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In differential evolution (DE) algorithm, depending on the characteristics of the problem at hand and the available computational
resources, different strategies combined with a different set of parameters may be effective. In addition, a single, well-tuned
combination of strategies and parameters may not guarantee optimal performance because different strategies combined with
different parameter settings can be appropriate during different stages of the evolution. Therefore, various adaptive/self-adaptive
techniques have been proposed to adapt the DE strategies and parameters during the course of evolution. In this paper, we propose
a new parameter adaptation technique for DE based on ensemble approach and harmony search algorithm (HS). In the proposed
method, an ensemble of parameters is randomly sampled which form the initial harmony memory. The parameter ensemble
evolves during the course of the optimization process by HS algorithm. Each parameter combination in the harmony memory
is evaluated by testing them on the DE population. The performance of the proposed adaptation method is evaluated using two
recently proposed strategies (DE/current-to-pbest/bin and DE/current-to-gr best/bin) as basic DE frameworks. Numerical results
demonstrate the effectiveness of the proposed adaptation technique compared to the state-of-the-art DE based algorithms on a set
of challenging test problems (CEC 2005).

1. Introduction

During the last decade, evolutionary algorithms (EAs)
inspired by Darwinian theory of evolution are becoming
increasingly popular because of their ability to handle nonlin-
ear and complex optimization problems. Unlike, the conven-
tional numerical optimization methods, EAs are population-
based metaheuristic algorithms and require the objective
function values, while properties such as differentiability and
continuity are not necessary. However, EAs performance
depends on the encoding schemes, evolutionary operators,
and parameter settings such as population size, mutation
scale factor, and crossover rate. In addition, an appropriate
parameter selection is a problem dependent and requires a
time-consuming trial-and-error parameter tuning process.
The trail-and-error based parameter selection is ineffective
if the optimization is required in an automated environment
or if the user has no experience in the fine art of the control
parameter tuning. To overcome this, different parameter

adaptation schemes have been presented [1–6]. Among the
different parameter adaptation techniques adaptive and self-
adaptive techniques are popular due to their ability to adjust
the parameter during the course of the evolution with
minimal or no intervention from the user. In other words, in
adaptive and self-adaptive techniques, the parameter adapta-
tion is done based on the feedback from the search process.
Self-adaptive techniques are based on the assumption that the
most appropriate parameter values produce better offspring
which are more likely to survive and propagate the better
parameter values [7]. Therefore, in self-adaptive methods the
parameters are directly encoded into the individuals and are
evolved together with the encoded solutions.

Differential evolution (DE) [8] is a fast and simple tech-
nique that has been successfully applied in diverse fields [9–
12]. Like most EAs, the performance of DE [13] is sensitive to
population size (𝑁𝑃), mutation and crossover strategies, and
their associated control parameters such as scale factor (𝐹)
and crossover rate (𝐶𝑅). In other words, the best combination
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of strategies and their control parameter settings can be
different for different optimization problems. In addition, for
a given optimization the best combination of strategies and
parameter values differ based on the available computational
resources and required accuracy. Therefore, to successfully
solve a specific optimization problem, it is generally necessary
to perform a time-consuming trial-and-error search for the
most appropriate strategies and their associated parameter
values. However, in DE during the evolution process, the
population traverses through different regions in the search
space, within which different strategies [14] with different
parameter settings may be more effective than a well-tuned,
single combination of strategies and parameters. In DE
literature, different partial adaptation schemes have been
proposed [7, 14–17] to overcome the time-consuming trial-
and-error procedure.

In [18], the authors proposed an adaptive DE algorithm
referred to as JADE. In JADE, the authors implemented a new
mutation strategy “DE/current-to-pbest/1” and the control
parameters (𝐹 and 𝐶𝑅) are self-adapted. “DE/current-to-
pbest/1” is a generalized version of “DE/current-to-best/1.”
JADE uses the conventional binomial crossover strategy. In
JADE, the self-adaptation of the control parameters avoids
the requirement of prior knowledge about parameter set-
tings and works well without user interaction. Motivated by
JADE, the authors in [19] proposed another adaptive DE
algorithm referred to as MDE-pBX (Modified DE with p-
best crossover). MDE-pBX uses a new mutation strategy
“DE/current-to-gr best/1” which is a modified version of
“DE/current-to-best/1.” Unlike JADE,MDE-pBX uses a more
exploitative “p-best binomial crossover” strategy. In [20],
the authors proposed an ensemble approach for parameter
adaptation of DE, where each parameter has a pool of values
competing to produce future offspring based on their success
in the past generations.

Harmony search (HS) is also population-based meta-
heuristic optimization algorithm which mimics the music
improvisation process. Recently, HS is gaining significance as
an efficient optimization algorithm and is used in variety of
applications. InHS, the generation of a new vector or solution
is based on the consideration of all the existing vectors, rather
than considering only two vectors as in DE (parent and
mutant vector) [21]. This characteristic of HS makes it more
explorative compared to the DE algorithm.

During the past decade, hybridization of EAs has gained
significance, due to ability to complement each other’s
strengths and overcome the drawbacks of the individual
algorithms. To enhance the exploitation ability in HS [22],
memory consideration is generally employed where new
individuals are generated based on the historical search expe-
rience. In addition, HS employs random selection approach
to explore and sample new solutions from the search space.
In HS, the random selection aids the exploration ability but
not as efficient as theDEmutation strategy and results in slow
convergence characteristics. However, a new solution formed
using a set of few randomly selected individuals may limit the
exploration ability in DEwhen the population diversity is low
[23]. In [23], the authors propose a hybrid algorithm referred
to as differential harmony search (DHS) by fusing the HS

and DE mechanisms. The hybridized DHS algorithm could
reasonably balance the exploration and exploitation abilities.

In this paper, we propose a DE parameter adaptation
technique based onHS algorithm. In the proposed adaptation
method, a group of DE control parameter combinations are
randomly initialized.The randomly initialized DE parameter
combinations form the initial harmonymemory (HM) of the
HS algorithm. Each combination of the parameters present in
the HM is evaluated by testing on the DE population during
the evolution. Based on the effectiveness of the DE parameter
combinations present in HM, the HS algorithm evolves the
parameter combinations. At any given point of time during
the evolution of the DE population, the HM contains an
ensemble of DE parameters that suits the evolution process
of the DE population.

The rest of the paper is organized as follows. Section 2
provides a brief literature review on different adaptiveDE and
HS algorithms. Section 3 presents the proposed algorithm
where the DE parameters are adapted using a HS algorithm.
Section 4 presents the experimental results while Section 5
presents the conclusions with some future directions.

2. Literature Review

2.1. Classical Differential Evolution. Differential evolution
(DE) is a simple real parameter optimization algorithm that
belongs to the class of evolutionary algorithms (EAs) and
involves the continuous application of operators such as
mutation, crossover, and selection. DE starts with 𝑁𝑃, 𝐷-
dimensional parameter vectors, referred to as population,
where each individual is a candidate solution to the problem
at hand as shown in
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are randomly generated mutually exclu-

sive integers in the range [1,𝑁𝑃]. The indices are randomly
generated once for each mutant vector and are also different
from the index 𝑖. The scale factor 𝐹 is a positive control
parameter for scaling the difference vector.

After the mutation, crossover operation is applied to
each pair of the target vector X

𝑖,𝐺
and its corresponding

mutant vector V
𝑖,𝐺

to generate a trial vector: U
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In (3), the crossover rate 𝐶𝑅 is a user-specified constant
within the range [0,1], which controls the fraction of parame-
ter values copied from the mutant vector. 𝑗rand is a randomly
chosen integer in the range [1, 𝐷]. In DE, there exists another
type of crossover operator called exponential crossoverwhich
is functionally equivalent to the circular two-point crossover
operator [14].

After crossover, the generated trial vectors are evaluated
using the objective function and a selection operation is
performed as shown in

X
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In (4), 𝑓(U
𝑖,𝐺
) and𝑓(X

𝑖,𝐺
) correspond to the objective values

of the trial and target vectors.
As mentioned above, the mutation, crossover, and selec-

tion steps are repeated generation after generation until
a termination criterion (reaching the maximum number
of function evaluations set) is satisfied. The algorithmic
description of the DE is summarized in Algorithm 1.

2.2. Parameter Adaptation in Differential Evolution.
Although, DE has attracted much attention recently
as a global optimizer over continuous spaces [25], the
performance of the conventional DE algorithm depends
on the chosen mutation and crossover strategies and the
associated control parameters. Depending on the complexity
of the problem, the performance of DE becomes more
sensitive to the strategies and the associated parameter
values [26] and inappropriate choice may lead to premature
convergence, stagnation, or wastage of computational
resources [16, 26–29]. In other words, due to the complex
interaction of control parameters with the DE’s performance
[7], choosing an appropriate mutation and crossover
strategies and control parameters require some expertise.
Since DE was proposed, various empirical guidelines
were suggested for choosing the population size (𝑁𝑃)
[24–26, 29, 30], mutation and crossover strategies [12, 24–
26, 28, 31, 32], and their associated control parameter settings:
scale factor (𝐹) [24–26, 29, 30, 33, 34] and crossover rate
(𝐶𝑅) [24–26, 28–30, 35, 36].

To some extent, the guidelines are useful for selecting
the individual parameters of DE. However, the performance
of DE is more sensitive to the combination of the muta-
tion strategy and its associated parameters. For a mutation
strategy, [7] a particular value of 𝐶𝑅 makes the parameter
𝐹 sensitive while some other values of 𝐶𝑅 make the same 𝐹
robust. Hence, themanual parameter tuning of DE is not easy
and requires a good expertise. To overcome the burden of
tuning theDEparameters by trial-and-error, various adaptive

techniques have been proposed [14–16, 37–39]. The most
popular adaptive DE variants are as follows [40].

(1) SaDE [14]: in SaDE, the trail vector generation strate-
gies and the associated control parameter values are
self-adapted based on their previous experiences of
generating promising solutions.

(2) jDE [7]: the control parameters𝐹 and𝐶𝑅 are encoded
into the individuals and are adjusted based on the
parameters 𝜏

1
and 𝜏
2
. The initial values of 𝐹 and 𝐶𝑅

of each population individual of DE were selected as
0.5 and 0.9, respectively. Then, based on a random
number (rand) which is uniformly generated in the
range of [0, 1], the values of 𝐹 and𝐶𝑅 are reinitialized
if rand < 𝜏

1
and rand < 𝜏

2
, respectively. 𝐹 and 𝐶𝑅 are

reinitialized to a new value randomly generated in the
ranges [0.1, 1.0] and [0, 1], respectively.

(3) JADE [18]: JADE employs a new mutation strat-
egy “DE/current-to-pbest” and updates the control
parameters in an adaptive manner. “DE/current-to-
pbest” is a generalized version of “DE/current-to-
best” and helps in diversifying the population and
improves the convergence performance. In JADE, the
parameter adaptation is done automatically and does
not need any prior knowledge regarding relationship
between the parameter settings and the characteris-
tics of optimization problems. In JADE, the 𝐹 and 𝐶𝑅
values corresponding to each population member are
sampled from themean values of𝐹 and𝐶𝑅.Themean
values of 𝐹 and 𝐶𝑅 are updated by the individual
𝐹 and 𝐶𝑅 values which are successful in generating
better trail vectors compared to the target vectors.

(4) EPSDE [20]: while solving a specific problem, dif-
ferent mutation strategies with different parameter
settings may be better during different stages of the
evolution than a single mutation strategy with unique
parameter settings as in the conventional DE. Moti-
vated by these observations an ensemble of mutation
strategies and parameter values for DE (EPSDE) was
proposed in which a pool of mutation strategies,
along with a pool of values corresponding to each
associated parameter competes to produce successful
offspring population. In EPSDE, the candidate pool
of mutation strategies and parameters should be
restrictive to avoid the unfavorable influences of less
effective mutation strategies and parameters [14].

(5) MDE-pBX [19]: motivated by JADE, MDE-pBX
employs a new mutation strategy “DE/current-to-
gr best/1” and the control parameters are self-
adapted. According to the new mutation strategy,
the algorithm uses the best individual of a group
(whose size is q% of the population size) of ran-
domly selected solutions from current generation to
perturb the parent (target) vector. In addition, unlike
JADE, MDE-pBX uses a modified binomial crossover
operation referred to as “p-best crossover.” According
to the modified crossover operation, a biased parent
selection scheme has been incorporated by letting
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STEP 1: Randomly initialize a population of NP, D-dimensional
parameter vectors. Set the generation number 𝐺 = 0.

STEP 2:WHILE stopping criterion is not satisfied
DO
Mutation—Equation (2)
Crossover—Equation (3)
Selection—Equation (4)
Increment the generation count G = G + 1

STEP 3: ENDWHILE

Algorithm 1: Standard differential evolution algorithm.

STEP 1: Initialize the HM with HMS randomly generated solutions. Set generation count 𝐺 = 0.
STEP 2:WHILE stopping criterion is not satisfied

/∗Generate a new solution∗/
FOR each decision variableDO

IF rand1 <HMCR
Pick the value from one of the solutions in HM
IF rand2 < PAR

Perturb the value picked /∗New solution generated∗/
END IF

END IF
END FOR

IF new solution better than the worst solution in HM (in terms of fitness)
Replace the worst solution in HM with new solution

END IF
Increment the generation count 𝐺 = 𝐺 + 1

STEP 3: ENDWHILE

Algorithm 2: Standard harmony search algorithm.

each mutant undergo the usual binomial crossover
with one of the p top-ranked individuals from the
current population and notwith the target vectorwith
the same index as used in all variants of DE.

2.3. Harmony Search Algorithm. Unlike most EAs, which
simulate natural selection and biological evolution, HS is
a population-based metaheuristic optimization algorithm
which mimics the music improvisation process where musi-
cians improvise their instruments’ pitch by searching for a
perfect state of harmony. Some of the characteristics of HS
that distinguish it from other metaheuristics such as DE are
as follows [21]: (1) considering all the existing solution vectors
while generating a new vector, rather than considering only
two vectors as in DE (target vector and trail vector); and
(2) independent consideration for each decision variable in
a solution vector. An overview of the standard HS algorithm
is presented in Algorithm 2.

In HS the improvisation operators, memory consider-
ation, pitch adjustment, and random consideration play a
major role in achieving the desired balance between the
exploitation and exploration during the optimization process
[41]. Essentially, both pitch adjustment and random con-
sideration are the key components of achieving the desired
diversification in HS. In random consideration, the new

vector’s components are generated at random and have the
same level of efficiency as in other algorithms that handle
randomization. The random consideration of HS allows the
exploration of new regions that may not have been visited in
the search space. In HS, pitch adjustment enhances diversi-
fication by tuning the components of a new vector’s within
a given bandwidth by adding/subtracting a small random
amount to an existing component stored in HM. Further to
that, pitch adjustment operator can also be considered as
a mechanism to support the intensification of HS through
controlling the probability of PAR. The intensification in
the HS algorithm is represented by the third HS operator,
memory consideration. A high harmony acceptance rate
means that good solutions from the history/memory are
more likely to be selected or inherited. This is equivalent to
a certain degree of elitism. Obviously, if the acceptance rate is
too low, solutions will converge more slowly.

Recently, HS algorithm garnered a lot of attention from
the research community and is successfully applied in solving
many optimization problems in engineering and computer
science. Consequently, the interest in HS has led to the
improvement and development of its performance in line
with the requirements of problems that are solved. The
improvements proposed by different researchers related to
HS can be categorized as follows [42]: (1) HS improvement
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STEP 1: Initialize a population of NP, D-dimensional individuals as the population of DE
STEP 2: Initialize HM with HMS randomly selected individuals.
STEP 3:WHILE stopping criterion is not satisfied

DO
Generate a new vector based on HS
FOR 1: HMS + 1 /∗Evaluate each parameter combination of the HM∗/

Mutation
Crossover
Selection
Evaluate the objective value of each HM vector
Increment the generation count G = G + 1

END FOR
Update HM

STEP 4: ENDWHILE

Algorithm 3: Harmony search based parameter ensemble adaptation for DE (HSPEADE).

by appropriate parameters setting; and (2) improvement of
HS by hybridizing with other metaheuristic algorithms.

3. Harmony Search Based Parameter Ensemble
Adaptation for DE (HSPEADE)

As highlighted in the previous section, depending on the
nature of problem (unimodal or multimodal) and avail-
able computation resources, different optimization problems
require different mutation and crossover strategies combined
with different parameter values to obtain optimal perfor-
mance. In addition, to solve a specific problem, different
mutation and crossover strategies with different parameter
settings may be better during different stages of the evolution
than a single set of strategies with unique parameter settings
as in the conventional DE. Motivated by these observations,
the authors in [20] proposed an ensemble approach (EPSDE)
in which a pool of mutation and crossover strategies, along
with a pool of values corresponding to each associated
parameter competes to produce successful offspring popula-
tion.

In EPSDE, each member in the DE population is ran-
domly assigned a mutation and crossover strategies and the
associated parameter values taken from the respective pools.
The population members (target vectors) produce offspring
(trial vectors) using the assigned strategies and parameter
values. If the generated trial vector is able to enter the
next generation of the evolution, then combination of the
strategies and the parameter values that produced trail vector
are stored. If trial vector fails to enter the next generation,
then the strategies and parameter values associated with that
target vector are randomly reinitialized from the respective
pools or from the successful combinations stored with equal
probability.

To have an optimal performance based on the ensemble
approach, the candidate pool of strategies and parameters
should be restrictive to avoid the unfavorable influences of
less effective strategies and parameters [14]. In other words,
the strategies and the parameters present in the respective

pools should have diverse characteristics, so that they can
exhibit distinct performance characteristics during different
stages of the evolution, when dealing with a particular
problem.

In EPSDE, since the strategy and parameter pools are
restrictive, most of the individuals in the pools may become
obsolete during the course of the evolution of DE population.
Therefore, it would be apt if the strategy and the parameter
pools can evolve with the DE population. Based on this
motivation, we propose an HS based parameter ensemble
adaptation for DE (HSPEADE). The overall view of the
proposed HSPEADE is presented in Algorithm 3.

As shown in Algorithm 3, after the initialization of DE
population, the HM of the HS algorithm is initialized with
HMS number of randomly generated vectors. The members
of the HM are the parameter combinations (𝐹 and𝐶𝑅 values)
corresponding to the mutation and crossover strategies used.
Using themembers in theHM, a new parameter combination
vector is generated using the HS algorithm described in
Algorithm 2. Each of the HMS + 1 parameter combinations
is evaluated by testing them on the DE population during
the evolution. After evaluating all the members of the HM
and the newly generated parameter combination, the HM is
updated as inHS algorithm.The generation of new parameter
combination and the updating of the HM are performed
throughout the evolution process of the DE algorithm.

To obtain optimal performance based on the ensemble
approach, it is obvious that the parameter combinations in
HM should be diverse during initial generations of the DE
population evolution and should converge to the optimal
combination towards the end of the evolution. During the
course of the experimentation, we observed that HS is
more suitable to evolve the parameter ensemble due to its
characteristics such as the following: (1) HS generates a single
vector every generation and replaces the worst performing
vector; (2) it can randomly generate new solution vectors
thus enabling diversity if needed and (3) it considers all the
solution vectors in the memory to generate a new solution.

In HSPEADE, to facilitate the diversity in parameter
ensemble in the initial stages and to allow the HS to converge
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Figure 1: Performance comparison of JADE and HSPEADE1.
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Figure 2: Performance comparison of EPDE1 and HSPEADE1.

to the optimal combination, we made some modifications in
theHS algorithm. InHS algorithm shown inAlgorithm 2, the
parameters HMCR and PAR are deterministically changed.
HMCR is linearly increased from 0 to 1 while PAR is
decreased linearly from 1 to 0 with the increase in the
generation count.

4. Experimental Setup and Results

In this section, we evaluate the performance of the proposed
parameter adaptation technique forDE.The details regarding
the test problems, experimental environment, and algorithms
used for comparison are given below.

4.1. Problem Set. Theperformance of the proposedmethod is
evaluated using a selected set of standard test functions from
the special session on real-parameter optimization of the
IEEE Congress on Evolutionary Computation (CEC 2005)
[43]. In this work, we use the first 14 functions of CEC 2005
out of which functions 1–5 are unimodal, functions 6–12
are multimodal, and functions 13-14 are hybrid composition
functions. The details about the problems such as parameter
ranges, location of the optimal solution, and the optimal
objective values can be found in [43]. In the present work, to
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Figure 3: Performance comparison of MDE and HSPEADE2.

evaluate the scalability of the algorithms 30-, 50-, and 100-
dimensional versions of the test problems are considered.
The number of function evaluation used for 30-, 50-, and
100-dimensional problems are 100000, 500000, and 1000000,
respectively. On each of the test problems, every algorithm
under consideration is run 30 times.

4.2. Setup for Algorithmic Comparison. The proposed
HSPEADE being a general idea can be applied with any
frame work. In this work, the experiments are designed as
follows.

(1) We consider a single crossover strategy which is
binomial crossover. We selected binomial crossover
because the two recent adaptiveDE algorithms (JADE
[18] and MDE-pBX [19]) which show significant
performance on the problem set considered employ
binomial crossover. It is to be noted that MDE-pBX
uses a modified “p-best binomial crossover” operator.
However, in this work we consider the classical
binomial crossover only.

(2) We consider two mutation strategies “DE/current-to-
pbest” and “DE/current-to-gr best”

The algorithmic comparison is divided into two sets as
follows. SET 1 uses the “DE/current-to-pbest” strategy while
SET 2 uses the “DE/current-to-gr best” strategy. EPSDE
algorithm mentioned above is referred to as EPDE below
because in the current work the strategies are fixed. MDE-
pBX algorithm is referred to as MDE below because in the
present work we use a simple binomial crossover instead of
the greedy “p-best crossover.”

SET 1:

JADE: “DE/current-to-pbest” strategy, binomial
crossover strategy, 𝑐 = 0.1, 𝑝 = 0.05, F and CR are
adapted [18].
EPDE1: “DE/current-to-pbest” strategy, binomial
crossover, 𝑐 = 0.1, 𝑝 = 0.05, 𝐹 = {0.5, 0.7, 0.9},
𝐶𝑅 = {0.1, 0.5, 0.9}.
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Table 1: Performance of JADE, EPDE1, and HSEPDE1 on 30D problems.

JADE EPDE1 HSPEADE1
Mean Std. Mean Std. Mean Std.

1 0 0 0 0 0 0
2 8.59E − 28 4.19E − 28 7.89𝐸 − 10 7.89𝐸 − 10 5.83𝐸 − 14 1.84𝐸 − 13

3 1.31E + 04 5.75E + 04 2.47𝐸 + 05 9.21𝐸 + 04 3.09𝐸 + 04 1.27𝐸 + 04

4 2.45𝐸 − 02 8.40𝐸 − 02 8.16E − 05 1.70E − 04 6.71E − 06 6.39E − 06
5 7.53𝐸 + 02 3.68𝐸 + 02 1.29E − 02 2.81E − 02 3.19E − 04 3.46E − 04
6 1.03𝐸 + 01 2.72𝐸 + 01 1.26E + 00 1.88E + 00 5.69E − 15 5.20E − 15
7 1.56𝐸 − 02 1.51𝐸 − 02 1.53𝐸 − 02 1.19𝐸 − 02 0 0
8 2.08𝐸 + 01 2.46𝐸 − 01 2.09𝐸 + 01 2.97𝐸 − 02 2.09𝐸 + 01 2.83𝐸 − 02

9 0 0 8.61𝐸 + 00 2.04𝐸 + 00 0 0
10 2.73E + 01 5.70E + 00 1.26𝐸 + 02 1.03𝐸 + 01 2.51𝐸 + 01 5.41𝐸 + 00

11 2.68E + 01 2.03E + 00 3.36𝐸 + 01 1.29𝐸 + 00 2.69𝐸 + 01 1.56𝐸 + 00

12 4.82E + 03 3.97E + 03 3.52𝐸 + 04 3.59𝐸 + 04 6.03𝐸 + 03 6.01𝐸 + 03

13 1.67E + 00 3.04E − 02 5.36𝐸 + 00 2.90𝐸 − 01 1.48E + 00 9.91E − 02
14 1.24E + 01 3.27E − 01 1.31𝐸 + 01 9.57𝐸 − 02 1.28E + 01 2.47E − 01

Table 2: Performance of JADE, EPDE1, and HSEPDE1 on 50D problems.

JADE EPDE1 HSPEADE1
Mean Std. Mean Std. Mean Std.

1 6.347𝐸 − 15 2.32𝐸 − 15 0 0 0 0
2 5.63𝐸 − 04 7.82𝐸 − 06 2.47E − 05 2.16E − 05 3.49E − 08 6.85E − 08
3 8.75E + 04 2.96E + 04 7.84𝐸 + 05 2.33𝐸 + 05 1.34𝐸 + 05 4.20𝐸 + 04

4 1.66𝐸 + 03 5.13𝐸 − 01 2.16𝐸 + 02 3.54𝐸 + 02 6.16E + 00 3.77E + 00
5 3.16𝐸 + 03 5.29𝐸 + 02 2.20𝐸 + 03 6.49𝐸 + 02 1.19E + 03 4.51E + 02
6 1.54E + 01 1.06E + 01 3.26𝐸 + 01 2.89𝐸 + 01 6.97E − 09 2.16E − 08
7 9.83𝐸 − 03 1.38𝐸 − 02 8.85𝐸 − 03 1.18𝐸 + 02 0 0
8 2.11𝐸 + 01 3.25𝐸 − 02 2.11𝐸 + 01 3.34𝐸 − 02 2.11𝐸 + 01 5.22𝐸 − 02

9 0 0 5.35𝐸 + 01 6.45𝐸 + 00 0 0
10 1.94E + 02 2.06E + 01 2.74𝐸 + 02 1.20𝐸 + 01 6.67E + 01 2.16E + 01
11 6.21E + 01 1.74E + 00 6.47𝐸 + 01 1.49𝐸 + 00 5.33E + 01 2.26E + 00
12 1.77𝐸 + 05 7.11𝐸 + 04 1.71E + 04 1.28E + 04 1.73E + 04 9.14E + 03
13 2.31𝐸 + 01 4.78𝐸 − 01 1.33E + 01 6.41E − 01 2.66E + 00 7.21E − 02
14 2.28𝐸 + 01 2.55𝐸 − 01 2.29𝐸 + 01 1.79𝐸 − 01 2.23E + 01 4.09E − 01

HSPEADE1: “DE/current-to-pbest” strategy, bino-
mial crossover, 𝐹, 𝐶𝑅 and 𝑝 are encoded into the HS
algorithm for adaptation. 𝐹 ranges from 0.2 to 1.2, 𝐶𝑅
ranges from 0 to 1, and 𝑝 ranges from 0.05 to 2.50.

SET 2:

MDE: “DE/current-to-gr best” strategy, binomial
crossover strategy, 𝑞 = 0.15, 𝐹 and 𝐶𝑅 are adapted
[19].
EPDE2: “DE/current-to-gr best” strategy, binomial
crossover strategy, 𝑞 = 0.15, 𝐹 = {0.5, 0.7, 0.9}, 𝐶𝑅 =

{0.1, 0.5, 0.9}.
HEPEADE2: “DE/current-to-gr best” strategy, bino-
mial crossover, F, CR, and q are encoded in to the HS
algorithm for adaptation. F ranges from 0.2 to 1.2, CR
ranges from 0 to 1, and p ranges from 0.05 to 2.50.

4.3. Statistical Tests. To compare the performance of different
algorithms, we employ two types of statistical tests, namely, t-
test andWilcoxon rank sum test.The t-test being a parametric
method can be used to compare the performance of two
algorithms on a single problem. When the performances of
two algorithms are to be compared on multiple problems
t-test is not valid as the normality assumption fails [44].
Therefore, to compare the performance of two algorithms
over a set of different problems, we can use a nonparametric
test such as the Wilcoxon rank sum test [44].

4.4. Experimental Results. The experimental results (mean
and standard deviations) corresponding to algorithms JADE,
EPDE1, and HSEPDE1 (SET 1) on 30-, 50-, and 100-
dimensional problems are presented in Tables 1, 2, and 3,
respectively. The experimental results (mean and standard
deviations) corresponding to algorithms MDE, EPDE2, and
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Table 3: Performance of JADE, EPDE1, and HSEPDE1 on 100D problems.

JADE EPDE1 HSPEADE1
Mean Std. Mean Std. Mean Std.

1 6.48𝐸 − 10 4.02𝐸 − 09 1.57E − 28 2.49E − 28 5.05E − 30 1.59E − 29
2 3.49𝐸 + 01 6.47𝐸 + 01 5.61E + 00 1.77E + 01 5.99E − 01 3.82E − 01
3 3.01𝐸 + 06 6.21𝐸 + 04 1.53E + 06 601E + 05 1.02E + 06 3.39E + 05
4 5.03𝐸 + 04 6.98𝐸 − 03 2.03𝐸 + 04 8.35𝐸 + 03 1.03E + 04 2.49E + 03
5 7.53𝐸 + 05 3.95𝐸 + 03 5.89E + 03 1.33E + 03 3.39E + 03 7.82E + 02
6 6.35𝐸 + 03 7.37𝐸 + 01 1.85E + 02 4.13E + 01 5.49E − 01 1.66E + 00
7 8.13𝐸 − 03 5.69𝐸 − 03 4.19𝐸 − 03 6.77𝐸 − 03 1.23E − 03 3.89E − 03
8 2.19𝐸 + 01 9.47𝐸 + 01 2.13𝐸 + 01 1.49𝐸 − 02 2.13𝐸 + 01 2.61𝐸 − 02

9 3.55E − 12 1.12E − 12 2.64𝐸 + 02 1.19𝐸 + 01 1.06𝐸 − 15 1.91𝐸 − 15

10 5.94E + 02 8.88E + 01 7.13𝐸 + 02 1.53𝐸 + 01 2.39E + 02 8.14E + 01
11 1.28E + 02 3.57E + 00 1.51𝐸 + 02 3.16𝐸 + 00 1.27E + 02 4.82E + 00
12 6.77𝐸 + 05 2.11𝐸 + 04 1.02E + 05 6.39E + 04 9.39E + 04 2.96E + 04
13 6.96E + 00 7.09E − 01 4.15𝐸 + 01 1.65𝐸 + 00 6.17E + 00 6.72E − 01
14 4.58E + 01 3.98E − 01 4.74𝐸 + 01 1.85𝐸 − 01 4.67𝐸 + 01 3.35𝐸 − 01

Table 4: Performance of MDE, EPDE2, and HSEPDE2 on 30D problems.

MDE EPDE2 HSPEADE2
Mean Std. Mean Std. Mean Std.

1 0 0 0 0 0 0

2 2.19𝐸 − 12 5.17𝐸 − 12 6.29𝐸 − 10 6.59𝐸 − 10 2.33E − 18 5.67E − 18
3 2.45E + 04 1.31E + 04 3.30𝐸 + 05 1.52𝐸 + 05 2.83𝐸 + 04 1.69𝐸 + 04

4 5.96𝐸 − 05 1.33𝐸 − 04 7.30E − 06 9.85E − 06 3.88E − 06 6.79E − 06
5 6.48𝐸 + 02 3.81𝐸 + 02 1.04E − 01 2.72E − 01 1.93E − 04 1.56E − 04
6 2.49𝐸 + 01 2.67𝐸 + 01 8.02E − 01 1.68E + 00 2.02E − 15 2.17E − 15
7 1.79𝐸 − 02 1.29𝐸 − 02 9.59E − 03 9.58E − 03 0 0
8 2.08𝐸 + 01 2.75𝐸 − 01 2.09𝐸 + 01 5.49𝐸 − 02 2.09𝐸 + 01 5.56𝐸 − 02

9 0 0 8.62𝐸 + 00 1.96𝐸 + 00 0 0
10 2.72E + 01 5.27E + 00 1.19𝐸 + 02 1.01𝐸 + 01 2.31E + 01 7.51E + 00
11 2.72E + 01 1.68E + 00 3.25𝐸 + 01 1.84𝐸 + 00 2.55E + 01 3.50E + 00
12 2.81E + 03 2.01E + 03 3.97𝐸 + 04 2.42𝐸 + 04 4.19𝐸 + 03 4.61𝐸 + 03

13 1.44E + 00 1.02E − 01 5.31𝐸 + 00 2.79𝐸 − 01 1.45𝐸 + 00 1.15𝐸 − 01

14 1.22E + 01 5.39E − 01 1.31𝐸 + 01 2.47𝐸 − 01 1.28𝐸 + 01 1.52𝐸 − 01

HSEPDE2 (SET 2) on 30-, 50-, and 100-dimensional prob-
lems are presented in Tables 4, 5, and 6, respectively. In
Tables 1–6, the mean and standard deviation (std.) values are
reported for every algorithm on each test problem.

The t-test andWilcoxon rank sum test results comparing
the performance of algorithms in SET 1 and SET 2 are
presented in Tables 7 and 8, respectively. In Tables 7 and 8, the
t-test results comparing two algorithms on each problem are
presented and the last row presents the Wilcoxon rank sum
test results. For each of the two tests, +1, 0, −1 in A versus B
comparison indicates B is better than A, B is equal to A, and
B is worse than A, respectively. For example, in JADE versus
EPDE1 comparison in Table 7 (30D) EPSDE1 is better, equal
and worst on test problems 4, 7, and 9, respectively.

4.5. Analysis of Experimental Results

SET 1. In Tables 1, 2, and 3, for each test problem, the
best performing algorithms among the JADE and EPDE1 are
highlighted using italic while the overall best among JADE,
EPDE1, and HSPEADE1 are highlighted using bold.

From the experimental results, it can be observed that
JADE performs better than EPDE1 on 30-dimensional ver-
sions of the problems. However, as the dimensionality of
the test problems increases, the performance of the EPDE1
becomes better compared to JADE algorithm. The improved
performance of EPDE1 can be attributed to the ensemble
approach as different combinations of strategies and param-
eters can be effective during different stages of the evolution
process [20].
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Table 5: Performance of MDE, EPDE2, and HSEPDE2 on 50D problems.

MDE EPDE2 HSPEADE2
Mean Std. Mean Std. Mean Std.

1 0 0 0 0 0 0

2 4.19E − 07 4.17E − 07 2.30𝐸 − 05 1.72𝐸 − 05 1.08E − 08 3.36E − 08
3 2.77𝐸 + 05 7.29𝐸 + 04 1.19E + 05 4.68E + 04 6.29𝐸 + 05 1.81𝐸 + 05

4 2.03𝐸 + 02 2.19𝐸 + 02 1.30E + 02 1.31E + 02 3.56E + 00 2.87E + 00
5 4.27𝐸 + 03 5.51𝐸 + 02 2.23E + 03 5.09E + 02 8.73E + 02 6.51E + 02
6 9.78𝐸 + 01 3.82𝐸 + 01 7.77E + 00 6.97E + 00 3.99E − 01 1.26E + 00
7 2.22E − 03 4.71E − 03 1.10𝐸 − 02 1.65𝐸 − 02 3.45𝐸 − 03 5.59𝐸 − 03

8 2.11𝐸 + 01 2.98𝐸 − 02 2.12𝐸 + 01 2.77𝐸 − 02 2.11𝐸 + 01 4.06𝐸 − 02

9 5.33E − 16 1.19E − 15 5.41𝐸 + 01 3.67𝐸 + 00 0 0
10 6.34E + 01 6.99E + 00 2.78𝐸 + 02 1.14𝐸 + 01 7.54𝐸 + 01 1.77𝐸 + 01

11 5.37E + 01 3.07E + 00 6.44𝐸 + 01 2.01𝐸 + 00 5.15E + 01 6.29E + 00
12 2.14𝐸 + 04 1.92𝐸 + 04 1.49E + 04 1.23E + 04 1.46E + 04 1.37E + 04
13 2.87E + 00 3.64E − 01 1.29𝐸 + 01 8.07𝐸 − 01 2.84E + 00 2.79E − 01
14 2.18E + 01 3.04E − 01 2.28𝐸 + 01 3.29𝐸 − 01 2.23𝐸 + 01 2.79𝐸 − 01

Table 6: Performance of MDE, EPDE2, and HSEPDE2 on 100D problems.

MDE EPDE2 HSPEADE2
Mean Std. Mean Std. Mean Std.

1 5.05E − 30 1.59E − 29 2.68𝐸 − 28 2.13𝐸 − 28 6.31E − 30 1.60E − 29
2 3.20E − 01 4.12E − 01 1.07𝐸 + 00 6.92𝐸 − 01 1.19E − 02 1.30E − 02
3 3.16𝐸 + 06 4.85𝐸 + 05 1.31E + 06 3.51E + 05 1.22E + 06 3.91E + 05
4 1.78E + 04 7.20E + 03 1.93𝐸 + 04 7.89𝐸 + 03 8.88E + 03 2.70E + 03
5 1.38𝐸 + 04 1.50𝐸 + 03 6.02E + 03 1.03E + 03 2.89E + 03 6.91E + 02
6 2.04𝐸 + 02 4.41𝐸 + 01 1.39E + 02 3.69E + 01 1.17E + 00 2.14E + 00
7 8.04E − 04 2.34E − 03 6.65𝐸 − 03 6.57𝐸 − 03 5.17𝐸 − 03 7.01𝐸 − 03

8 2.13𝐸 + 01 2.21𝐸 − 02 2.13𝐸 + 01 1.99𝐸 − 02 2.13𝐸 + 01 2.19𝐸 − 02

9 1.94E − 14 7.83E − 15 2.61𝐸 + 02 1.64𝐸 + 01 0 0
10 2.69E + 02 4.02E + 01 6.99𝐸 + 02 2.80𝐸 + 01 2.17E + 02 5.19E + 01
11 1.33E + 02 3.85E + 00 1.49𝐸 + 02 2.97𝐸 + 00 1.25E + 02 4.06E + 00
12 8.35𝐸 + 04 4.31𝐸 + 04 8.47𝐸 + 04 3.92𝐸 + 04 6.63E + 04 5.09E + 04
13 8.99E + 00 1.42E + 00 4.20𝐸 + 01 1.24𝐸 + 00 6.32E + 00 1.31E + 00
14 4.55E + 01 5.08E + 01 4.74𝐸 + 01 1.78𝐸 − 01 4.63𝐸 + 01 3.53𝐸 − 01

From Tables 1–3, it can be observed that HSPEADE1 out-
performs JADE and EPDE1 in most of the test problems. On
30-dimensional problems HSPEADE1 is better than or equal
to JADE in 11 cases while JADE is better than HSPEADE1 in
3 cases. As the dimensionality of the test problems increases,
the performance of HSPEADE1 gets better than JADE.

From the results, it is clear that the performance of
HSPEADE1 is always better than or equal to EPDE1. This
confirms our assumption that evolving parameter ensemble
is better than fixed combination of parameter ensemble.

SET 2. In Tables 4, 5, and 6, for each test problem, the
best performing algorithms among the MDE and EPDE2 are
highlighted using italic while the overall best among MDE,
EPDE2, and HSPEADE2 are highlighted using bold.

From the experimental results in Tables 4–6 a similar
observation to the above can be made. In 30-, 50-, and

100-dimensional problems, the performance of MDE and
EPDE2 is distributed. Unlike EPDE1 which dominates JADE
as the dimensionality increases, EPDE2 is unable to dom-
inate MDE. This may be due to the explorative ability of
“DE/current-to-gr best” strategy employed in MDE. How-
ever, as the dimensionality of the test problems increases
the performance of HSPEADE2 becomes better compared to
MDE.

From the Wilcoxon rank sum test results (bottom row
of Tables 7 and 8), it can be observed that HSPEADE
(HSPEADE1 and HSPEADE2) is always better than the
algorithms under comparison. In both the experimental
setups (SET 1 and SET 2), the statistical t-test results present
in Tables 7 and 8 are summarized in Figures 1 to 4 to
present a better view. For example in Figure 1, the bar plots
indicate the number of test problems (30D, 50D, and 100D)
on which HSPEADE1 is better, similar, and worst compared



10 Journal of Applied Mathematics

Table 7: Statistical test results to compare the performance of JADE, EPDE1, and HSEPDE1.

JADE versus EPDE1 JADE versus HSPEADE1 EPDE1 versus HSPEADE1
30D 50D 100D 30D 50D 100D 30D 50D 100D

1 0 +1 +1 0 +1 +1 0 0 0
2 −1 +1 +1 0 +1 +1 +1 +1 +1
3 −1 −1 +1 −1 −1 +1 +1 +1 +1
4 +1 0 0 +1 +1 +1 0 +1 +1
5 +1 0 +1 +1 +1 +1 0 +1 +1
6 +1 −1 +1 +1 +1 +1 +1 +1 +1
7 0 0 0 +1 +1 +1 +1 +1 0
8 0 0 0 0 0 0 0 0 0
9 −1 −1 −1 0 0 0 +1 +1 +1
10 −1 −1 −1 0 +1 +1 +1 +1 +1
11 −1 −1 −1 0 +1 0 +1 +1 +1
12 −1 +1 +1 0 +1 +1 +1 0 +1
13 −1 +1 −1 +1 +1 +1 +1 +1 +1
14 −1 0 −1 +1 +1 0 +1 +1 0
Wilcoxon test −1 −1 +1 +1 +1 +1 +1 +1 +1

Table 8: Statistical test results to compare the performance of MDE, EPDE2, and HSEPDE2.

MDE versus EPDE2 MDE versus HSPEADE2 EPDE2 versus HSPEADE2
30D 50D 100D 30D 50D 100D 30D 50D 100D

1 0 0 −1 0 0 0 0 0 +1
2 0 −1 −1 +1 +1 +1 +1 +1 +1
3 −1 +1 +1 0 0 +1 +1 −1 0
4 +1 0 0 0 +1 +1 0 +1 +1
5 +1 +1 +1 +1 +1 +1 +1 +1 +1
6 +1 +1 +1 +1 +1 +1 +1 +1 +1
7 +1 0 −1 +1 0 0 +1 0 0
8 0 0 0 0 0 0 0 0 0
9 −1 −1 −1 0 0 +1 +1 +1 +1
10 −1 −1 −1 0 0 +1 +1 +1 +1
11 −1 −1 −1 0 0 +1 +1 +1 +1
12 −1 0 0 0 0 0 +1 0 0
13 −1 −1 −1 0 0 +1 +1 +1 +1
14 −1 −1 −1 0 0 −1 +1 +1 +1
Wilcoxon test 0 0 0 +1 +1 +1 +1 +1 +1

to JADE. From Figures 1, 2, 3, and 4, it is clear that the
performance of HSPEADE1 is better than JADE and EPDE1
while HSPEADE2 is better than MDE and EPDE2.

5. Conclusions and Future Work

To improve the performance of DE, different adaptation
techniques have been proposed. In this paper, we propose
a new parameter adaptation technique for DE based on
ensemble approach and HS algorithm and is referred to
as HSPEADE. In HSPEADE, an ensemble of parameters is
randomly sampled and forms the initial harmony memory.
The parameter ensemble evolves during the course of the

optimization process by HS algorithm. Each parameter com-
bination in the harmony memory is evaluated by testing
them on the DE population. During the initial stages of the
evolution the DE parameter combinations in the harmony
memory of HS are diverse and facilitate exploration for
the better parameter combination. However, during the
end of the evolution process fine tuning of the parameter
combinations occurs and facilitates exploitation.

The performance of HSPEADE is evaluated by using two
recently proposed DE strategies (DE/current-to-pbest/bin
and DE/current-to-gr best/bin) and the numerical results
show that the proposed adaptation technique significant
improvement compared to the state-of-the-art adaptive DE
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Figure 4: Performance comparison of EPDE2 and HSPEADE2.

algorithms. From the experimental results, it can be observed
that the proposed adaptation technique can handle the scala-
bility issues better compared to the other adaptive techniques.

In the present work, we only consider the evolution of
the parameter ensemble using the HS framework. As a future
work, we would like to incorporate the ensemble of mutation
and crossover strategies into the HS framework.
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