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We present a systematic procedure for the determination of a complete set of kth-order (𝑘 ≥ 2) differential invariants corresponding
to vector fields in three variables for three-dimensional Lie algebras. In addition, we give a procedure for the construction of a system
of two kth-order ODEs admitting three-dimensional Lie algebras from the associated complete set of invariants and show that there
are 29 classes for the case of k = 2 and 31 classes for the case of 𝑘 ≥ 3. We discuss the singular invariant representations of canonical
forms for systems of two second-order ODEs admitting three-dimensional Lie algebras. Furthermore, we give an integration
procedure for canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras which comprises
of two approaches, namely, division into four types I, II, III, and IV and that of integrability of the invariant representations. We
prove that if a system of two second-order ODEs has a three-dimensional solvable Lie algebra, then, its general solution can be
obtained from a partially linear, partially coupled or reduced invariantly represented system of equations. A natural extension of
this result is provided for a system of two kth-order (𝑘 ≥ 3) ODEs. We present illustrative examples of familiar integrable physical
systems which admit three-dimensional Lie algebras such as the classical Kepler problem and the generalized Ermakov systems
that give rise to closed trajectories.

1. Introduction

Realizations of Lie algebras in terms of vector fields are
applied, in particular, for the integration and classification
of ordinary differential equations (see, e.g. [1–5]). In spite
of the importance for applications, the problem of complete
description of realizations has not been solved even for
cases when either the dimension of the algebras or the
dimension of the realization space is a fixed small integer
[6]. The classification of finite-dimensional Lie algebras was
initiated by Lie [7] who also presented realizations in terms
of vector fields in (1+1)- and (1+2)-dimensional spaces. In
the case of vector fields in the two-dimensional space, he
gave a complete classification in the complex domain. For
realizations of vectors fields in the three-dimensional space,
Lie presented a partial classification which was recently com-
pleted. All the possible complex Lie algebras of dimension

less than four were already obtained by Lie himself [8, 9].
Bianchi [10] investigated three-dimensional real Lie algebras.
Complete and correct classification of four-dimensional real
Lie algebras was obtained by Mubarakzjanov [11]. Wafo
Soh and Mahomed [12] used the results of Bianchi and
Mubarakzjanov to classify realizations of three- and four-
dimensional real Lie algebras in the space of three variables,
and they also described systems of two second-order ODEs
admitting real four-dimensional Lie algebras.

The realizations of real Lie algebras of dimension no
greater than four of vector fields in the space of an arbitrary
(finite) number of variables were given in [6]. Popovych et
al. [6] used the results of Bianchi and Mubarakzjanov with a
different approach. They found that the work [12] does not
provide the complete list of realizations of real Lie algebras of
dimensions three and four.
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Systems of two second-order ODEs arise frequently in
several applications in classical, fluid, and quantum mechan-
ics as well as in general relativity. Hence, these have been
studied vigorously over the years. A sample of the literature as
far as symmetry Lie algebras of ODEs are concerned can be
found in [13–15]. In particular, the classification of systems
of two second-order ODEs admitting real four-dimensional
Lie algebras was attempted in [12]. Gaponova andNesterenko
[16] gave a classification of system of two second-order ODEs
admitting real three- and four-dimensional Lie algebras by
using the results of [6].

In the this paper, by utilizing realizations given in [6],
a systematic procedure for finding a complete set of 𝑘th-
order (𝑘 ≥ 2) differential invariants including basis of
invariants corresponding to vector fields in three variables
for three-dimensional Lie algebras is presented. In addition,
we give a procedure for the construction of two 𝑘th-order
ODEs possessing three-dimensional Lie algebras from the
associated complete set of invariants. We show that there
are 29 classes for 𝑘 = 2 and 31 classes for 𝑘 ≥ 3.
Moreover, we mention those cases in which regular systems
of two second-order ODEs are not obtained for three-
dimensional Lie algebras. We present a brief discussion on
the singular representation of canonical forms for systems
of two second-order ODEs admitting three-dimensional Lie
algebras. Furthermore, we provide an integration procedure
for canonical forms for systems of two second-order ODEs
admitting three-dimensional Lie algebras. This procedure is
composed of two approaches, namely, one which depends on
general observations of canonical forms which admit three-
dimensional Lie algebras; the second depends on a complete
set of differential invariants and is applicable only for those
cases which admit three-dimensional solvable Lie algebras.
We show by familiar physical examples how these integration
approaches work. In the second approach, for solvable Lie
algebras, we analyze integrability in terms of integration of
the invariant representations. We prove that if a system of
two second-order ODEs admits a solvable three-dimensional
Lie algebra, then, its general solution can be deduced from a
partially linear, partially coupled or invariant reduced system
of equations. A natural extension of this result is stated for a
system of two 𝑘th-order (𝑘 ≥ 3) ODEs.

In Table 1, for ease of reference, we list the realizations of
three-dimensional Lie algebras as given in [6]. In the second
section, for the Lie algebras of vector fields considered, we
discuss and deduce a complete set of differential invariants
including basis of invariants with the construction of the
corresponding systems of two 𝑘th-order ODEs. Moreover,
for systems of two second-order ODEs admitting three-
dimensional Lie algebras, we discuss the singular represen-
tation and those cases in which we do not obtain systems.
In the end, in Table 2, we give a complete list of second-
order differential invariants corresponding to vector fields in
three variables of three-dimensional real Lie algebras and the
associated complete list of canonical forms for systems of two
second-order ODEs. In Section 3, we provide an integration
procedure for the canonical forms of systems of two 𝑘th-order
(𝑘 ≥ 2) ODEs admitting three-dimensional Lie algebras.This
is stated as theorems for systems admitting solvable algebras.

Reduction of canonical forms for systems of two second-
orderODEs into invariant systems of first-order and algebraic
equations are given in Table 2. The paper ends with a brief
conclusion.

2. Invariants and Systems of ODEs

When one calculates the symmetries of a given differential
equation, one finds the generators in the form of vector
fields and then computes the Lie brackets to get the structure
constants of the particular Lie algebra one has found. We can
start from a given Lie algebra with a set of structure constants
and ask which vector fields in at most three variables satisfy
the given Lie bracket relations with none of the vector
fields vanishing. We thus ask for possible realizations of
the given Lie algebra. We make use of the realizations
of three-dimensional Lie algebras in the (1+2)-dimensional
space given in [6]. We utilize these realizations in order to
obtain differential invariants and invariant representations
for system of two second-order and higher-order ODEs.
Extensions to higher order invariants are given to understand
the behavior of such invariants.This is the inverse problem in
symmetry analysis and was initiated by Lie.

For completeness and ease of reference, we list the
realizations of three-dimensional real algebras as given in [6]
in Table 1. However, we mostly keep the format of [12].

Differential invariants play an important role in the
structure and reduction of differential equations. Differen-
tial invariants can be obtained by various approaches and
we refer, for example, to [16] for realizations in (1+2)-
dimensional space. Differential invariants obtained by var-
ious approaches corresponding to three-dimensional Lie
algebras have very interesting properties. In the investigation
of the invariant approach for a system of two second-order
ODEs admitting three-dimensional Lie algebras, it is found
that, for a regular system ofODEs, there are four independent
invariants, three of which play the role of basis and the fourth
one is derived from the remaining three.

For the case of a regular system of two second-order
ODEs admitting three-dimensional Lie algebras, there are
four functionally independent invariants. For example, con-
sider the system of two second-order ODEs

�̈�

�̇�
2

= 𝑓(𝑦,
�̇�

�̇�
) ,
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the four independent invariants
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Here, the invariants𝑤
3
and 𝑤

4
are of order two, that is, equal

to the order of the system of ODEs that is constructible.
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Table 1: Realizations of three-dimensional Lie algebras in three variables.

Algebra N Realization Rank

𝐴
3,1

1 𝜕
𝑡
, 𝜕
𝑥
, 𝜕
𝑦

3

2 𝜕
𝑥
, 𝜕
𝑦
, 𝑡𝜕
𝑥
+ 𝑓(𝑡)𝜕

𝑦
, 2

3 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑦𝜕
𝑥

1

4 𝜕
𝑡
, 𝑥𝜕
𝑡
, 𝜙(𝑥)𝜕

𝑡
, 𝜙

(𝑥) ̸= 0 1

𝐴
3,2

[𝑋
1
, 𝑋
2
] = 𝑋

1

1 𝜕
𝑡
, 𝑡𝜕
𝑡
+ 𝜕
𝑦
, 𝜕
𝑥

3

2 𝜕
𝑡
, 𝑡𝜕
𝑡
+ 𝑦𝜕
𝑥
, 𝜕
𝑥

2

3 𝜕
𝑡
, 𝑡𝜕
𝑡
, 𝜕
𝑥

2

4 𝜕
𝑥
, 𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥
, 𝑡𝜕
𝑥

2

𝐴
3,3

[𝑋
2
, 𝑋
3
] = 𝑋

1

1 𝜕
𝑡
, 𝜕
𝑥
, 𝑥𝜕
𝑡

2

2 𝜕
𝑡
, 𝜕
𝑥
, 𝑥𝜕
𝑡
+ 𝑦𝜕
𝑥

2

3 𝜕
𝑡
, 𝜕
𝑥
, 𝑥𝜕
𝑡
+ 𝜕
𝑦

3

𝐴
3,4

1 𝜕
𝑡
, 𝜕
𝑥
, (𝑡 + 𝑥)𝜕

𝑡
+ 𝑥𝜕
𝑥

2

[𝑋
1
, 𝑋
3
] = 𝑋

1
2 𝜕

𝑡
, 𝜕
𝑥
, (𝑡 + 𝑥)𝜕

𝑡
+ 𝑥𝜕
𝑥
+ 𝜕
𝑦

3

[𝑋
2
, 𝑋
3
] = 𝑋

1
+ 𝑋
2

3 𝜕
𝑥
, 𝑡𝜕
𝑥
, −𝜕
𝑡
+ 𝑥𝜕
𝑥

2

𝐴
3,5

[𝑋
1
, 𝑋
3
] = 𝑋

1

[𝑋
2
, 𝑋
3
] = 𝑋

2

1 𝜕
𝑡
, 𝜕
𝑥
, 𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥

2

2 𝜕
𝑡
, 𝜕
𝑥
, 𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥
+ 𝜕
𝑦

3

3 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑥𝜕
𝑥

1

4 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑥𝜕
𝑥
+ 𝜕
𝑦

2

𝐴
𝑎

3,6
, |𝑎| ≤ 1, 𝑎 ̸= 0, 1 1 𝜕

𝑡
, 𝜕
𝑥
, 𝑡𝜕
𝑡
+ 𝑎𝑥𝜕

𝑥
2

[𝑋
1
, 𝑋
3
] = 𝑋

1
2 𝜕

𝑡
, 𝜕
𝑥
, 𝑡𝜕
𝑡
+ 𝑎𝑥𝜕

𝑥
+ 𝜕
𝑦

3

[𝑋
2
, 𝑋
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] = 𝑎𝑋

2
3 𝜕

𝑥
, 𝑡𝜕
𝑥
, (1 − 𝑎)𝑡𝜕

𝑡
+ 𝑥𝜕
𝑥

2

𝐴
𝑎

3,7
, 𝑎 ≥ 0 1 𝜕

𝑡
, 𝜕
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, (𝑎𝑡 + 𝑥)𝜕

𝑡
+ (𝑎𝑥 − 𝑡)𝜕

𝑥
2

[𝑋
1
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3
] = 𝑎𝑋

1
− 𝑋
2

2 𝜕
𝑡
, 𝜕
𝑥
, (𝑎𝑡 + 𝑥)𝜕

𝑡
+ (𝑎𝑥 − 𝑡)𝜕

𝑥
+ 𝜕
𝑦

3

[𝑋
2
, 𝑋
3
] = 𝑋

1
+ 𝑎𝑋
2

3 𝜕
𝑥
, 𝑡𝜕
𝑥
, −(1 + 𝑡

2
)𝜕
𝑡
+ (𝑎 − 𝑡)𝑥𝜕

𝑥
2

𝐴
3,8

, {sl(2, 𝑅)}

[𝑋
1
, 𝑋
2
] = 𝑋

1

[𝑋
2
, 𝑋
3
] = 𝑋

3

[𝑋
3
, 𝑋
1
] = −2𝑋

2

1 𝜕
𝑡
, 𝑡𝜕
𝑡
, 𝑡
2
𝜕
𝑡

1

2 𝜕
𝑡
, 𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥
, 𝑡
2
𝜕
𝑡
+ 2𝑡𝑥𝜕

𝑥
+ 𝑥𝜕
𝑦

3

3 𝜕
𝑡
+ 𝜕
𝑥
, 𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥
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2
𝜕
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2
𝜕
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2

4 −𝑡𝜕
𝑥
,
1

2
(−𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥
), 𝑥𝜕
𝑡

2

5 𝜕
𝑡
, 𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥
, (𝑡
2
− 𝑥
2
)𝜕
𝑡
+ 2𝑡𝑥𝜕

𝑥
2

𝐴
3,9

, {so(3)}
[𝑋
1
, 𝑋
2
] = 𝑋

3

1 (1 + 𝑡
2
)𝜕
𝑡
+ 𝑥𝑡𝜕

𝑥
, 𝑥𝜕
𝑡
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2
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2
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3
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1

2 − sin 𝑡 tan𝑥𝜕
𝑡
− cos 𝑡𝜕

𝑥
+ sin 𝑡 sec𝑥𝜕

𝑦
, − cos 𝑡 tan𝑥𝜕

𝑡
+ sin 𝑡𝜕

𝑥
+ cos 𝑡 sec𝑥𝜕

𝑦
, 𝜕
𝑡

3

Similarly for the regular system of two third-order ODEs
...
𝑥

�̇�
2
�̇�

−
2�̈�
2

�̇�
3
�̇�

= 𝑓(𝑦,
�̇�

�̇�
,
�̈�

�̇�
2
,
�̈�

�̇�
2
−

�̇��̈�

�̇�
3
) ,

−
�̇�
...
𝑦

�̇�
4

+

...
𝑥�̇�
2
− 3�̈��̇��̈� + 3�̇��̈�

2

�̇�
5

= 𝑔(𝑦,
�̇�

�̇�
,
�̈�

�̇�
2
,
�̈�

�̇�
2
−

�̇��̈�

�̇�
3
) ,

(3)

admitting the sameLie algebra𝐴3
3,2
; we have the six invariants

𝑤
1
= 𝑦, 𝑤

2
=

�̇�

�̇�
, 𝑤

3
=

�̈�

�̇�
2
, 𝑤

4
=

�̈�

�̇�
2
−

�̇��̈�

�̇�
3
,

𝑤
5
=

...
𝑥

�̇�
2
�̇�

−
2�̈�
2

�̇�
3
�̇�
, 𝑤

6
= −

�̇�
...
𝑦

�̇�
4

+

...
𝑥�̇�
2
− 3�̈��̇��̈� + 3�̇��̈�

2

�̇�
5

,

(4)

from which we determine the third-order system. Here, the
invariants 𝑤

5
and 𝑤

6
are of order three, that is, equal to

the order of the considered system of ODEs. By proceeding
in this way for regular systems of two 𝑘th-order ODEs
admitting three-dimensional Lie algebras, the number of
order 𝑘 invariants is two.

To study differential invariants further, we consider the
following example. Consider the system

�̈�

�̇��̇�
= 𝑓 (𝑒

𝑦
�̇�, �̇��̇�
𝑎−1

) ,

𝑒
−𝑦

�̈��̇�
𝑎−1

�̇�
2
+ �̈�

+
(𝑎 − 1) 𝑒

−𝑦
�̇��̇�
𝑎−2

�̈�

�̇�
2
+ �̈�

= 𝑔 (𝑒
𝑦
�̇�, �̇��̇�
𝑎−1

) ,

(5)
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Table 2: Second-order differential invariants and equations.

Algebra N Invariants and equations

𝐴
3,1

1 𝑢 = �̇�, V = �̇�, 𝑤 = �̈�,
𝑑V

𝑑𝑢
=

�̈�

�̈�

�̈� = 𝑓(𝑢, V),
�̈�

�̈�
= 𝑔(𝑢, V)

2 𝑢 = 𝑡, V = �̇� − �̇�𝑓

(𝑡), 𝑤 = �̈�,

𝑑V

𝑑𝑢
= �̈� − �̈�𝑓


(𝑡) − �̇�𝑓


(𝑡)

�̈� = ℎ(𝑢, V), �̈� − �̈�𝑓

(𝑡) − �̇�𝑓


(𝑡) = 𝑘(𝑢, V)

3 𝑢 = 𝑡, V = 𝑦, 𝑤 = �̈�,
𝑑V

𝑑𝑢
= �̇�, and �̈� = 0

∗ �̈� = 𝑓(𝑢, V,
𝑑V

𝑑𝑢
), �̈� = 0

𝐴
3,2

1 𝑢 = 𝑒
𝑦
�̇�, V =

�̇�

�̇�
, 𝑤 =

�̈�

�̇�
2
,

𝑑V

𝑑𝑢
=

�̈�

𝑒𝑦�̇�(�̇�
2
+ �̈�)

−
�̇��̈�

𝑒𝑦�̇�
2
(�̇�
2
+ �̈�)

�̈�

�̇�
2

= 𝑓(𝑢, V),
�̈�

𝑒𝑦�̇�(�̇�
2
+ �̈�)

−
�̇��̈�

𝑒𝑦�̇�
2
(�̇�
2
+ �̈�)

= 𝑔(𝑢, V)

2 𝑢 = 𝑦, V = 𝑒
�̇�/�̇�

�̇�, 𝑤 =
�̈�

�̇�
2
,

𝑑V

𝑑𝑢
= 𝑒
�̇�/�̇�

�̈�

�̇�
+ 𝑒
�̇�/�̇�

(�̇� − �̇�)�̈�

�̇�
2

�̈�

�̇�
2

= 𝑓(𝑢, V), 𝑒�̇�/�̇�
�̈�

�̇�
+ 𝑒
�̇�/�̇�

(�̇� − �̇�)�̈�

�̇�
2

= 𝑔(𝑢, V)

3 𝑢 = 𝑦, V =
�̇�

�̇�
, 𝑤 =

�̈�

�̇�
2
,

𝑑V

𝑑𝑢
=

�̈�

�̇�
2
−

�̇��̈�

�̇�
3

�̈�

�̇�
2

= 𝑓(𝑢, V), �̈�

�̇�
2
−

�̇��̈�

�̇�
3

= 𝑔(𝑢, V)

4 𝑢 = 𝑦, V = 𝑡�̇�, 𝑤 = 𝑡�̈�,
𝑑V

𝑑𝑢
= 1 +

𝑡�̈�

�̇�

𝑡�̈� = 𝑓(𝑢, V), 1 +
𝑡�̈�

�̇�
= 𝑔(𝑢, V)

𝐴
3,3

1 𝑢 = 𝑦, V =
�̇�

�̇�
, 𝑤 =

�̈�

�̇�
3
,

𝑑V

𝑑𝑢
=

�̈�

�̇�
2
−

�̇��̈�

�̇�
3

�̈�

�̇�
3

= 𝑓(𝑢, V), �̈�

�̇�
2
−

�̇��̈�

�̇�
3

= 𝑔(𝑢, V)

2 𝑢 = 𝑦, V =
�̇�
2

2�̇�
2
−

1

�̇�
, 𝑤 =

�̇��̈�

�̇�
3

−
�̈�

�̇�
2
,

𝑑V

𝑑𝑢
=

�̇��̈�

�̇�
3

+
(�̇� − �̇�

2
)�̈�

�̇�
4

�̇��̈�

�̇�
3

−
�̈�

�̇�
2

= 𝑓(𝑢, V), �̇��̈�
�̇�
3

+
(�̇� − �̇�

2
)�̈�

�̇�
4

= 𝑔(𝑢, V)

3 𝑢 = 𝑦 −
1

�̇�
, V =

�̇�

�̇�
, 𝑤 =

�̈�

�̇�
3
,

𝑑V

𝑑𝑢
=

�̇�
2
�̈�

�̇�(�̈� + �̇��̇�
2
)
−

�̇�
3
�̈�

�̇�
2
(�̈� + �̇��̇�

2
)

�̈�

�̇�
3

= 𝑓(𝑢, V), �̇�
2
�̈�

�̇�(�̈� + �̇��̇�
2
)
−

�̇�
3
�̈�

�̇�
2
(�̈� + �̇��̇�

2
)
= 𝑔(𝑢, V)

𝐴
3,4

1 𝑢 = 𝑦, V = 𝑒
1/�̇�

�̇�

�̇�
, 𝑤 =

�̈�

�̇�
2
�̇�
,

𝑑V

𝑑𝑢
= 𝑒
1/�̇�

�̈�

�̇��̇�
− 𝑒
1/�̇�

(1 + �̇�)�̈�

�̇�
3

�̈�

�̇�
2
�̇�

= 𝑓 (𝑢, V) , 𝑒1/�̇�
�̈�

�̇��̇�
− 𝑒
1/�̇�

(1 + �̇�)�̈�

�̇�
3

= 𝑔(𝑢, V)

2 𝑢 = 𝑦−
1

�̇�
, V = 𝑒

1/�̇�
�̇�

�̇�
, 𝑤 =

�̈�

�̇�
2
�̇�
,

𝑑V

𝑑𝑢
= 𝑒
1/�̇�

�̇��̈�

�̈� + �̇�
2
�̇�

−𝑒
1/�̇�

(1 + �̇�)�̈��̇�

�̇�(�̈� + �̇�
2
�̇�)

�̈�

�̇�
2
�̇�

= 𝑓(𝑢, V), 𝑒1/�̇�
�̇��̈�

�̈� + �̇�
2
�̇�

− 𝑒
1/�̇�

(1 + �̇�)�̈��̇�

�̇�(�̈� + �̇�
2
�̇�)

= 𝑔(𝑢, V)

3 𝑢 = 𝑦, V = �̇�, 𝑤 = 𝑒
𝑡
�̈�,

𝑑V

𝑑𝑢
=

�̈�

�̇�

𝑒
𝑡
�̈� = 𝑓 (𝑢, V) ,

�̈�

�̇�
= 𝑔(𝑢, V)

𝐴
3,5

1 𝑢 = 𝑦, V = �̇�, 𝑤 =
�̈�

�̇�
2
,

𝑑V

𝑑𝑢
=

�̈�

�̇�

�̈�

�̇�
2

= 𝑓(𝑢, V),
�̈�

�̇�
= 𝑔(𝑢, V)
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2 𝑢 = �̇�, V = 𝑒
𝑦
�̇�, 𝑤 =

�̈�

�̇�
,

𝑑V

𝑑𝑢
= 𝑒
𝑦
�̇�
2

�̈�
+ 𝑒
𝑦
�̈�

�̈�

�̈�

�̇�
= 𝑓(𝑢, V), 𝑒𝑦

�̇�
2

�̈�
+ 𝑒
𝑦
�̈�

�̈�
= 𝑔(𝑢, V)

3 𝑢 = 𝑡, V = 𝑦,
𝑑V

𝑑𝑢
= �̇�,

𝑑
2V

𝑑𝑢2
= �̈�, and �̈� = 0

∗ �̈� = 0, �̈� = 𝑔(𝑢, V,
𝑑V

𝑑𝑢
)

4 𝑢 = 𝑡, V = �̇�, 𝑤 = 𝑒
−𝑦

�̈�,
𝑑V

𝑑𝑢
= �̈�

𝑒
−𝑦

�̈� = 𝑓(𝑢, V), �̈� = 𝑔(𝑢, V)

𝐴
𝑎

3,6

|𝑎| ≤ 1,
𝑎 ̸= 0, 1

1 𝑢 = 𝑦, V = �̇��̇�
𝑎−1

, 𝑤 =
�̈�

�̇��̇�
,

𝑑V

𝑑𝑢
= �̈��̇�
𝑎−2

+ (𝑎 − 1)�̇��̇�
𝑎−3

�̈�

�̈�

�̇��̇�
= 𝑓(𝑢, V), �̈��̇�𝑎−2 + (𝑎 − 1)�̇��̇�

𝑎−3
�̈� = 𝑔(𝑢, V)

2 𝑢 = 𝑒
𝑦
�̇�, V = �̇��̇�

𝑎−1
, 𝑤 =

�̈�

�̇��̇�
,

𝑑V

𝑑𝑢
=

𝑒
−𝑦

�̈��̇�
𝑎−1

�̇�
2
+ �̈�

+
(𝑎 − 1)𝑒

−𝑦
�̇��̇�
𝑎−2

�̈�

�̇�
2
+ �̈�

�̈�

�̇��̇�
= 𝑓(𝑢, V),

𝑒
−𝑦

�̈��̇�
𝑎−1

�̇�
2
+ �̈�

+
(𝑎 − 1)𝑒

−𝑦
�̇��̇�
𝑎−2

�̈�

�̇�
2
+ �̈�

= 𝑔(𝑢, V)

3 𝑢 = 𝑦, V = 𝑡�̇�, 𝑤 = 𝑡
(2𝑎−1)/(𝑎−1)

�̈�,
𝑑V

𝑑𝑢
= 1 +

𝑡�̈�

�̇�

𝑡
(2𝑎−1)/(𝑎−1)

�̈� = 𝑓(𝑢, V), 1 +
𝑡�̈�

�̇�
= 𝑔(𝑢, V)

𝐴
3,7

1 𝑢 = 𝑦, V =
�̇�𝑒
−𝑎 arctan �̇�

√1 + �̇�
2

, 𝑤 =
�̈�𝑒
−𝑎 arctan �̇�

(1 + �̇�
2
)
3/2

,
𝑑V

𝑑𝑢
=

−(𝑎 + �̇�)�̈�𝑒
−𝑎 arctan �̇�

(1 + �̇�
2
)
3/2

+
�̈�𝑒
−𝑎 arctan �̇�

�̇�√1 + �̇�
2

�̈�𝑒
−𝑎 arctan �̇�

(1 + �̇�
2
)
3/2

= 𝑓(𝑢, V), −(𝑎 + �̇�)�̈�𝑒
−𝑎 arctan �̇�

(1 + �̇�
2
)
3/2

+
�̈�𝑒
−𝑎 arctan �̇�

�̇�√1 + �̇�
2

= 𝑔(𝑢, V)

2 𝑢 = 𝑦 + arctan �̇�, V =
�̇�𝑒
−𝑎 arctan �̇�

√1 + �̇�
2

, 𝑤 =
�̈�𝑒
−𝑎 arctan �̇�

(1 + �̇�
2
)
3/2

,

𝑑V

𝑑𝑢
=

−(𝑎 + �̇�)�̇��̈�𝑒
−𝑎 arctan �̇�

(�̈� + (1 + �̇�
2
)�̇�)√1 + �̇�

2

+
�̈�√1 + �̇�

2
𝑒
−𝑎 arctan �̇�

�̈� + (1 + �̇�
2
)�̇�

�̈�𝑒
−𝑎 arctan �̇�

(1 + �̇�
2
)
3/2

= 𝑓(𝑢, V),
−(𝑎 + �̇�)�̇��̈�𝑒

−𝑎 arctan �̇�

(�̈� + (1 + �̇�
2
)�̇�)√1 + �̇�

2

+
�̈�√1 + �̇�

2
𝑒
−𝑎 arctan �̇�

�̈� + (1 + �̇�
2
)�̇�

= 𝑔(𝑢, V)

3 𝑢 = 𝑦, V = (1 + 𝑡
2
)�̇�, 𝑤 =

�̈�𝑒
𝑎 arctan 𝑡

�̇�
3/2

,
𝑑V

𝑑𝑢
= 2𝑡 +

(1 + 𝑡
2
)�̈�

�̇�

�̈�𝑒
𝑎 arctan 𝑡

�̇�
3/2

= 𝑓(𝑢, V), 2𝑡 +
(1 + 𝑡

2
)�̈�

�̇�
= 𝑔(𝑢, V)

𝐴
3,8

2 𝑢 = 2𝑦 − �̇�, V = �̇�
2
− 4𝑥�̇�, 𝑤 = 𝑥�̈� − 2𝑥�̇�,

𝑑V

𝑑𝑢
= −2�̇� −

4𝑥�̈�

2�̇� − �̈�

𝑥�̈� − 2𝑥�̇� = 𝑓(𝑢, V), −2�̇� −
4𝑥�̈�

2�̇� − �̈�
= 𝑔(𝑢, V)

3 𝑢 = 𝑦, V =
�̇�

(𝑡 − 𝑥)
2
�̇�
2
, 𝑤 =

2

(𝑡 − 𝑥)�̇�
+

�̈�

�̇�
2
,

𝑑V

𝑑𝑢
=

�̈�

(𝑡 − 𝑥)
2
�̇�
3
−

2(1 − �̇�)�̇��̇� + 2(𝑡 − 𝑥)�̇��̈�

(𝑡 − 𝑥)
3
�̇�
4

,

2

(𝑡 − 𝑥)�̇�
+

�̈�

�̇�
2

= 𝑓(𝑢, V), �̈�

(𝑡 − 𝑥)
2
�̇�
3
−

2(1 − �̇�)�̇��̇� + 2(𝑡 − 𝑥)�̇��̈�

(𝑡 − 𝑥)
3
�̇�
4

= 𝑔(𝑢, V)

4 𝑢 = 𝑦, V =
𝑡�̇� − 𝑥

�̇�
, 𝑤 =

�̈�

�̇�
3
,

𝑑V

𝑑𝑢
=

𝑡�̈�

�̇�
2
−

(𝑡�̇� − 𝑥)�̈�

�̇�
3

�̈�

�̇�
3

= 𝑓(𝑢, V), 𝑡�̈�

�̇�
2
−

(𝑡�̇� − 𝑥)�̈�

�̇�
3

= 𝑔(𝑢, V)

5 𝑢 = 𝑦, V =
𝑥�̇�

√1 + �̇�
2

, 𝑤 =
1 + �̇�
2

𝑥3�̇�
3

+
�̈�

𝑥2�̇�
3
,

𝑑V

𝑑𝑢
=

�̇�(1 + �̇�
2
− 𝑥�̈�)

(1 + �̇�
2
)
3/2

+
𝑥�̈�

�̇�√1 + �̇�
2

1 + �̇�
2

𝑥3�̇�
3

+
�̈�

𝑥2�̇�
3

= 𝑓(𝑢, V), �̇�(1 + �̇�
2
− 𝑥�̈�)

(1 + �̇�
2
)
3/2

+
𝑥�̈�

�̇�√1 + �̇�
2

= 𝑔(𝑢, V)
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𝐴
3,9

1 𝑢 = 𝑦, V =
1 + �̇�
2
+ (𝑡�̇� − 𝑥)

2

(1 + 𝑡2 + 𝑥2)
2
�̇�
2

, 𝑤 =
�̈�

(1 + 𝑡2 + 𝑥2)
3/2

�̇�
3
,

𝑑V

𝑑𝑢
= −

2(1 + �̇�
2
+ (𝑡�̇� − 𝑥)

2
)�̈�

�̇�
4
(1 + 𝑡2 + 𝑥2)

2
−

4(𝑡 + 𝑥�̇�)(1 + �̇�
2
+ (𝑡�̇� − 𝑥)

2
)

�̇�
3
(1 + 𝑡2 + 𝑥2)

3
−

2(𝑥𝑡 − (1 + 𝑡
2
)�̇�)�̈�

�̇�
3
(1 + 𝑡2 + 𝑥2)

2

�̈�

(1 + 𝑡2 + 𝑥2)
3/2

�̇�
3

= 𝑓 (𝑢, V),

−
2(1 + �̇�

2
+ (𝑡�̇� − 𝑥)

2
)�̈�

�̇�
4
(1 + 𝑡2 + 𝑥2)

2
−

4(𝑡 + 𝑥�̇�)(1 + �̇�
2
+ (𝑡�̇� − 𝑥)

2
)

�̇�
3
(1 + 𝑡2 + 𝑥2)

3
−

2(𝑥𝑡 − (1 + 𝑡
2
)�̇�)�̈�

�̇�
3
(1 + 𝑡2 + 𝑥2)

2
= 𝑔(𝑢, V)

2 𝑢 = −𝑦 + arctan(�̇� sec𝑥), V =
�̇� sec𝑥 + tan𝑥

√1 + �̇�
2sec2𝑥

,

𝑤 =
�̈� sec2𝑥

(�̇� sec𝑥 + tan𝑥)
3
+

(cos𝑥 sin𝑥 + 2�̇�
2 tan𝑥)sec2𝑥

(�̇� sec𝑥 + tan𝑥)
3

𝑑V

𝑑𝑢
=

(cos2𝑥 + �̇�
2
)�̈� sec3𝑥

((�̈� + �̇�
2
(sin𝑥 − �̇�) sec𝑥) sec𝑥 − �̇�)√1 + �̇�

2sec2𝑥

+
((1 + �̇�

2
+ �̇� sin𝑥) cos𝑥 − �̈�(�̇� + sin𝑥))�̇� sec3𝑥

((�̈� + �̇�
2
(sin𝑥 − �̇�) sec𝑥) sec𝑥 − �̇�)√1 + �̇�

2sec2𝑥
�̈� sec2𝑥

(�̇� sec𝑥 + tan𝑥)
3
+

(cos𝑥 sin𝑥 + 2�̇�
2 tan𝑥)sec2𝑥

(�̇� sec𝑥 + tan𝑥)
3

= 𝑓(𝑢, V)

(cos2𝑥 + �̇�
2
)�̈� sec3𝑥

((�̈� + �̇�
2
(sin𝑥 − �̇�)sec𝑥)sec𝑥 − �̇�)√1 + �̇�

2sec2𝑥

+
((1 + �̇�

2
+ �̇� sin𝑥) cos𝑥 − �̈�(�̇� + sin𝑥))�̇� sec3𝑥

((�̈� + �̇�
2
(sin𝑥 − �̇�)sec𝑥)sec𝑥 − �̇�)√1 + �̇�

2sec2𝑥
= 𝑔(𝑢, V)

admitting the three-dimensional Lie algebra A𝑎,2
3,6

, |𝑎| ≤

1, 𝑎 ̸= 0, 1. We arrive at the following set of invariants

𝑢 = 𝑒
𝑦
�̇�, V = �̇��̇�

𝑎−1
, 𝑤 =

�̈�

�̇��̇�
,

𝑑V

𝑑𝑢
=

𝑒
−𝑦

�̈��̇�
𝑎−1

�̇�
2
+ �̈�

+
(𝑎 − 1) 𝑒

−𝑦
�̇��̇�
𝑎−2

�̈�

�̇�
2
+ �̈�

.

(6)

This set involves three invariants 𝑢, V, and 𝑤 which play the
role of basis of invariants for the considered systemof second-
order ODEs admitting the three-dimensional Lie algebra
𝐴
𝑎,2

3,6
, |𝑎| ≤ 1, 𝑎 ̸= 0, 1. This set is a complete set of invariants

for the system. In the complete set, one of the invariants is
obtained by differentiation. We state a result on invariant
differentiation of invariants corresponding to a Lie algebra
admitted by any systemofODEswhich is alreadywell-known
for scalar ODEs in the literature.

Proposition 1. If 𝑢 and V are invariants of a Lie algebra
admitted by any system of ODEs, then, 𝑑V/𝑑𝑢 is also its
invariant.

The proof is identical (except here we have many depen-
dent variables) to the scalar case and uses the operator
identity 𝑋𝐷

𝑡
− 𝐷
𝑡
𝑋 = −(𝐷

𝑡
𝜉)𝐷
𝑡
(see, e.g., [17]).

One can write
𝑑V

𝑑𝑢
=

𝐷
𝑡
V

𝐷
𝑡
𝑢

= 𝐷V, (7)

where the invariant differentiation operator is

𝐷 = (𝐷
𝑡
𝑢)
−1

𝐷
𝑡
. (8)

There arises a natural question. Can we construct a 𝑘th-
order system from a basis of invariants corresponding to the
symmetry vectors of a second-order system? We answer this
question.

Suppose that we have a complete set of invariants repre-
senting a second-order system of ODEs admitting a three-
dimensional Lie algebra, say for the above case 𝐴

𝑎,2

3,6
, |𝑎| ≤

1, 𝑎 ̸= 0, 1. Now if we differentiate both of the highest-
order invariants from this set with respect to another basic
invariant, we get two new invariants and the total number
of invariants become six for this case, including the previous
four. These two new invariants play the role of third-order
invariants representing the third-order system of ODEs
admitting the three-dimensional Lie algebra 𝐴

𝑎,2

3,6
, |𝑎| ≤

1, 𝑎 ̸= 0, 1. We therefore have for this case

𝑢 = 𝑒
𝑦
�̇�, V = �̇��̇�

𝑎−1
, 𝑤 =

�̈�

�̇��̇�
,

𝑑V

𝑑𝑢
= 𝐷V,

𝑑𝑤

𝑑𝑢
= 𝐷𝑤,

𝑑
2V

𝑑𝑢2
= 𝐷
2
V,

(9)
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where𝐷 = 𝑒
−𝑦

(�̇�
2
+�̈�
2
)
−1

𝐷
𝑡
and𝐷𝑤 and𝐷

2V are third-order
invariants. We can thus construct the following third-order
system

𝑒
−𝑦 ...

𝑥�̇��̇� − 𝑒
−𝑦

�̈� (�̇��̈� + �̇��̈�)

�̇�
2
�̇�
2
(�̇�
2
+ �̈�)

= 𝑓 (𝑢, V, 𝑤, 𝐷V) ,

(𝑒
−2𝑦

�̇�
𝑎−3

(−�̈��̇�
5
+ (2𝑎 − 5) �̈��̇�

3
�̈� − (𝑎 − 1) �̇��̇�

4
�̈�

+2 (𝑎 − 1) �̈��̇��̈�
2
)) ((�̇�

2
+ �̈�)
3

)
−1

+ (𝑒
−2𝑦

�̇�
𝑎−3

((𝑎 − 1) ((𝑎 − 5) �̇��̇�
2
�̈�
2
+ (𝑎 − 2) �̇��̈�

3
)

+�̇�
2 ...
𝑥 (�̇�
2
+�̈�)+�̇�

2
((𝑎−1) �̇��̇�−�̈�)

...
𝑦))

× ((�̇�
2
+ �̈�)
3

)
−1

= 𝑔 (𝑢, V, 𝑤, 𝐷V) .

(10)

We have constructed a system of two third-order ODEs
admitting the three-dimensional Lie algebra 𝐴

𝑎,2

3,6
, |𝑎| ≤

1, 𝑎 ̸= 0, 1 from their complete set of invariants. This sys-
tem of ODEs is represented by a complete set of invari-
ants which contains six functionally independent invariants,
namely, 𝑢, V, 𝑤, 𝐷V, 𝐷𝑤, and 𝐷

2V, where three of them
𝑢, V, and 𝑤 are a basis of invariants and two of them
𝐷𝑤, 𝐷

2V are third-order invariants.
Now if we repeat this process on the third-order invari-

ants, we obtain eight invariants including the previous ones
which form a complete set of invariants for the fourth
prolonged group. From these, we can construct a system of
two fourth-order ODEs admitting the three-dimensional Lie
algebra 𝐴

𝑎,2

3,6
, |𝑎| ≤ 1, 𝑎 ̸= 0, 1. We can generalize this to

a system of two 𝑘th-order ODEs. However, there are some
nonstandard cases to look at first. These behave differently.
There are four cases 𝐴

3

3,1
, 𝐴
3

3,5
, 𝐴
4

3,1
, and 𝐴

1

3,8
in which two

of them 𝐴
3

3,1
and 𝐴

3

3,5
yield singular invariants and the other

two 𝐴
4

3,1
and 𝐴

1

3,8
give a single equation and do not form a

system.

2.1. Singular Case. In both of the cases𝐴3
3,1

and𝐴
3

3,5
, we have

an extra condition, due to which the rank of the coefficient
matrix on the solution manifold is less than the rank of
the coefficient matrix on the generic manifold. So singular
invariants are obtained in both of these cases.

Consider 𝐴3
3,1

≃ 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑦𝜕
𝑥
. We find the following set of

singular invariants

𝑢 = 𝑡, V = 𝑦, 𝑤 = �̈�, 𝐷V = �̇�, �̈� = 0, (11)

where 𝐷 = 𝐷
𝑡
and the corresponding system are

�̈� = 𝑓 (𝑢, V, 𝐷V) , �̈� = 0. (12)

In both of the cases, the singularity of the invariants is
removed in the third- and higher-order systems. In the case
of 𝐴3
3,1
, we get the following complete set of invariants:

𝑢 = 𝑡, V = 𝑦, 𝐷V = �̇�,

𝐷
2
V = �̈�, 𝑤 =

...
𝑥�̈� − �̈�

...
𝑦, 𝐷

3
V =

...
𝑦,

(13)

and the corresponding third-order system is

...
𝑥 =

�̈�
...
𝑦

�̈�
+

1

�̈�
𝑓 (𝑢, V, 𝐷V, 𝐷

2
V) ,

...
𝑦 = 𝑔 (𝑢, V, 𝐷V, 𝐷

2
V) .

(14)

In this case, 𝑢, V, and 𝑤 form a basis of invariants, and here
the third-order invariants are 𝑤 and 𝐷

3V, where 𝐷 = 𝐷
𝑡
. For

the other case 𝐴
3

3,5
, it is easy to see that

𝑢 = 𝑡, V = 𝑦, 𝐷V = �̇�,

𝐷
2
V = �̈�, 𝑤 =

...
𝑥

�̈�
, 𝐷

3
V =

...
𝑦,

(15)

where again𝐷 = 𝐷
𝑡
. For each of the remaining cases𝐴4

3,1
and

𝐴
1

3,8
, we obtain the same set of second-order invariants

𝑢 = 𝑥, V = 𝑦, 𝐷V =
�̇�

�̇�
,

𝐷
2
V =

�̈�

�̇�
2
−

�̇��̈�

�̇�
3
,

(16)

for which the highest-order invariant is only one and 𝐷 =

�̇�
−1

𝐷
𝑡
. So a system of second-order ODEs cannot be con-

structed. Only a single scalar equation is obtained, namely

�̈� =
�̇�

�̇�
�̈� + �̇�
2
𝑔 (𝑢, V, 𝐷V) . (17)

However, in both of these cases, this behavior changes for
higher orders. In fact for 𝐴

4

3,1
, we have the third-order

invariants

𝑤 =

...
𝑥𝜙

(𝑥)

�̇�
4

−
3�̈�
2
𝜙

(𝑥) + �̇�

2
�̈�𝜙


(𝑥)

�̇�
5

,

𝐷
3
V =

...
𝑦

�̇�
3
+

(3�̈�
2
− �̇�

...
𝑥) �̇� − 3�̇��̈��̈�

�̇�
5

,

(18)

and for 𝐴1
3,8

the third-order invariants are

𝑤 =

...
𝑥

�̇�
3
−

3�̈�
2

2�̇�
4
, 𝐷

3
V =

...
𝑦

�̇�
3
+

(3�̈�
2
− �̇�

...
𝑥) �̇� − 3�̇��̈��̈�

�̇�
5

.

(19)

They give rise to a regular system of third-order ODE with
a complete set of invariants having the same format as the
singular cases similar to (13).

We find that, for a system of two second-order ODEs
admitting three-dimensional Lie algebras, there are 29 classes



8 Journal of Applied Mathematics

which are listed in Table 2 together with their second-order
differential invariants.

In the case of a system of two third- and higher-order
ODEs admitting three-dimensional Lie algebras, there are
31 canonical forms, and these can be obtained by invariant
differentiation as described above. Note here that 𝐴

4

3,1
and

𝐴
1

3,8
are admitted by a system of two third- and higher-order

ODEswhereas they donot forma systemof two second-order
ODEs.

We state these results in the form of a theorem.

Theorem 2. A regular system of two 𝑘th-order ODEs (𝑘 ≥ 3)

admitting three-dimensional Lie algebras can be represented
by a complete set of invariants which contains 2𝑘 complete
functionally independent invariants in one of the following
forms:

(a) 𝑢, V, 𝑤,
𝑑V

𝑑𝑢
,
𝑑𝑤

𝑑𝑢
,
𝑑
2V

𝑑𝑢2
, . . . ,

𝑑
𝑘−2

𝑤

𝑑𝑢𝑘−2
,
𝑑
𝑘−1V

𝑑𝑢𝑘−1
,

(b) 𝑢, V,
𝑑V

𝑑𝑢
,
𝑑
2V

𝑑𝑢2
, 𝑤,

𝑑
3V

𝑑𝑢3
,
𝑑𝑤

𝑑𝑢
,
𝑑
4V

𝑑𝑢4
, . . . ,

𝑑
𝑘−3

𝑤

𝑑𝑢𝑘−3
,

𝑑
𝑘V

𝑑𝑢𝑘
.

(20)

In both (a) and (b), 𝑢, V, and 𝑤 form a basis of invariants,
where the highest order invariants in (a) are 𝑑

𝑘−2
𝑤/𝑑𝑢
𝑘−2

,

𝑑
𝑘−1V/𝑑𝑢𝑘−1 and in (b) they are 𝑑

𝑘−3
𝑤/𝑑𝑢
𝑘−3

, 𝑑
𝑘V/𝑑𝑢𝑘.

The total number of systems of two 𝑘th-order ODEs
having the above structure is thirty-one, in which form (b)
corresponds to the cases 𝐴3

3,1
, 𝐴
3

3,5
, 𝐴
4

3,1
, and 𝐴

1

3,8
and (a) to

the remainder.

3. Integrability

There are basically two approaches to integrability using Lie
point symmetries. One is that of successive reduction of order
using differential invariants for scalar ODEs. The other is
that of canonical forms which may apply to scalar as well
as system of ODEs, although the latter is not straightfor-
ward. However, the canonical forms approach only applies
when equations are classified according to the symmetry
Lie algebras. In Table 2, we have given the complete set of
second-order differential invariants of three-dimensional Lie
algebras admitted by systems of two second-order ODEs and
also classified systems of two second-order ODEs for their
point symmetries together with their canonical forms. We
provide two approaches for the integration procedure on the
basis of these canonical forms.The first is a general approach
depending on the subdivision of the canonical forms based on
general observations.The second is the differential invariants
approach based on the representation of the canonical forms
in terms of first-order differential and algebraic invariants.

3.1. General Integration Approach. In this approach, we judi-
ciously subdivide all the canonical forms into four types.They
are as follows.
Type I:

𝐴
3

3,1
⋍ 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑦𝜕
𝑥
, �̈� = 𝑓 (𝑡, 𝑦, �̇�) , �̈� = 0. (21)

Type II:

𝐴
3

3,5
⋍ 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑥𝜕
𝑥
, �̈� = 𝑔 (𝑡, 𝑦, �̇�) , �̈� = 0. (22)

Type III:

𝐴
4

3,2
⋍ 𝜕
𝑥
, 𝑡𝜕
𝑡
+ 𝑥𝜕
𝑥
, 𝑡𝜕
𝑥
,

𝑡�̈� = 𝑓 (𝑦, 𝑡�̇�) , 1 +
𝑡�̈�

�̇�
= 𝑔 (𝑦, 𝑡�̇�) ,

𝐴
3

3,4
⋍ 𝜕
𝑥
, 𝑡𝜕
𝑥
, −𝜕
𝑡
+ 𝑥𝜕
𝑥
,

𝑒
𝑡
�̈� = 𝑓 (𝑦, �̇�) ,

�̈�

�̇�
= 𝑔 (𝑦, �̇�) ,

𝐴
4

3,5
⋍ 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑥𝜕
𝑥
+ 𝜕
𝑦
,

𝑒
−𝑦

�̈� = 𝑓 (𝑡, �̇�) , �̈� = 𝑔 (𝑡, �̇�) ,

𝐴
𝑎,3

3,6
⋍ 𝜕
𝑥
, 𝑡𝜕
𝑥
, (1 − 𝑎) 𝑡𝜕

𝑡
+ 𝑥𝜕
𝑥
,

𝑡
(2𝑎−1)/(𝑎−1)

�̈� = 𝑓 (𝑦, 𝑡�̇�) , 1 +
𝑡�̈�

�̇�
= 𝑔 (𝑦, 𝑡�̇�) ,

𝐴
𝑎,3

3,7
⋍ 𝜕
𝑥
, 𝑡𝜕
𝑥
, − (1 + 𝑡

2
) 𝜕
𝑡
+ (𝑎 − 𝑡) 𝑥𝜕

𝑥
,

�̈��̇�
−3/2

𝑒
𝑎 tan 𝑡

= 𝑓 (𝑦, �̇� (1 + 𝑡
2
)) ,

2𝑡 +
(1 + 𝑡

2
)

�̇�
�̈� = 𝑔 (𝑦, �̇� (1 + 𝑡

2
)) .

(23)

Type IV : Remaining canonical forms except those given
above.

We notice that the Types I and II systems comprise linear
equations. The Type I system is completely integrable. Also
that the Type II system is uncoupled and depends on two
quadratures of the 𝑦 equation for its solution. Further, we
observe that the Type III has equations that comprise scalar
second-order ODEs in the dependent variable 𝑦. In view of
these observations, we are led to the following definitions.

Definition 3. Asystemof two second-orderODEs is said to be
partially uncoupled if one of its equations constitutes a scalar
second-order equation in one of the dependent variables and
the other has both.

It is easily seen that the Types I to III equations are
partially uncoupled.

Definition 4. A partially uncoupled system of two second-
order ODEs is partially linear if one of its equations forms
a scalar linear second-order equation in its own right.

We see that the Types I and II systems are partially linear.

Definition 5. A system of two second-order ODEs is said to
be partially linearizable by point transformation if it can be
transformed via an invertible transformation to a partially
linear form.
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The following system

�̈� = �̇�
4
, �̈� + 3𝑦�̇� + 𝑦

3
= 0 (24)

is partially linearizable by a point transformation as the
equation in 𝑦 is the well-known Painlevé-Ince equation
which is linearizable via a point transformation.

Let {𝑋
𝑖
} be a basis of a three-dimensional algebra and

let the rank of the coefficient matrix associated with these
operators be 𝑟.

We formulate the following theorems the proofs of which
are evident.

Theorem 6. A system of two second-order ODEs is partially
linearizable by point transformation if and only if it admits the
Lie algebra 𝐴

3,1
or 𝐴
3,5

with rank 𝑟 = 1 in both cases.

Theorem 7. A system of two second-order ODEs can be
reduced to a partially uncoupled system by point transfor-
mation if and only if it admits one of the Lie algebras
𝐴
4

3,2
, 𝐴
3

3,4
, 𝐴
4

3,5
, 𝐴𝑎,3
3,6
, and 𝐴

𝑎,3

3,7
with rank 𝑟 = 2 in all cases.

The proofs follow from the above listed Types I to III
algebras and representative equations.

Generally, we can integrate Type I completely. Types
II and III can be integrated when the associated second-
order equation in the system is integrable. Moreover, only
particular cases of Type IV can be integrated depending on
the given Lie algebra and corresponding system of ODEs.
Some of these difficulties were also pointed out for systems
of two second-order ODEs that admit four symmetries
[12]. Here, we further discuss all the cases in detail before
embarking on a further systematic study that captures the
main results.

Type I is trivially integrable by quadratures.
The Type II system is integrable if the associated second-

order ODE in 𝑦 admits a two-dimensional Lie algebra and
Lie’s four canonical forms for scalar second-order ODEs
become applicable. So, we have Lie reducibility here.

In the case of Type III, one requires one more symmetry
for the associated equation in 𝑦 as it already has translations
in 𝑡 symmetry. As an example we consider the system

�̈� = 𝑒
−𝑡
𝑦
3
�̇�
4
, �̈� = �̇�

2
𝑦
−1

− 𝑦
2
. (25)

The system (25) has symmetry generators 𝑋
1

= 𝜕
𝑥
, 𝑋
2

=

𝑡𝜕
𝑥
, 𝑋
3
= −𝜕
𝑡
+ 𝑥𝜕
𝑥
and its Lie algebra is three-dimensional.

The associated equation in 𝑦 is �̈� = �̇�
2
𝑦
−1

−𝑦
2. Its Lie algebra

is two-dimensional spanned by 𝑌
1
= 𝜕
𝑡
, 𝑌
2
= 𝑡𝜕
𝑡
− 2𝑦𝜕

𝑦
. By

using the transformation

𝑡 = 𝑦, 𝑥 = 𝑥, 𝑦 = 𝑡, (26)

the associated equation in transformed form becomes �̈� =

𝑡
2

�̇�
3

− �̇�𝑡
−1.Wehave𝑌

1
= 𝜕
𝑦
, 𝑌
2
= 𝑦𝜕
𝑦
− 2𝑡𝜕
𝑡
, which is Type

III in Lie’s classification of scalar second-order ODEs. Solving
it in transformed form by Lie’s method and reverting back
to the original variables, we obtain 𝑦 = 2𝑐

1

2sech2𝑐
1
(𝑡 − 𝑐

2
),

where 𝑐
1
and 𝑐
2
are constants. By using the value of𝑦 in system

(25) and then solving for 𝑥, we deduce

𝑥 = 2048 𝑐
1

18
∫{∫ 𝑒

−𝑡sech14 (𝑐
1
(𝑡 − 𝑐
2
))

× tanh4 (𝑐
1
(𝑡 − 𝑐
2
)) 𝑑𝑡} 𝑑𝑡 + 𝑐

3
𝑡 + 𝑐
4
.

(27)

In general, the Type III systems of second-order ODEs are
integrable if the associated second-order ODEs in 𝑦 have
another symmetry generator besides translations in 𝑡, so that
Lie’s classification of scalar second-order ODEs admitting
two-dimensional algebras is applicable here as well.

Theorem 8. If a singular system of two second-order ODEs
admits the solvable symmetry algebra 𝐴

3

3,1
, then, it is partially

linearizable via point transformation and its general solution
can be trivially obtained by quadratures.

The proof of this follows from the Type I canonical form.

Theorem 9. If a singular system of two second-order ODEs
admits the three-dimensional solvable symmetry algebra 𝐴

3

3,5
,

then, it can be reduced to a partially uncoupled system and
its general solution can be obtained by quadratures from the
general solution of the associated transformed scalar second-
order ODE.

The proof here follows from the Type II canonical form.
For systems that fall in the Type IV category one requires

more insight and the examples given in [12] for systems that
admit four symmetries become relevant. Their integrability
needs more than just the reductions via invariants. This
category also has the nonsolvable algebras. We consider this
in detail next.

3.2. Differential Invariant Approach. In this approach, we use
the basis of invariants representing all the canonical forms
which we have given in Table 2. For each regular canonical
form, we find the reduced system in terms of a first-order
equation and an algebraic equation based on the basis of
invariants. These can easily be seen from Table 2.

We have subdivided all the reduced systems in two main
categories, namely, Category A for those admitting three-
dimensional solvable Lie algebras and Category B for those
admitting three-dimensional nonsolvable Lie algebras. The
Types I to III of the previous subsection all fall in Category
A. The systems admitting nonsolvable algebras comprise
Category B with the rest firmly falling in Category A. It is
interesting that, in both categories, uncoupled cases arise
when the choice of taking one of the second-order invariant
𝑤 is unique.

We present the integration strategy for Category A for
regular systems. The systems of Category B are not amenable
to such integration strategies. This is quite straightforward
to work out if one commences with the simplest system in
this category. We further subdivide Category A into coupled
and uncoupled systems. All partially linear cases fall in the
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uncoupled systems. Here, we give details of integration for
each case of Category A, which depends on the assumption
that we can solve 𝑑V/𝑑𝑢 = ℎ in both the coupled and the
uncoupled systems. At the end of this section, we present
some physical examples with detailed calculations.

Note here that, in both the uncoupled and coupled cases,
for ease and simplicity of the calculations, we only mention
the relevant algebra of the considered system and variables
𝑢, V, and 𝑤 as well as 𝑑V/𝑑𝑢 in precise form. The details
are given in Table 2. In the following, we assume that V =

𝜆(𝑢, 𝑐
1
) is the explicit solution of each of the first order ODEs

𝑑V/𝑑𝑢 = ℎ(𝑢, V) listed in Table 2. The argument presented
below is similar to that used in the discussion of reduction
to quadrature for the scalar ODEs (see [1–3]). Moreover,
𝑓, 𝑔, ℎ, 𝑘, 𝜙, 𝜓, and 𝜆 are taken as arbitrary functions
and 𝑐

1
, 𝑐
2
, and 𝑐

3
as well as 𝑐

4
are arbitrary integration

constants.

3.2.1. Uncoupled Cases

𝐴
4

3,2
. Let V = 𝜆(𝑢, 𝑐

1
). Then by using the values of 𝑢 and V in

Table 2, we have

𝑡�̇� = 𝜆 (𝑦, 𝑐
1
) . (28)

Thus, we can obtain a further quadrature in 𝑦. Therefore, the
equation 𝑡�̈� = 𝑓(𝑦, 𝑡�̇�) is solvable by two quadratures upon
insertion of the 𝑦 solution.

𝐴
1

3,3
. Let V = 𝜆(𝑢, 𝑐

1
). Then by invoking the values of 𝑢 and V

as listed in Table 2, we obtain

�̇� = �̇�𝜆 (𝑦, 𝑐
1
) . (29)

After some manipulations with 𝑤 = 𝑓(𝑢, V), we find

�̇� =
−1

∫ 𝜆 (𝑦, 𝑐
1
) 𝑓 (𝑦, 𝜆 (𝑦, 𝑐

1
)) 𝑑𝑦 + 𝑐

2

. (30)

By using (30) in (29), we determine

�̇�𝜆 (𝑦, 𝑐
1
) {∫𝜆 (𝑦, 𝑐

1
) 𝑓 (𝑦, 𝜆 (𝑦, 𝑐

1
)) 𝑑𝑦 + 𝑐

2
} = −1, (31)

which implies that

𝑦 = 𝜙 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (32)

Utilizing (32) in (30), after some further calculations, we
deduce

𝑥 = 𝜓 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (33)

Hence, (32) and (33) are the solutions of the system of ODEs
admitting 𝐴

1

3,3
.

𝐴
2

3,3
. Let V = 𝜆(𝑢, 𝑐

1
). By using the values of 𝑢 and V as listed

in Table 2, we arrive at

�̇� = ±√2�̇� + 2�̇�
2
𝜆 (𝑦, 𝑐

1
). (34)

After calculations with 𝑤 = 𝑓(𝑢, V), we find

�̇� = −�̇� {∫𝑓 (𝑦, 𝜆 (𝑦, 𝑐
1
)) 𝑑𝑦 + 𝑐

2
} . (35)

Invoking (35) in (34) and solving for �̇�, we obtain

�̇� =
2

(∫𝑓(𝑦, 𝜆(𝑦, 𝑐
1
))𝑑𝑦 + 𝑐

2
)
2

− 2𝜆 (𝑦, 𝑐
1
)

, (36)

which implies that

𝑦 = 𝜙 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (37)

After some computations and using (37) in (35), we deter-
mine

𝑥 = 𝜓 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (38)

It is hence the case that (37) and (38) are the solutions of the
system of ODEs corresponding to 𝐴

2

3,3
.

𝐴
3

3,4
. Let V = 𝜆(𝑢, 𝑐

1
). Using the values of 𝑢 and V, we obtain

�̇� = 𝜆 (𝑦, 𝑐
1
) , (39)

which implies that

𝑦 = 𝜙 (𝑡, 𝑐
1
, 𝑐
2
) . (40)

Now utilizing (39) and (40) in 𝑤 = 𝑓(𝑢, V), we deduce that

𝑥 = ∫{∫ 𝑒
−𝑡
𝑓 (𝜙, 𝜙

𝑡
) 𝑑𝑡} 𝑑𝑡 + 𝑐

3
𝑡 + 𝑐
4
, (41)

which results in

𝑥 = 𝜓 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (42)

Now (40) and (42) are the solutions of the system of ODEs
possessing 𝐴

3

3,4
.

𝐴
1

3,5
. Let V = 𝜆(𝑢, 𝑐

1
). Utilizing the values of 𝑢 and V as listed,

we obtain

�̇� = 𝜆 (𝑦, 𝑐
1
) . (43)

After some manipulations with 𝑤 = 𝑓(𝑢, V), we find

∫
𝑑𝑦

𝑐
2
exp {∫𝑓 (𝑦, 𝜆 (𝑢, 𝑐

1
)) 𝑑𝑦}

= 𝑡 + 𝑐
3
. (44)

Inverting, we have

𝑦 = 𝜙 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (45)

By using (45) in (43), we have that

𝑥 = 𝜓 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (46)

Thus, (45) and (46) are the solutions of the system of ODEs
corresponding to 𝐴

1

3,5
.

For𝐴4
3,5

, 𝐴
𝑎,3

3,6
, and𝐴

𝑎,3

3,7
, the integration procedure works

the same as in the case 𝐴
3

3,4
.
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3.2.2. Coupled Cases

𝐴
1

3,1
. Let V = 𝜆(𝑢, 𝑐

1
). Using the values of 𝑢 and V as listed in

Table 2, we obtain

�̇� = 𝜆 (�̇�, 𝑐
1
) . (47)

After calculations with 𝑤 = 𝑓(𝑢, V), we arrive at

𝑥 = 𝜙 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (48)

By utilizing (48) in (47), in the same manner as in the
previous cases, we find that

𝑦 = 𝜓 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (49)

Hence (48) and (49) are the solutions of the system of ODEs
corresponding to 𝐴

1

3,1
.

𝐴
2

3,1
. The procedure of integration is the same as in the case

𝐴
1

3,1
.

𝐴
1

3,2
. Let V = 𝜆(𝑢, 𝑐

1
). Using the values of 𝑢 and V as listed in

Table 2, we determine

�̇� = �̇�𝜆 (�̇�𝑒
𝑦
, 𝑐
1
) . (50)

After some manipulations with 𝑤 = 𝑓(𝑢, V), we find

�̇� = exp {∫ ((𝜆 (�̇�𝑒
𝑦
, 𝑐
1
) + �̇�𝑒

𝑦
𝑔 (�̇�𝑒
𝑦
, 𝜆 (�̇�𝑒

𝑦
, 𝑐
1
)))

×𝑓 (�̇�𝑒
𝑦
, 𝜆 (�̇�𝑒

𝑦
, 𝑐
1
)) 𝑑 (�̇�𝑒

𝑦
))

× (�̇�𝑒
𝑦
(1+𝜆 (�̇�𝑒

𝑦
, 𝑐
1
) 𝑓 (�̇�𝑒

𝑦
, 𝜆 (�̇�𝑒

𝑦
, 𝑐
1
))))
−1

} .

(51)

From the second equation of the system in Table 2 and some
manipulations with (50), we find that

𝑑 (�̇�𝑒
𝑦
)

𝑑𝑡

=
�̇�
2
𝑒
𝑦
𝜆 (�̇�𝑒
𝑦
, 𝑐
1
) (1 + 𝜆 (�̇�𝑒

𝑦
, 𝑐
1
) 𝑓 (�̇�𝑒

𝑦
, 𝜆 (�̇�𝑒

𝑦
, 𝑐
1
)))

(𝜆 (�̇�𝑒𝑦, 𝑐
1
) + �̇�𝑒𝑦𝑔 (�̇�𝑒𝑦, 𝜆 (�̇�𝑒𝑦, 𝑐

1
)))

.

(52)

Some further computations give

�̇�𝑒
𝑦
= 𝜙 (𝑦 + 𝑐

2
) , (53)

which implies that

𝑦 = ℎ (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (54)

Using (53) and (54) in (51), we find

𝑥 = 𝑘 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (55)

Therefore, (54) and (55) are the solutions of the system of
ODEs corresponding to 𝐴

1

3,2
.

𝐴
2

3,2
.The procedure of integration is the same as the case𝐴1

3,5
.

𝐴
3

3,2
. The procedure of integration is similar to the case 𝐴

1

3,3
.

𝐴
3

3,3
. Let V = 𝜆(𝑢, 𝑐

1
). Using the values of 𝑢 and V as listed in

Table 2, we obtain

�̇�

�̇�
= 𝜆 (𝑦 −

1

�̇�
, 𝑐
1
) . (56)

Using the chain rule and some manipulations with 𝑤 =

𝑓(𝑢, V), we arrive at

𝑦 = 𝜙(𝑦 −
1

�̇�
, 𝑐
1
, 𝑐
2
) . (57)

Further simplifications give

�̇� =
1

𝑦 − 𝜙−1 (𝑦, 𝑐
1
, 𝑐
2
)
. (58)

Utilizing (57) and (58) in (56), we find that

�̇� (𝑦 − 𝜙
−1

(𝑦, 𝑐
1
, 𝑐
2
)) 𝜆 (𝜙

−1
(𝑦, 𝑐
1
, 𝑐
2
) , 𝑐
1
) = 1, (59)

which implies that

𝑦 = ℎ (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (60)

Invoking (60) in (58), we have

𝑥 = 𝑘 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (61)

Thus, (60) and (61) are the solutions of the system of ODEs
possessing 𝐴

3

3,3
.

𝐴
1

3,4
. The procedure of integration is similar to the case 𝐴

1

3,3
.

𝐴
2

3,4
.The procedure of integration is the same as the case𝐴3

3,3
.

𝐴
2

3,5
. Let V = 𝜆(𝑢, 𝑐

1
). Utilizing the values of 𝑢 and V as listed

in Table 2, we obtain

�̇�𝑒
𝑦
= 𝜆 (�̇�, 𝑐

1
) . (62)

By the chain rule and some simplifications with 𝑤 = 𝑓(𝑢, V),
we find

�̇� = 𝜙 (𝑦, 𝑐
1
, 𝑐
2
) . (63)

Substituting (63) in (62) and further manipulations give

𝑦 = 𝜓 (𝑥, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (64)

Invoking this in (63), we deduce that

𝑥 = ℎ (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (65)

Now after substitution of (65), (64) takes the form

𝑦 = 𝜓 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (66)

Here, (65) and (66) are the solutions of the system of ODEs
corresponding to 𝐴

2

3,5
.
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𝐴
𝑎,1

3,6
.The procedure of integration is the same as the case𝐴1

3,3
.

𝐴
𝑎,2

3,6
. The procedure of integration is again similar to the case

𝐴
1

3,2
.

𝐴
𝑎,1

3,7
. The procedure of integration corresponds to the case

𝐴
1

3,3
and some details are given in the case 𝐴

𝑎,2

3,7
.

𝐴
𝑎,2

3,7
. Let V = 𝜆(𝑢, 𝑐

1
). Using the values of 𝑢 and V as listed in

Table 2, we obtain

�̇�𝑒
−𝑎 arctan �̇�

√1 + �̇�
2

= 𝜆 (𝑦 + arctan �̇�, 𝑐
1
) . (67)

After manipulations with 𝑤 = 𝑓(𝑢, V), we find

�̇� = tan{∫
𝑓 (𝑢, 𝜆 (𝑢, 𝑐

1
)) 𝑑𝑢

𝜆 (𝑢, 𝑐
1
) + 𝑓 (𝑢, 𝜆 (𝑢, 𝑐

1
))

+ 𝑐
2
} . (68)

Invoking (68) in (67), we determine

�̇� = 𝜆 (𝑢, 𝑐
1
) sec 𝑎{∫

𝑓 (𝑢, 𝜆 (𝑢, 𝑐
1
)) 𝑑𝑢

𝜆 (𝑢, 𝑐
1
) + 𝑓 (𝑢, 𝜆 (𝑢, 𝑐

1
))

+ 𝑐
2
}

× exp{𝑎∫
𝑓 (𝑢, 𝜆 (𝑢, 𝑐

1
)) 𝑑𝑢

𝜆 (𝑢, 𝑐
1
) + 𝑓 (𝑢, 𝜆 (𝑢, 𝑐

1
))

+ 𝑎𝑐
2
} .

(69)

We have

𝑑𝑢

𝑑𝑡
=

�̇� (𝜆 (𝑢, 𝑐
1
) + 𝑓 (𝑢, 𝜆 (𝑢, 𝑐

1
)))

𝜆 (𝑢, 𝑐
1
)

. (70)

In (68)–(70),

𝑢 = 𝑦 + arctan �̇�. (71)

Also, we find that

𝑢 = 𝜙
−1

(𝑡 + 𝑐
3
) ,

𝑦 + arctan �̇� = 𝜙
−1

(𝑡 + 𝑐
3
) .

(72)

Using (69) and (72) in (70), we deduce

𝑢 = 𝜓 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) , (73)

which shows that

𝑦 = ℎ (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
) . (74)

By invoking (74) in (68), we have that

𝑥 = 𝑘 (𝑡, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) . (75)

Thus, (74) and (75) are the solutions of the system of ODEs
corresponding to 𝐴

𝑎,2

3,7
.

In the view of the preceding reductions, we have the
following theorem.

Theorem 10. If a regular system of two second-order ODEs
admits a three-dimensional solvable symmetry algebra, then,
the general solution of the regular system can be obtained
by quadratures from the general solution of the invariant
representation of the regular system given by the first-order
ordinary differential equation and algebraic equation.

Theorem 11. If a system of two 𝑘th-order (𝑘 ≥ 3)ODEs possess
a three-dimensional solvable symmetry algebra, then, the
general solution of the system can be deduced by quadratures
from the general solution of the invariant representation given
by one of the following systems:

(a) 𝑑
𝑘−1V

𝑑𝑢𝑘−1
=𝑓(𝑢, V, 𝑤,

𝑑V

𝑑𝑢
,
𝑑𝑤

𝑑𝑢
,
𝑑
2V

𝑑𝑢2
, . . . ,

𝑑
𝑘−3

𝑤

𝑑𝑢𝑘−3
,
𝑑
𝑘−2V

𝑑𝑢𝑘−2
) ,

𝑑
𝑘−2

𝑤

𝑑𝑢𝑘−2
= 𝑔(𝑢, V, 𝑤,

𝑑V

𝑑𝑢
,
𝑑𝑤

𝑑𝑢
,
𝑑
2V

𝑑𝑢2
, . . . ,

𝑑
𝑘−3

𝑤

𝑑𝑢𝑘−3
,
𝑑
𝑘−2V

𝑑𝑢𝑘−2
) ,

(b) 𝑑
𝑘V

𝑑𝑢𝑘

=𝑓(𝑢, V,
𝑑V

𝑑𝑢
,
𝑑
2V

𝑑𝑢2
, 𝑤,

𝑑
3V

𝑑𝑢3
,
𝑑𝑤

𝑑𝑢
,
𝑑
4V

d𝑢4
, . . . ,

𝑑
𝑘−4

𝑤

𝑑𝑢𝑘−4
,
𝑑
𝑘−1V

𝑑𝑢𝑘−1
) ,

𝑑
𝑘−3

𝑤

𝑑𝑢𝑘−3

=𝑔(𝑢, V,
𝑑V

𝑑𝑢
,
𝑑
2V

𝑑𝑢2
, 𝑤,

𝑑
3V

𝑑𝑢3
,
𝑑𝑤

𝑑𝑢
,
𝑑
4V

𝑑𝑢4
, . . . ,

𝑑
𝑘−4

𝑤

𝑑𝑢𝑘−4
,
𝑑
𝑘−1V

𝑑𝑢𝑘−1
) .

(76)

The proof follows from Theorem 2 and the discussion
precedingTheorem 10.

3.2.3. Illustrative Examples. Here, we present some familiar
physical examples to illustrate the above general integration
procedure which we have given in detail for each of the case
of system of ODEs admitting solvable three-dimensional Lie
algebras. We consider two different cases, namely, one from
the uncoupled cases and one from the coupled cases. We also
present a case of nonsolvable Lie algebras. Here, we observe
interesting results rather than integration.

(i) Consider the system (25) once again from a new angle.
We have

�̈� = 𝑒
−𝑡
𝑦
3
�̇�
4
, �̈� = �̇�

2
𝑦
−1

− 𝑦
2
. (77)

The system (25) has symmetry generators 𝑋
1

= 𝜕
𝑥
, 𝑋
2

=

𝑡𝜕
𝑥
, 𝑋
3
= −𝜕
𝑡
+ 𝑥𝜕
𝑥
and its Lie algebra is three-dimensional

which is 𝐴
3

3,4
in our classification. From Table 2, the first-

order differential invariants for this case are

𝑢 = 𝑦, V = �̇�, (78)

and the reduced system of first-order equation and algebraic
equation is

𝑑V

𝑑𝑢
= 𝑔 (𝑢, V) , 𝑤 = 𝑓 (𝑢, V) . (79)

The solution of 𝑑V/𝑑𝑢 in system (79), after substituting the
value of 𝑔 from (25), gives

V = ±𝑢√2 (𝑐∗
1

− 𝑢), (80)
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where 𝑐
∗

1
is constant. Reverting back to the original variables

and after solving for 𝑦, we obtain

𝑦 = 2𝑐
1

2sech2𝑐
1
(𝑡 − 𝑐
2
) , (81)

where 𝑐
1
= √𝑐∗
1
/2 and 𝑐

2
are constants. Substituting the values

in 𝑤 and solving for 𝑥, we find

𝑥 = 2048 𝑐
1

18
∫{∫ 𝑒

−𝑡sech14 (𝑐
1
(𝑡 − 𝑐
2
))

×tanh4 (𝑐
1
(𝑡 − 𝑐
2
)) 𝑑𝑡} 𝑑𝑡 + 𝑐

3
𝑡 + 𝑐
4
.

(82)

Both (81) and (82) provide the solution of system (25).
(ii) The classical Kepler problem in reduced Cartesian

coordinates is

̈⃗𝑟 + 𝜇
⃗𝑟

𝑟3
= 0, (83)

where 𝜇 is a constant. In polar coordinates, they are

̈𝑟 − 𝑟�̇�
2

+ 𝜇𝑟
−2

= 0, 𝑟�̈� + 2 ̇𝑟�̇� = 0. (84)

It has the three-dimensional Lie algebra of symmetries [18]
spanned by

𝑋
1
= 𝜕
𝑡
, 𝑋

2
= 𝜕
𝜃
, 𝑋

3
= 𝑡𝜕
𝑡
−

2

3
𝑟𝜕
𝑟
. (85)

By using the transformation

𝑡 = 𝑡, 𝑥 = 𝜃, 𝑦 =
3

2
ln 𝑟 (86)

the system (84) transforms into

�̈� +
2

3
�̇�
2

−
3

2
�̇�
2

+
3

2
𝜇𝑒
−2�̇�

= 0, �̈� +
4

3
�̇� �̇� = 0, (87)

with associated transformed Lie algebra of symmetries

𝑋
1
= 𝜕
𝑡
, 𝑋

2
= 𝜕
𝑥
, 𝑋

3
= 𝑡𝜕
𝑡
+ 𝜕
𝑦
, (88)

which is 𝐴
1

3,2
in our classification. From Table 2, the first-

order differential invariants for this case are

𝑢 = �̇�𝑒
𝑦
, V =

�̇�

�̇�
, (89)

and the reduced system of first-order equation and algebraic
equation is

𝑑V

𝑑𝑢
= 𝑔 (𝑢, V) , 𝑤 = 𝑓 (𝑢, V) . (90)

By utilizing the values of 𝑓 and 𝑔 from (87), we have that

𝑑V

𝑑𝑢
=

−4V + 9 (𝜇V/𝑢2) − 9V3

2𝑢 − 9 (𝜇/𝑢) + 9V2𝑢
, 𝑤 = −

4

3V
. (91)

Now the solution of 𝑑V/𝑑𝑢 in the system (91) is

𝑢
4
V
2
−

9

2
𝜇𝑢
2
V
2
+

9

4
𝑢
4
V
4
= ℎ. (92)

In 𝑥 and 𝑦 variables, after some simplification, (92) and 𝑤

from (91) give

𝑑 (𝑒
(2/3)𝑦

)

𝑑𝑡
= ±√

4ℎ

9𝑘2
+ 2𝜇𝑒(2/3)𝑦 − 𝑒(4/3)𝑦,

(𝑒
(2/3)𝑦

)
2

�̇� = 𝑘,

(93)

where ℎ and 𝑘 are constants. Reverting back to the original
variables, we deduce

𝑑𝑟

𝑑𝑡
= ±√

4ℎ

9𝑘2
+

2𝜇

𝑟
−

1

𝑟2
, (94)

𝑟
2
�̇� = 𝑘. (95)

The term on the left-hand side of (95) is the angular
momentum and here it is constant from the calculations and
denoted by 𝐿/𝑚. Performing a simple integration procedure,
we arrive at the equation of the orbit, namely,

𝑑𝜃 =
𝑑𝑠

∓√(ℎ∗ + 2𝑚2𝜇𝑠/𝐿2 − 𝑠2)

, (96)

where 𝑠(𝜃) = 1/𝑟(𝜃) and ℎ
∗

= 4ℎ/9𝑘
4. This corresponds to

that presented in [19].
(iii) Consider a case of nonsolvable Lie algebras, namely,

the generalized Ermakov system in polar coordinates of the
form

̈𝑟 − 𝑟�̇�
2

=
1

𝑟3
𝑓 (𝜃, 𝑟

2
�̇�) ,

𝑟�̈� + 2 ̇𝑟�̇� =
1

𝑟3
𝑔 (𝜃, 𝑟

2
�̇�) ,

(97)

which was considered in [20]. This system has the three
symmetries

𝑋
1
= 𝜕
𝑡
, 𝑋

2
= 2𝑡𝜕
𝑡
+ 𝑟𝜕
𝑟
, 𝑋

3
= 𝑡
2
𝜕
𝑡
+ 𝑡𝑟𝜕
𝑟
, (98)

and forms the Lie algebra sl(2,𝑅) which is 𝐴
4

3,8
in our

classification. The first-order differential invariants for this
case are 𝑢 = 𝑦, V = (𝑡�̇� − 𝑥)/�̇�, and the reduced system
of first-order equation and an algebraic equation is 𝑑V/𝑑𝑢 =

𝑔(𝑢, V), 𝑤 = 𝑓(𝑢, V). By using these and considering the
angular momentum as constant, 𝐿 = 𝑚𝑟

2
�̇�, we find that

𝑑V/𝑑𝑢 = −Vℎ(𝑢, 𝐿/𝑚), where 𝑔(𝑢, V) = −Vℎ(𝑢, 𝐿/𝑚). In the
original variables, it is

𝑀 =
1

2
(𝑟
2
�̇�)
2

− ∫ℎ (𝜃) 𝑑𝜃, (99)

where ℎ(𝜃) = ℎ(𝑢, 𝐿/𝑚). Here 𝑀 is the Ermakov invariant.
The classical integrability was discussed in [20].
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4. Conclusion

The integrability of systems of ordinary differential equations
(ODEs) which admit symmetry algebras has been of interest
in the literature. The traditional symmetry reductions do not
work for systems of ODEs as in the case of scalar ODEs (see,
e.g., [5, 12, 17]). Here, we have focused on systems of two
𝑘th-order (𝑘 ≥ 2) ODEs that admit three-dimensional Lie
algebras.

By utilizing the realizations given recently, we have
provided a systematic approach for finding a complete set
of differential invariants including basis of invariants corre-
sponding to vector fields in three variables for systems of two
𝑘th-order (𝑘 ≥ 2) ODEs which admit three-dimensional Lie
algebras. In particular, we presented a complete list of second-
order differential invariants for systems of two second-order
ODEs that admit three-dimensional Lie algebras. We have
shown how invariant differentiations provide higher-order
differential invariants. We have given a complete list of
invariant characterizations of canonical forms for systems
of two second-order ODEs that admit real Lie algebras of
dimension three. These are new in the literature. In addition,
we have given a procedure for the construction of two 𝑘th-
order ODEs from their associated complete set of invariants.
We have shown that there are 29 classes for the case of
𝑘 = 2 and 31 classes for the case of 𝑘 ≥ 3 of such ODEs.
Furthermore, we have given a discussion of those cases in
which regular systems of two second-order ODEs are not
obtained for three-dimensional Lie algebras. We also have
given a brief discussion on the singularity for canonical forms
for a system of two second-order ODEs admitting-three
dimensional Lie algebras and found two cases of singular
invariants, namely, those involving the algebras𝐴3

3,1
and𝐴

3

3,5
.

We have provided an integration procedure for the
canonical forms for a system of two second-order ODEs
which possess three-dimensional Lie algebras. This proce-
dure is composed of two approaches, namely, one which
depends on general observations of canonical forms; the
other depends on basis of differential invariants and the
solution procedure is applicable only for those cases which
admit three-dimensional solvable Lie algebras.The latter was
extended in a natural way to 𝑘th-order (𝑘 ≥ 3) systems
that admit three-dimensional Lie algebras. Specifically in the
second approach, we obtain the reducibility for canonical
forms for systems of two second-order ODEs which have
three-dimensional Lie algebras in terms of basis of invariants;
these are given in Table 2.Then, we gave details of integration
for each case of solvable Lie algebras in a general manner.

We also have obtained two cases of partial linearization,
namely, Types I and II. It was noted that the Type I system
is trivially integrable. We have further shown how the
associated scalar second-order ODEs in the Types II to III
can be solved in terms of quadratures resorting to the classical
Lie table for integrability of scalar ODEs. This was illustrated
by means of an example. There are certain Type IV systems
which have complications in their integrability in that they
admit nonsolvable algebras.

We have presented familiar physical systems taken from
the literature, namely, the classical Kepler problem and

the generalized Ermakov systems that give rise to closed
trajectories.

It would be of interest to further pursue integrability
properties of Type IV systems having nonsolvable Lie alge-
bras. Also worthy of investigation are systems that admit
higher number of symmetries such as those studied in [12, 16].
We return to these in the future.

Remarks

(i) In the tables, 𝐴 is used as a place holder for the
relevant real Lie algebras 𝐴

𝑎,𝑏,𝑛

𝑖,𝑗
. . . (the 𝑗th algebra of

dimension 𝑖 with superscripts 𝑎, 𝑏, if any, indicates
parameters on which the Lie algebra depends; also
the column 𝑁 in the tables gives the algebra realiza-
tions; the realization is referred to by a superscript
𝑛, e.g., 𝐴

1

3,1
). Further we use the notation 𝜕

𝑡
=

𝜕/𝜕𝑡, 𝜕
𝑥

= 𝜕/𝜕𝑥, 𝜕
𝑦

= 𝜕/𝜕𝑦. Finally, the elements of
a basis of a given Lie algebra are named𝑋

𝑖
, where 𝑖 is

less than or equal to the dimension of the underlying
real Lie algebra. Here, 𝑓, 𝑔, ℎ, 𝑘, and 𝜙 are arbitrary
functions.

(ii) For the analysis of the invariant representations, it
is observed that for each of the cases 𝐴

4

3,1
and

𝐴
1

3,8
, with the same set of invariants, a single equa-

tion is determined. We find the differential invari-
ants in both cases. However, the canonical form
is not obtained. Consider, for example, 𝐴

4

3,1
≃

𝜕
𝑡
, 𝑥𝜕
𝑡
, 𝜙(𝑥)𝜕

𝑡
, 𝜙

(𝑥) ̸= 0. For this, we find the fol-

lowing invariants 𝑢 = 𝑥, V = 𝑦, 𝑑V/𝑑𝑢 = �̇�/�̇�,

𝑑
2V/𝑑𝑢2 = −�̈��̇�/�̇�

3
+�̈�/�̇�
2 and the corresponding sin-

gle equation, namely,−�̈��̇�/�̇�
3
+�̈�/�̇�
2
= 𝑔(𝑢, V, 𝑑V/𝑑𝑢).

For each of the cases 𝐴
3

3,1
and 𝐴

3

3,5
, due to the extra

condition, the rank of the coefficient matrix on the
solution manifold is less than the rank of generic
coefficient matrix. So only a set of singular invariants
are obtained for these cases. Consider, for example,
𝐴
3

3,1
≃ 𝜕
𝑥
, 𝑡𝜕
𝑥
, 𝑦𝜕
𝑥
. For this, we find the following

set of singular invariants 𝑢 = 𝑡, V = 𝑦, 𝑑V/𝑑𝑢 =

�̇�, 𝑤 = �̈�, and 𝑑V/𝑑𝑢 = �̈� = 0 (see Table 2). The
two cases 𝐴4

3,1
and 𝐴

1

3,8
are not given in the invariant

representations listed in Table 2.
(iii) The algebras 𝐴

3

3,1
and 𝐴

3

3,5
which are referred to by

∗ give rise to singular invariants when associated
with systems of two second-order ODEs as given in
Table 2. We do however arrive at regular invariants
associated with systems of two third-order ODEs for
these cases.

(iv) The algebras 𝐴
4

3,1
and 𝐴

1

3,8
do not correspond to

systems of two second-order ODEs and so are not
presented in Table 2.
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