
𝑎

𝑖𝑗
+ 𝜆

2

𝑗
𝑎

𝑗𝑖
+ 𝜆

1
𝑑

1
(𝑏

1𝑖𝑗
+ 𝑏

1𝑗𝑖
)

+𝜆

2
𝑑

2
(𝑏

2𝑖𝑗
+𝑏

2𝑗𝑖
)+𝜆

3
𝑑

3
(𝑏

3𝑖𝑗
+𝑏

3𝑗𝑖
)) 𝑥

𝑖
𝑥

𝑗

+

3

∑

𝑖=1

(𝜆

2

𝑖
(𝑐

𝑖
− 𝜇

𝑖
𝑑

𝑖
) + 𝜇

𝑖
𝜆

𝑖
𝑑

𝑖
− 𝑎

1𝑖
𝜆

1
𝑑

1

−𝑎

2𝑖
𝜆

2
𝑑

2
− 𝑎

3𝑖
𝜆

3
𝑑

3
) 𝑥

1

+

3

∑

𝑖=1

𝜆

𝑖
𝑑

𝑖
(𝑐

𝑖
− 𝑑

𝑖
) ,

(33)

where [⋅]
3
denotes modulo-3.

Theorem 11. Suppose that 𝐺
0
= (𝑥

0

1
, 𝑥

0

2
, . . . , 𝑥

0

𝑛
) is the stable

point of the 𝑓(𝜇,𝑋) defined by (33). If the Hesse matrix of
the 𝑓(𝜇,𝑋) is a negative definite matrix, the 𝑓(𝜇,𝑋) has
maximum𝑀and the estimation

[𝑉 (𝑋 (𝑡)) −

1

2𝜂

𝑀

+
]

≤ [𝑉 (𝑋 (𝑡

0
)) −

1

2𝜂

𝑀

+
] 𝑒

−2𝜂(𝑡−𝑡0)

(34)

holds; that is,

lim
𝑡→∞

𝑉 (𝑋 (𝑡)) ≤

1

2𝜂

𝑀

+
, (35)

and the set

Ω ={𝑋 | 𝑉 (𝑋 (𝑡)) ≤

1

2𝜂

𝑀

+
}

={𝑋 | [(𝜆

1
𝑥

1
− 𝑑

1
)

2
+ (𝜆

2
𝑥

2
− 𝑑

2
)

2
+ (𝜆

3
𝑥

3
− 𝑑

3
)

2
]

≤

1

𝜂

𝑀

+
}

(36)

is the globally exponentially attractive set and positive invariant
set of system (32).

Proof. If 𝐺
0
is the stable point of the 𝑓(𝜇,𝑋), that is,

∇(𝑓)

𝐺0
= (𝑓

󸀠

𝑥1
, 𝑓

󸀠

𝑥2
, 𝑓

󸀠

𝑥3
) = 0, (37)

and the Hesse matrix𝐻
𝑓
of the 𝑓(𝜇,𝑋) is a negative definite

matrix, namely,

𝑓

󸀠󸀠

𝑥1𝑥1
< 0,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

󸀠󸀠

𝑥1𝑥1
𝑓

󸀠󸀠

𝑥1𝑥2

𝑓

󸀠󸀠

𝑥2𝑥1
𝑓

󸀠󸀠

𝑥2𝑥2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 0,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

󸀠󸀠

𝑥1𝑥1
𝑓

󸀠󸀠

𝑥1𝑥2
𝑓

󸀠󸀠

𝑥1𝑥3

𝑓

󸀠󸀠

𝑥2𝑥1
𝑓

󸀠󸀠

𝑥2𝑥2
𝑓

󸀠󸀠

𝑥2𝑥3

𝑓

󸀠󸀠

𝑥3𝑥1
𝑓

󸀠󸀠

𝑥3𝑥2
𝑓

󸀠󸀠

𝑥3𝑥3

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

< 0.

(38)
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Figure 1: Simulation of system (40).
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Figure 2: Simulation of system (43).

The 𝑓(𝜇,𝑋) has the maximum 𝑀. Differentiating the Lya-
punov function 𝑉(𝑋(𝑡)) in (3) with respect to time 𝑡 along
the trajectory of system (32) yields

̇

𝑉 (𝑋 (𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨(32)
= 𝜆

1
(𝜆

1
𝑥

1
− 𝑑

1
) 𝑥̇

1
+ 𝜆

2
(𝜆

2
𝑥

2
− 𝑑

2
) 𝑥̇

2

+ 𝜆

3
(𝜆

3
𝑥

3
− 𝑑

3
) 𝑥̇

3

≤ −𝜂

3

∑

𝑗=1

(𝜆

𝑗
𝑥

𝑗
− 𝑑

𝑗
)

2

+ 𝑓 (𝜇,𝑋)

≤ −𝜂

3

∑

𝑗=1

(𝜆

𝑗
𝑥

𝑗
− 𝑑

𝑗
)

2

+𝑀

+

≤ −2𝜂 [𝑉 (𝑋 (𝑡)) −

1

2𝜂

𝑀

+
] ≤ 0,

when 𝑉 (𝑋 (𝑡)) > 1

2𝜂

𝑀

+
.

(39)

The proof is complete.

4. Switched Chaotic Systems

Condition (6) has helpfully provided us with instructions on
how to find the new chaotic systems. We construct a series
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Figure 4: Simulation of system (45).

of new chaotic systems that the condition (6) is fulfilled and
study the switching system between them.

Example 12. Consider a Lorenz system shown in Figure 1:

𝑥̇

1
= −12𝑥

1
+ 5𝑥

2
− 0.8𝑥

1
𝑥

3
+ 𝑥

2
𝑥

3
,

𝑥̇

2
= 28𝑥

1
− 𝑥

2
− 𝑥

1
𝑥

3
,

𝑥̇

3
= −3𝑥

2
− 𝑥

3
+ 10𝑥

2

1
+ 𝑥

1
𝑥

2
.

(40)

Solution. Here

𝑎

11
= −12, 𝑎

12
= 5, 𝑎

21
= 28, 𝑎

22
= −1, 𝑎

32
= −3,

𝑎

33
= −1, els 𝑎

𝑖𝑗
= 0, 𝑏

113
= 𝑏

131
= −0.4,

𝑏

123
= 𝑏

132
= 0.5, 𝑏

213
= 𝑏

231
= −0.5, 𝑏

311
= 10,

𝑏

312
= 𝑏

321
= 0.5, els 𝑏

𝑖𝑗𝑘
= 0, 𝜆

1
=

√

12.5,

𝜆

2
=

√

13.5, 𝜆

3
= 1, 𝑑

1
= −

6

25

, 𝑑

2
=

4

45

,

𝑑

3
= 440.5, 𝜇

1
= 2, 𝜇

2
= 𝜇

3
=

1

2

, 𝜂 =

1

2

,

𝑓

2
(𝜇, 𝑋) = −125𝑥

2

1
− 6.75𝑥

2

2
− 0.5𝑥

2

3
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Figure 5: Simulation of system (46).
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Figure 6: Simulation of system (47).

+ (−

48

25

√

12.5 −

112

45

√

13.5) 𝑥

1

+ (

168

25

√

12.5 +

2643

2

) 𝑥

2
+

39293196661

405000

,

𝑓

󸀠

2𝑥1
(𝜇, 𝑋) = −250𝑥

1
− (

48

25

√

12.5 +

112

45

√

13.5) ,

𝑓

󸀠

2𝑥1
(𝜇,𝑋) = 0, 𝑥

1
= −

1

1250

(

48

5

√

12.5 +

112

9

√

13.5)

≈ 0.064,

𝑓

󸀠

2𝑥2
(𝜇, 𝑋) = −13.5𝑥

2
+ (

168

25

√

12.5 +

2643

2

) ,

𝑓

󸀠

2𝑥2
(𝜇,𝑋) = 0, 𝑥

2
=

30

135

(

56

25

√

12.5 +

881

2

) ≈ 99.65,

𝑓

󸀠

2𝑥3
(𝜇, 𝑋) = −𝑥

3
, 𝑓

󸀠

2𝑥3
(𝜇,𝑋) = 0, 𝑥

3
= 0,

𝑓

󸀠󸀠

2𝑥
2

1

(𝜇, 𝑋) = −250, 𝑓

󸀠󸀠

2𝑥
2

2

(𝜇,𝑋) = −13.5,

𝑓

󸀠󸀠

2𝑥
2

3

(𝜇, 𝑋) = −1,

𝑓

󸀠󸀠

2𝑥1𝑥2
(𝜇, 𝑋) = 𝑓

󸀠󸀠

2𝑥2𝑥1
(𝜇, 𝑋) = 𝑓

󸀠󸀠

2𝑥1𝑥3
(𝜇, 𝑋) = 0,

𝑓

󸀠󸀠

2𝑥3𝑥1
(𝜇, 𝑋) = 𝑓

󸀠󸀠

2𝑥2𝑥3
(𝜇, 𝑋) = 𝑓

󸀠󸀠

2𝑥3𝑥2
(𝜇, 𝑋) = 0.

(41)
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Figure 7: Switched system between system (40) and others.

The Hesse matrix of the 𝑓(𝜇,𝑋) is a negative definite matrix,
max𝑓(𝜇,𝑋) ≈ 164045.42. The set

Ω = {𝑋 | (

√

12.5𝑥

1
+

5

26

)

2

+ (

√

13.5𝑥

2
−

4

45

)

2

+(𝑥

3
− 440.5)

2
≤ 328090.84}

(42)

is the globally exponentially attractive set and positive invari-
ant set of system (40).

Note. (a) If the Hesse matrix of the 𝑓(𝜇,𝑋) is not a negative
definite matrix, the 𝑓(𝜇,𝑋) has no maximum𝑀.

(b) If ∃𝑎
𝑖0𝑖0

≥ 0, lim
𝑥𝑖0
→∞

𝑓(𝜇,𝑋) = +∞, this type of
chaotic system needs further research.

(c)We call the dynamic system (1) the second class three-
dimensional chaotic system with cross-product nonlinear-
ities, if it does not satisfy condition (6). For this class of
chaotic systems, 𝑓(𝜇,𝑋) is a cubic polynomial and there is
notmaximum ifwe choose energy function (3) differentiating
this Lyapunov function with respect to 𝑡 along the trajectory
of system (1). It is very useful to research these problems.



Journal of Applied Mathematics 9

0
2

4
6 8

0
10

20

0

5

10

15

−5

−10 −2

×10
11

×10
12

(a) System (43)–(40)

0
2

0
2

4

0

2

4

−2
−2

−2

×10
12

×10
12

×10
12

−8
−6
−4

−4

−4

(b) System (43)-(44)

0
5

0
5

10
15

0

5

10

15

−5

−5

−5

×10
11

×10
11

×10
12

−10

−15

(c) System (43)–(45)

0
2

4
6

8
0

10
20

0

5

10

15

−5

−2

×10
11

×10
12

−10

−20

(d) System (43)–(46)

0 2
4

6
8

10

0
5

10
15
0

0.5

1

1.5

2

−5

×10
15

×10
15

(e) System (43)–(47)

Figure 8: Switched system between system (43) and others.

Example 13. The new chaotic system shown in Figure 2 is

𝑥̇

1
= −2𝑥

1
+ 5𝑥

3
+ 5.7𝑥

1
𝑥

3
+ 4.7𝑥

2
𝑥

3
+ 4,

𝑥̇

2
= −𝑥

1
− 2𝑥

2
+ 3𝑥

3
+ 5,

𝑥̇

3
= −6𝑥

1
− 2𝑥

2
− 4𝑥

3
+ 0.2𝑥

2

1
+ 3.4𝑥

1
𝑥

2
+ 7.

(43)

Example 14. The chaotic system shown in Figure 3 is

𝑥̇

1
= −11𝑥

1
+ 0.15𝑥

1
𝑥

2
+ 1.38𝑥

2
𝑥

3
+ 1,

𝑥̇

2
= 30𝑥

1
− 𝑥

2
− 𝑥

1
𝑥

3
+ 0.1𝑥

2
𝑥

3
,

𝑥̇

3
= 15𝑥

2
− 2.5𝑥

3
+ 𝑥

1
𝑥

2
.

(44)
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Figure 9: Switched system between Example (44) and others.

Example 15. The chaotic system shown in Figure 4 is

𝑥̇

1
= 30 (𝑥

2
− 𝑥

1
) − 0.48𝑥

2

1
,

𝑥̇

2
= 80𝑥

1
− 6𝑥

2
− 𝑥

1
𝑥

3
,

𝑥̇

3
= 𝑥

1
𝑥

2
− 5𝑥

3
.

(45)

Example 16. The chaotic system shown in Figure 5 is

𝑥̇

1
= −12𝑥

1
+ 5𝑥

2
+ 𝑥

2
𝑥

3
,

𝑥̇

2
= 28𝑥

1
− 𝑥

2
− 𝑥

1
𝑥

3
,

𝑥̇

3
= −3𝑥

2
− 𝑥

3
+ 4𝑥

2

1
+ 𝑥

1
𝑥

2
.

(46)
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Figure 10: Switched system between Example (45) and others.

Example 17. The chaotic system shown in Figure 6 is

𝑥̇ = (

20

7

) 𝑥 − 𝑦𝑧 + 9,

̇𝑦 = −10𝑦 + 𝑥𝑧 + 0.5𝑧

2
,

𝑧̇ = −4𝑧 + 𝑥𝑦 + 𝑦𝑧.

(47)

Note. When we analyse Examples 13 to 17 by the previous
means, for sup

𝑋∈𝑅
3𝑓(𝜇,𝑋) = +∞, the globally exponentially

attractive set and positive invariant set of them have not been
obtained. The globally exponentially attractive set and posi-
tive invariant set really exist by their trajectories. Particularly,
by Lü et al. chaotic system [11] and Example 17 we conjecture
that they have globally conditional exponentially attractive
set and positive invariant set, according to preliminary study.
These are waiting for us to do further research. Meanwhile,
we can compute that the maximum Lyapunov exponents
of Examples 12–17 are 1.06, 0.02, 1.84, 0.01, 0.92, and 0.95,
respectively.
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Figure 11: Switched system between Example (46) and others.

5. Simulation of Switched System

In this section, we will show some simulation results of the
following switching system

𝑥̇ = 𝐴

𝜎
𝑥 + 𝑓

𝜎 (
𝑥) + 𝐶𝜎

, (48)

where 𝑥𝑇 = (𝑥
1
, 𝑥

2
, 𝑥

3
), 𝜎 is the switching law, and

𝐴

𝜎
=

[

[

[

𝑎

𝜎

11
𝑎

𝜎

12
𝑎

𝜎

13

𝑎

𝜎

21
𝑎

𝜎

22
𝑎

𝜎

23

𝑎

𝜎

31
𝑎

𝜎

32
𝑎

𝜎

33

]

]

]

, 𝐶

𝜎
=

[

[

[

𝑐

𝜎

1

𝑐

𝜎

2

𝑐

𝜎

3

]

]

]

,

𝑓

𝜎 (
𝑥) =

[

[

[

𝑥

𝑇
𝐵

𝜎

1
𝑥

𝑥

𝑇
𝐵

𝜎

2
𝑥

𝑥

𝑇
𝐵

𝜎

3
𝑥

]

]

]

(49)

with 𝑎𝜎
𝑖𝑗
, 𝑏

𝜎

𝑖𝑗𝑘
, 𝑐

𝜎

𝑖
∈ 𝑅, 𝑖, 𝑗, 𝑘 = 1, 2, 3. Each pair of (𝐴

𝜎
, 𝐶

𝜎
, 𝐵

𝜎

1
,

𝐵

𝜎

2
, 𝐵

𝜎

3
) takes the form from Example 8 to Example 14. The

switching law is that the system will stay in each subsystem
for a constant time. In the following, we assume that (a, b)
denotes a switched system which switches between system
(a) and system (b). It can be seen from Figures 7 to 12 that
the switched systems (18,20), (18,22), (18,23), (20,18), (20,22),
(20,23), (22,18), (22,20), (22,23), (23,18), (23,20), and (23,22)
can also yield chaotic systems.

6. Conclusion

In this paper, the methods in [19–21] have been extended
to study the globally exponentially or globally conditional
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Figure 12: Switched system between Example (47) and others.

exponentially attractive set and positive invariant set of the
three-dimensional chaotic system family with cross-product
nonlinearities. We have given two theorems for studying this
question and given some examples to show that such system
indeed has the globally exponentially or globally conditional
exponentially attractive set and positive invariant set, and
the exponential estimation is explicitly derived. We have
also suggested an idea to construct the chaotic systems, and
some new chaotic systems have been illustrated. The simula-
tion results are given for switched system between these new
chaotic systems. It is very interesting to further research that
the Hesse matrix of the 𝑓(𝜇,𝑋) is not a negative definite

matrix, and the dynamic system (1) is a second class three-
dimensional chaotic system with cross-product nonlineari-
ties.
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