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This paper investigates the problem of output-feedback stabilization for a class of stochastic nonlinear systems in which the
nonlinear terms depend on unmeasurable states besides measurable output. We extend linear growth conditions to power growth
conditions and reduce the control effort. By using backstepping technique, choosing a high-gain parameter, an output-feedback
controller is designed to ensure the closed-loop system to be globally asymptotically stable in probability, and the inverse optimal
stabilization in probability is achieved. The efficiency of the output-feedback controller is demonstrated by a simulation example.

1. Introduction

The design of output-feedback controller for stochastic non-
linear systems has achieved remarkable research develop-
ment, because output feedback control is more suitable for
practical engineering systems; for example, see [1–12] and
references therein. In recent years such research hotspot has
mainly focused on a class of special nonlinear stochastic
systems in which the nonlinear vector terms depend on
the unmeasurable states besides the measurable output; for
example, see [13–17] and references therein. The work of [13]
discussed the output-feedback controller design by introduc-
ing a stability concept named globally asymptotically stable
in probability. Based on the purpose of reducing the amount
of control, [14] considered the output-feedback stabilization
problem.

However, in [13–17], the nonlinear vector terms satisfy
the linear growth conditions strictly, which greatly narrows
the scope of application of the research results. Naturally,
one may ask about an interesting and challenging problem:
can we further relax the linear growth conditions? To our
knowledge, the existing research results on this problem
are as in [18–20]. In [18], authors discussed the output-
feedback stabilization problem by introducing a rescaling
transformation under more relaxed growth conditions. On

the basis of [18], the work of [19] and [20] further considered
the output-feedback controller design problem for high-
order stochastic nonlinear systems. However, for [18–20], the
observer gain 𝐾 is usually larger than 1, and the choice can
lead to a controller design which needs larger control effort.
So another challenging problem is proposed that is whether
the assumption 𝐾 > 1 can be removed.

In this paper, we investigate the output-feedback stabi-
lization problem for a class of stochastic nonlinear systems
satisfying power growth conditions. Inspired by [13, 14],
we find the maximum value interval of observer gain for
the desired controller by using backstepping technique. For
this interval, the designed output-feedback controller ensures
that the equilibrium at the origin is globally asymptotically
stable in probability and the inverse optimal stabilization
in probability is achieved. The main contributions of this
paper are characterized as follows. (i) We extend the linear
growth conditions to the power growth conditions. (ii) The
assumption of𝐾 > 1 in [18–20] is removed so that we can get
less control effort.

The paper is organized as follows. Section 2 provides
some preliminary results. In Section 3, the problem to be
investigated is presented. In Sections 4 and 5, an output-
feedback controller is designed and analysed. In Section 6,
the inverse optimal stabilization in probability is achieved.
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Section 7 provides a simulation example. Section 8 concludes
this paper.

2. Notations and Preliminary Results

Throughout this paper, the following notations will be used.
𝑅 denotes the set of all real numbers; 𝑅

+
denotes the set of all

nonnegative real numbers;𝑅𝑛 denotes the real 𝑛-dimensional
space; 𝑅𝑛×𝑟 denotes the real 𝑛 × 𝑟 matrix space; Tr(⋅) denotes
the trace for squarematrix𝑋; |𝑋| denotes the Euclidean norm
of a vector 𝑋, and ‖𝑋‖ is the Frobenius norm of matrix
𝑋 defined by ‖𝑋‖ = (∑

𝑛

𝑖=1
∑
𝑟

𝑗=1
𝑥
2

𝑖𝑗
)
1/2; for a given vector

𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝑥
[𝑖]

denotes (𝑥
1
, . . . , 𝑥

𝑖
)
𝑇; 𝐶𝑖 denotes the

set of all function with continuous 𝑖th partial derivatives;
𝐶
2,1

(𝑅
𝑛
× 𝑅
+
, 𝑅
+
) is the family of all nonnegative functions

𝑉(𝑥, 𝑡) on 𝑅
𝑛
× 𝑅
+
, which are 𝐶

2 in 𝑥 and 𝐶
1 in 𝑡; 𝐾 denotes

the set of all functions: 𝑅+ → 𝑅
+, which are continuous,

strictly increasing, and vanish at zero; 𝐾
∞

denotes the set of
all functionswhich are of class𝐾 and unbounded;𝐾𝐿denotes
the set of all functions 𝛽(𝑠, 𝑡): 𝑅

+
×𝑅
+

→ 𝑅
+
, which are of𝐾

for each fixed 𝑡 and decrease to zero as 𝑡 → ∞ for each fixed
𝑠.

Lemma 1. The inequality (|𝑥| + |𝑦|)
𝑝

≤ 2
𝑝−1

(|𝑥|
𝑝

+ |𝑦|
𝑝

) is
established for any 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, 𝑝 ≥ 1, 𝑝 ∈ 𝑍.

Proof. For an assumption of 𝛼 = (𝑎
1
, 𝑎
2
) = (|𝑥|, |𝑦|), 𝛽 =

(𝑏
1
, 𝑏
2
) = (1, 1), inspired by Holder inequality [21], we can get

|𝑥| +
𝑦

 ≤ (|𝑥|
𝑝

+
𝑦



𝑝

)
1/𝑝

2
1−1/𝑝 (1)

and further get

(|𝑥| +
𝑦

)
𝑝

≤ 2
𝑝−1

(|𝑥|
𝑝

+
𝑦



𝑝

) . (2)

Then the proof is completed.

Consider the following stochastic system:

𝑑𝑥 = 𝑓 (𝑥, 𝑢) 𝑑𝑡 + 𝑔 (𝑥) 𝑑𝜔, ∀𝑥
0
∈ 𝑅
𝑛

, (3)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛 is the state of the system. 𝑢 ∈ 𝑅

𝑚

is the control input of the system. 𝜔 is an 𝑟-dimensional
standard Wiener process defined on a probability space
{Ω, 𝐹, 𝑃}. The nonlinear functions 𝑓 : 𝑅

𝑚+𝑛
→ 𝑅
𝑛 and 𝑔 :

𝑅
𝑛

→ 𝑅
𝑛×𝑟 are locally Lipschitz with 𝑓(0) = 0, 𝑔(0) = 0. For

any given 𝑉 ∈ 𝐶
2
(𝑅
𝑛
; 𝑅) associated with stochastic system

(3), the differential operator 𝐿 is defined as follows:

𝐿𝑉 (𝑥) =
𝜕𝑉

𝜕𝑥
𝑓 (𝑥) +

1

2
Tr(𝑔

𝑇

(𝑥)
𝜕
2
𝑉

𝜕𝑥2
𝑔 (𝑥)) . (4)

In order to discuss the stability of stochastic nonlinear
systems, we introduce the following stability notion.

Definition 2 (see [22]). For the stochastic nonlinear system
(3) with 𝑓(0, 𝑢) = 0, 𝑔(0) = 0, the equilibrium 𝑥(𝑡) = 0

of (3) is said to be globally asymptotically stable (GAS) in
probability if, for any 𝜀 > 0, there exists a class 𝐾𝐿 function
𝛽(⋅, ⋅) such that 𝑃{|𝑥(𝑡)| < 𝛽(|𝑥

0
|, 𝑡)} ≥ 1 − 𝜀, ∀𝑡 ≥ 0,

𝑥
0
∈ 𝑅
𝑛
\ {0}.

The following lemmas give some sufficient conditions
ensuring global asymptotical stability in probability.

Lemma 3 (see [23]). For system (3), if there exist 𝑉(𝑥) ∈ 𝐶
2,

class 𝐾
∞

functions 𝛼
1
, 𝛼
2
, and a class 𝐾 function 𝛼

3
such that

𝛼
1
(|𝑥|) ≤ 𝑉(𝑥) ≤ 𝛼

2
(|𝑥|), 𝐿𝑉(𝑥) ≤ −𝛼

3
(|𝑥|), then there exists

an almost surely unique solution to system (3) on [0,∞), and
the equilibrium 𝑥(𝑡) = 0 is globally asymptotically stable in
probability.

Lemma 4 (see [24]). Consider the following control law:

𝑢 = 𝛼 (𝑥) = −𝑅
−1

2
(𝐿
𝜑
2

𝑉)
𝑇 ℓ𝛾 (


𝐿
𝜑
2

𝑉𝑅
−1/2

2


)


𝐿
𝜑
2

𝑉𝑅
−1/2

2



2
, (5)

where 𝛾(⋅) is a class 𝐾
∞

function, ℓ𝛾(𝑠) = 𝑠( ̇𝛾)
−1

(𝑠) −

𝛾(( ̇𝛾)
−1

(𝑠)), and 𝑅
2
(𝑥) is a matrix valued function such that

𝑅
2
(𝑥) = 𝑅

𝑇

2
(𝑥) > 0. If the control law (5) to be ensures system

(3) globally asymptotically stable in probability, then the control
law

𝑢
∗

= 𝛽
∗

(𝑥)

= −
𝜃

2
𝑅
−1

2
(𝐿
𝜑
2

𝑉)
𝑇 ℓ𝛾 (


𝐿
𝜑
2

𝑉𝑅
−1/2

2


)


𝐿
𝜑
2

𝑉𝑅
−1/2

2



2
, 𝜃 ≥ 2,

(6)

solves the problemof inverse optimal stabilization in probability
for system (3) by minimizing the cost functional

𝐽 (𝑢) = 𝐸{∫

∞

0

[𝑙 (𝑥) + 𝜃
2

𝛾 (
2

𝜃


𝑅
2
(𝑥)
1/2

𝑢

)] 𝑑𝜏} , (7)

where 𝑙(𝑥) is a positive definite radially unbounded function
satisfying

𝑙 (𝑥) = 2𝜃 [ℓ𝛾 (

𝐿
𝜑
2

𝑉𝑅
−1/2

2


) −

1

2
Tr{𝜑

𝑇

1

𝜕
2
𝑉

𝜕𝑥2
𝜑
1
}]

+ 𝜃 (𝜃 − 2) ℓ𝛾 (

𝐿
𝜑
2

𝑉𝑅
−1/2

2


) .

(8)

3. Problem Formulation

Consider the following stochastic nonlinear systems:

𝑑𝑥
𝑖
= 𝑥
𝑖+1

𝑑𝑡 + 𝜑
𝑖
(𝑥) 𝑑𝜔, 𝑖 = 1, . . . , 𝑛 − 1,

𝑑𝑥
𝑛
= 𝑢𝑑𝑡 + 𝜑

𝑛
(𝑥) 𝑑𝜔,

𝑦 = 𝑥
1
,

(9)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛, 𝑢 ∈ 𝑅, and 𝑦 ∈ 𝑅 are the
states, the control input, and the measurable output of the
system, 𝜔 ∈ 𝑅

𝑟 is defined as in (3), and 𝑥
2
, . . . , 𝑥

𝑛
are the

unmeasurable states. 𝜑
𝑖
: 𝑅
𝑛

→ 𝑅
𝑟, 𝑖 = 1, . . . , 𝑛, are locally

Lipschitz with 𝜑
𝑖
(0) = 0 and satisfy the following power

growth conditions.

Assumption 5. For each 1 ≤ 𝑖 ≤ 𝑛, there exists the known
positive constant 𝑑 ≥ 0 such that |𝜑

𝑖
(x)| ≤ 𝑑(|𝑥

1
|
𝑝
+ |𝑥
2
|
𝑝
+

⋅ ⋅ ⋅ + |𝑥
𝑖
|
𝑝
), where 𝑝 is any positive integer.
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Remark 6. Assumption 5 can be simplified into linear growth
conditions when 𝑝 = 1. Therefore, linear growth conditions
as a special case are included in Assumption 5. This paper
extends previous work and gets a new result.

The objective of this paper is to design a smooth output-
feedback controller for system (9), such that the closed-
loop system is globally asymptotically stable in probability
at the origin and achieves the design of the inverse optimal
stabilization in probability.

4. Output-Feedback Controller Design

Since 𝑥
2
, . . . , 𝑥

𝑛
are unmeasured, the following observer is

introduced:

̇̂𝑥
𝑖
= 𝑥
𝑖+1

+ 𝐾
𝑖

ℎ
𝑖
(𝑥
1
− 𝑥
1
) , 𝑖 = 1, . . . , 𝑛 − 1,

̇̂𝑥
𝑛
= 𝑢 + 𝐾

𝑛

ℎ
𝑛
(𝑥
1
− 𝑥
1
) ,

(10)

where 𝑥
𝑖
is the estimated value of 𝑥

𝑖
, 𝐾 ∈ 𝑅

+
is the observer

gain to be determined, and ℎ
𝑖
> 0, 𝑖 = 1, . . . , 𝑛, are chosen

such that matrix 𝐴 = (

−ℎ
1

... 𝐼
𝑛−1

−ℎ
𝑛
0⋅⋅⋅0

) is asymptotically stable;

thus there exists a positive definite matrix 𝑃 satisfying𝐴
𝑇
𝑃+

𝑃𝐴 = −𝐼. Let 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, where 𝑥

𝑖
= (𝑥
𝑖
− 𝑥
𝑖
)/𝐾
𝑖−1 for

each 𝑖 = 1, . . . , 𝑛. By (9) and (10), we can get error system

𝑑𝑥 = 𝐾𝐴𝑥𝑑𝑡 + Φ (𝑥) 𝑑𝜔, (11)

where Φ(𝑥) = (𝜑
1
(𝑥), 𝜑
2
(𝑥)/𝐾, . . . , 𝜑

𝑛
(𝑥)/𝐾

𝑛−1
)
𝑇.

Now we give the backstepping controller design proce-
dure.

Step 0. Choosing the zeroth Lyapunov function 𝑉
0
(𝑥) = (𝑛 +

1)𝑥
𝑇
𝑃𝑥, applying 2𝑎𝑏 ≤ 2(𝑎

2
+ 𝑏
2
), (𝑎 + 𝑏)

2

≤ 2(𝑎
2
+ 𝑏
2
),

∑
𝑛

𝑖=1
|𝑎
𝑖
|
2

≤ (∑
𝑛

𝑖=1
|𝑎
𝑖
|)
2, (∑
𝑛

𝑖=1
𝑎
𝑖
)
2

≤ 𝑛∑
𝑛

𝑖=1
𝑎
2

𝑖
, Lemma 1,

Assumption 5, and (4), we can get

𝐿𝑉
0
= − (𝑛 + 1)𝐾|𝑥|

2

+ (𝑛 + 1)Tr (Φ𝑇 (𝑥) 𝑃Φ (𝑥))

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ (𝑛 + 1) ‖𝑃‖(

𝑛

∑

𝑖=1



𝜑
𝑖
(𝑥)

𝐾𝑖−1



2

)

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ (𝑛 + 1) ‖𝑃‖(

𝑛

∑

𝑖=1



𝜑
𝑖
(𝑥)

𝐾𝑖−1



)

2

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ (𝑛 + 1) ‖𝑃‖ 𝑑
2

(

𝑛

∑

𝑖=1

1

𝐾𝑖−1
)

2

× (
𝑥1



𝑝

+

𝑥2


𝑝

𝐾
+ ⋅ ⋅ ⋅ +

𝑥𝑛


𝑝

𝐾𝑛−1
)

≤ − (𝑛 + 1)𝐾|𝑥|
2

+ 2
2𝑝−1

𝑛𝑑
∗

× (

𝑛

∑

𝑖=1

(
𝑥
𝑝

𝑖

𝐾𝑖−1
)

2

+

𝑛

∑

𝑖=1

(𝐾
(𝑖−1)𝑝−(𝑖−1)

𝑥
𝑝

𝑖
)
2

)

≤ − ((𝑛 + 1) 𝑛𝐾 − 2
2𝑝−1

𝑛𝑑
∗

𝑛

∑

𝑖=1

(𝐾
(𝑖−1)𝑝−(𝑖−1)

)
2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(𝑥
2𝑝

1
+

𝑥
2𝑝

2

𝐾2
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) ,

(12)

where

𝑑
∗

= (𝑛 + 1) ‖𝑃‖ 𝑑
2

(

𝑛

∑

𝑖=1

1

𝐾𝑖−1
)

2

=

(𝑛 + 1) ‖𝑃‖ 𝑑
2
(∑
𝑛−1

𝑖=0
(𝑖 + 1)𝐾

𝑖
+ ∑
2𝑛−2

𝑖=𝑛
(2𝑛 − 𝑖 − 1)𝐾

𝑖
)

𝐾2𝑛−2

(13)

and ‖𝑥‖
∞

= max
𝑖
|𝑥
𝑖
|.

We introduce a series of coordinate changes as follows:

𝑤
1
= 𝑥
1
,

𝑤
𝑖
= 𝑥
𝑖
− 𝛽
𝑖−1

(𝑥
[𝑖−1]

) ,

(14)

where 𝛽
𝑖−1

(𝑥
[𝑖−1]

) (𝑖 = 2, . . . , 𝑛) is the virtual control law to
be designed.

Step 1. Constructing the 1st Lyapunov function

𝑉
1
(x̃, 𝑤
1
) = 𝑉
0
(x̃) + 1

𝑝 + 1
𝑤
𝑝+1

1
, (15)

using (3), (10), (12)–(15), and Young’s inequality [22], we can
obtain

𝐿𝑉
1
≤ − ((𝑛 + 1) 𝑛𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) + 2

2𝑝−1

𝑛𝑑
∗

𝑤
2𝑝

1

+ 2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

2

𝐾2
+ 𝑤
𝑝

1
𝑤
2
+ 𝑤
𝑝

1
𝛽
1
+ 𝐾𝑥
2

1
+

𝐾

4
ℎ
2

1
𝑤
2𝑝

1
.

(16)

Applying (14) and Lemma 1, choosing 𝐾 ≥ 2
2𝑝

𝑛𝑑
∗, we can

get

2
2𝑝−1

𝑛𝑑
∗

𝑤
2

1
≤

𝐾

2
𝑤
2

1
,

2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

2

𝐾2
≤ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝛽
2𝑝

1
,

(17)
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which one substitutes in (16) to obtain

𝐿𝑉
1
≤ − ((𝑛 + 1) 𝑛𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) + 2

2𝑝−1

𝑛𝑑
∗

𝑤
2

1

+ 4
2𝑃−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝛽
2𝑝

1

+ 𝑤
𝑝

1
𝑤
2
+ 𝑤
𝑝

1
𝛽
1
+ 𝐾𝑥
2

1
+

𝐾

4
ℎ
2

1
𝑤
2𝑝

1

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) + 4

2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

1
+ 𝑤
𝑝

1
𝑤
2
+ 𝑤
𝑝

1
𝛽
1

+ 𝐾(
1

2
+

ℎ
2

1

4
)𝑤
2𝑝

1

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) − 𝑛𝐾𝑤

2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗V2𝑝
1 √

𝑤
2𝑝

1
⋅ ⋅ ⋅ 𝑤
2𝑝

1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑝

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
) − 𝑛𝐾𝑤

2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗V2𝑝
1

√(2𝑝𝑤
2𝑝

1
)
2

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2

= − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

3

𝐾4
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
,

(18)

by choosing the 1st virtual control law

𝛽
1
= −𝐾V

1
𝑤
𝑝

1
,

V
1
=

1

2
+

ℎ
2

1

4
+ 𝑛.

(19)

Step 2. Using (10), (14), and (18), we can get

𝑑𝑤
2
= (𝑥
3
+ 𝐾
2

ℎ
2
𝑥
1
+ 𝐾V
1
𝑝𝑤
𝑝−1

1
(𝑥
2
+ 𝐾ℎ
1
𝑥
1
)) 𝑑𝑡

= (𝑥
3
+ 𝐾
2

ℎ
2
𝑥
1
+ 𝐾
2

ℎ
1
V
1
𝑝𝑤
𝑝−1

1
𝑥
1

+𝐾V
1
𝑝𝑤
𝑝−1

1
(𝑤
2
+ 𝛽
1
)) 𝑑𝑡.

(20)

Constructing the 2nd Lyapunov function

𝑉
2
(𝑥, 𝑤
[2]

) = 𝑉
1
(𝑥, 𝑤
1
) +

1

𝐾2
⋅

1

𝑝 + 1
𝑤
𝑝+1

2
, (21)

applying (14), (18)–(21), 𝐾 ≥ 2
2𝑝

𝑛𝑑
∗, Lemma 1, and Young’s

inequality [20], we obtain

𝐿𝑉
2
≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
+ 2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

3

𝐾4

+
1

𝐾2
𝑤
𝑝

2
(𝑥
3
+ 𝐾
2

ℎ
2
𝑥
1
+ 𝐾
2

ℎ
1
V
1
𝑝𝑤
𝑝−1

1
𝑥
1

+𝐾V
1
𝑝𝑤
𝑝−1

1
𝑤
2
− 𝐾
2V2
1
𝑝𝑤
2𝑝−1

1
)

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞
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+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
+ 2
2𝑝−1

𝑛𝑑
∗
𝑥
2𝑝

3

𝐾4
+

1

𝐾2
𝑤
𝑝

2
𝑥
3

+ 𝑤
𝑝

2
ℎ
2
𝑥
1
+ 𝑤
𝑝

2
ℎ
1
V
1
𝑝𝑤
𝑝−1

1
𝑥
1
+

1

𝐾
𝑤
𝑝+1

2
V
1
𝑝𝑤
𝑝−1

1

− V2
1
𝑝𝑤
2𝑝−1

1
𝑤
𝑝

2

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾4
𝑤
2𝑝

3
+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾4
𝛽
2𝑝

2
+

1

𝐾2
𝑤
𝑝

2
𝑤
3

+
1

𝐾2
𝑤
𝑝

2
𝛽
2
+ (𝑤
𝑝

2
(ℎ
2
+ ℎ
1
V
1
𝑝𝑤
𝑝−1

1
)) 𝑥
1

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2
𝑤
2𝑝

2
+ 𝑤
𝑝

1
𝑤
2
+

1

𝐾
𝑤
𝑝+1

2
V
1
𝑝𝑤
𝑝−1

1

− V2
1
𝑝𝑤
2𝑝−1

1
𝑤
𝑝

2

≤ − (((𝑛 + 1) 𝑛 − 1)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− (𝑛𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾4
𝑤
2𝑝

3
+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾4
𝛽
2𝑝

2
+

1

𝐾2
𝑤
𝑝

2
𝑤
3

+
1

𝐾2
𝑤
𝑝

2
𝛽
2
+ (𝑤
𝑝

2
(ℎ
2
+ ℎ
1
V
1
𝑝𝑤
𝑝−1

1
)) 𝑥
1

+ (
1

4𝑛𝑑∗
− 1)𝑤

2𝑝

2
+ 𝑤
2𝑝

1
+

1

4
𝑤
2

2
+

1

𝐾
𝑤
2𝑝+2

2
;

(22)

then we can get the 2nd virtual control law

𝛽
2
(𝑥
[2]

) = −𝐾
2V
2
𝑤
𝑝

2
,

V
2
=

ℎ
2

2

4
+
V2
1
ℎ
2

1

4
+
V4
1

4
+ V
1
+ 1 + 𝑛 − 1,

(23)

which satisfies

𝐿𝑉
2
≤ − (((𝑛 + 1) 𝑛 − 2)𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

4

𝐾6
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

− ((𝑛 − 1)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

)𝑤
2𝑝

1

−
1

𝐾2
((𝑛 − 4

𝑝−1

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
2

)𝑤
2𝑝

2

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾4
𝑤
2𝑝

3
+

1

𝐾2
𝑤
𝑝

2
𝑤
3
.

(24)

Step 𝑖 (𝑖 = 3, . . . , 𝑛 − 1). Suppose at (𝑖 − 1)th, that there are a
set of virtual control laws 𝛽

1
(𝑥
1
), . . . , 𝛽

𝑖−1
(𝑥
[𝑖−1]

): as follows

𝛽
1
(𝑥
1
) = − 𝐾V

1
𝑤
𝑝

1
,

𝛽
2
(𝑥
[2]

) = − 𝐾
2V
2
𝑤
𝑝

2
,

...

𝛽
𝑖−1

(𝑥
[𝑖−1]

) = − 𝐾
𝑖−1V
𝑖−1

𝑤
𝑝

𝑖−1
,

V
1
=

1

2
+

ℎ
2

1

4
+ 𝑛,

V
2
=

ℎ
2

2

4
+
V2
1
ℎ
2

1

4
+
V4
1

4
+ V
1
+ 1 + 𝑛 − 1,

...

V
𝑖−1

=
1

4
(ℎ
𝑖−1

+ V
𝑖−2

ℎ
𝑖−2

+ V
𝑖−2

V
𝑖−3

ℎ
𝑖−3

+ ⋅ ⋅ ⋅ + V
𝑖−2

V
𝑖−3

⋅ ⋅ ⋅ V
1
ℎ
1
)
2

+ ⋅ ⋅ ⋅ +
1

4
(V
𝑖−3

V
𝑖−2

− V2
𝑖−2

)
2

+ V
𝑖−2

+ 1 + 𝑛 − (𝑖 − 2) ,

(25)

with V
𝑗

> 0 (𝑗 = 1, . . . , 𝑖 − 1) being independent of 𝐾 such
that the 𝑖th Lyapunov function

𝑉
𝑖−1

(𝑥, 𝑤
[𝑖−1]

) = 𝑉
0
(𝑥) +

1

𝑝 + 1

𝑖−1

∑

𝑗=1

1

𝐾𝑗
𝑤
𝑝+1

𝑗
(26)

satisfies

𝐿𝑉
𝑖−1

≤ − ( ((𝑛 + 1) 𝑛 − (𝑖 − 1))𝐾 − 2
2𝑝−1

𝑛𝑑
∗

×(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+1

𝐾2𝑖
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)
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−

𝑖−1

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2(𝑖−1)
𝑤
2𝑝

𝑖
+

1

𝐾2(𝑖−2)
𝑤
𝑝

𝑖−1
𝑤
𝑖
. (27)

In the sequel, we will prove that (27) still holds for

𝑉
𝑖
(𝑥, 𝑤
[𝑖]
) = 𝑉
𝑖−1

(𝑥, 𝑤
[𝑖−1]

) +
1

𝑝 + 1
⋅

1

𝐾𝑖
𝑤
𝑝+1

𝑖
. (28)

Using (14) and (25), a direct calculation leads to

𝑑𝑧
𝑖
= (𝑥
𝑖+1

+ 𝐾
𝑖

ℎ
𝑖
𝑥
𝑖
+ 𝐾ℎ
𝑖−1

𝑝𝑤
𝑝−1

𝑖−1
(𝑥
𝑖
+ 𝐾
𝑖−1

ℎ
𝑖−1

𝑥
1
)

+ 𝐾
2V
𝑖−1

V
𝑖−2

𝑝𝑤
𝑝−1

𝑖−2
(𝑥
𝑖−1

+ 𝐾
𝑖−2

ℎ
𝑖−2

𝑥
1
)

+ ⋅ ⋅ ⋅ + 𝐾
𝑖−1V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
𝑝𝑤
𝑝−1

1
(𝑥
2
+ 𝐾ℎ
1
𝑥
1
)) 𝑑𝑡.

(29)

Using 𝐾 ≥ 2
2𝑝

𝑛𝑑
∗, Lemma 1, Young’s inequality [22], (14),

(27), (28), and (29), we obtain

𝐿𝑉
𝑖
≤ − ( ((𝑛 + 1) 𝑛 − (𝑖 − 1))𝐾 − 2

2𝑝−1

𝑛𝑑
∗

× (

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+2

𝐾2(𝑖+1)
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

−

𝑖−1

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 2
2𝑝−1

𝑛𝑑
∗ 1

𝐾2𝑖
𝑥
2𝑝

𝑖+1
+

1

𝐾2(𝑖−1)
𝑤
2𝑝

𝑖
𝑥
𝑖+1

+
1

𝐾𝑖
𝑤
𝑝

𝑖

× (𝑥
𝑖+1

+ 𝐾
𝑖

ℎ
𝑖
𝑥
𝑖
+ 𝐾V
𝑖−1

𝑝𝑤
𝑝−1

𝑖−1
(𝑥
𝑖
+ 𝐾
𝑖−1

ℎ
𝑖−1

𝑥
1
)

+ ⋅ ⋅ ⋅ + 𝐾
𝑖−1V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
𝑝𝑤
𝑝−1

1
(𝑥
2
+ 𝐾ℎ
1
𝑥
1
))

≤ − (((𝑛 + 1) 𝑛 − 𝑖)𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+2

𝐾2(𝑖+1)
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

−

𝑖

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)𝑗

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2𝑖
𝑤
2𝑝

𝑖+1
+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2𝑖
𝛽
2𝑝

𝑖

+
1

𝐾2(𝑖−1)
𝑤
𝑝

𝑖
𝑤
𝑖+1

+
1

𝐾2(𝑖−1)
𝑤
𝑝

𝑖
𝛽
𝑖

+
1

𝐾2𝑖−3
𝑤
2𝑝

𝑖
(
1

4
(ℎ
𝑖
+ V
𝑖−1

ℎ
𝑖−1

+ V
𝑖−1

V
𝑖−2

ℎ
𝑖−2

+ ⋅ ⋅ ⋅ + V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
ℎ
1
)
2

+ ⋅ ⋅ ⋅ +
1

4
(V
𝑖−3

V
𝑖−2

− V2
𝑖−2

)
2

+V
𝑖−1

+1) ,

(30)

then we can choose the 𝑖th smooth virtual control law

𝛽
𝑖
(𝑥
[𝑖]
) = −𝐾

𝑖V
𝑖
𝑤
𝑝

𝑖
,

V
𝑖
=

1

4
(ℎ
𝑖
+ V
𝑖−1

ℎ
𝑖−1

+ V
𝑖−1

V
𝑖−2

ℎ
𝑖−2

+ ⋅ ⋅ ⋅ + V
𝑖−1

V
𝑖−2

⋅ ⋅ ⋅ V
1
ℎ
1
)
2

+ ⋅ ⋅ ⋅ +
1

4
(V
𝑖−3

V
𝑖−2

− V2
𝑖−2

)
2

+ V
𝑖−1

+ 1 + 𝑛 − (𝑖 − 1)

(31)

and get

𝐿𝑉
𝑖
≤ − (((𝑛 + 1) 𝑛 − 𝑖)𝐾 − 2

2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)

× ‖𝑥‖
2𝑝

∞

+ 2
2𝑝−1

𝑛𝑑
∗

(
𝑥
2𝑝

𝑖+2

𝐾2(𝑖+1)
+ ⋅ ⋅ ⋅ +

𝑥
2𝑝

𝑛

𝐾2𝑛−2
)

−

𝑖

∑

𝑗=1

1

𝐾2𝑗−2
((𝑛 − 4

(𝑝−1)𝑗

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2𝑖
𝑤
2𝑝

𝑖+1
+

1

𝐾2(𝑖−1)
𝑤
𝑝

𝑖
𝑤
𝑖+1

.

(32)

Step 𝑛. Using repeatedly the previous arguments, at the 𝑛−1th
step, we can get

𝐿𝑉
𝑛−1

≤ − ( ((𝑛 + 1) 𝑛 − (𝑛 − 1))𝐾 − 2
2𝑝−1

𝑛𝑑
∗

×(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

−

𝑛−1

∑

𝑗=1

1

𝐾2𝑗−2

× ((𝑛 − 4
(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

+ 4
2𝑝−1

𝑛𝑑
∗ 1

𝐾2(𝑖−1)
𝑤
2𝑝

𝑛
+

1

𝐾2(𝑖−2)
𝑤
𝑝

𝑛−1
𝑤
𝑛
,

(33)

where

𝑉
𝑛−1

(𝑥, 𝑤
[𝑛−1]

) = 𝑉
𝑛−2

(𝑥, 𝑤
[𝑛−2]

) +
1

𝐾𝑛−1
⋅

1

𝑝 + 1
𝑤
2𝑝

𝑛
.

(34)

At the end of the recursive procedure, choosing the controller

𝑢 (𝑥
[𝑛]

) = −𝐾
𝑛V
𝑛
𝑤
𝑝

𝑛
, (35)
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where V
𝑛

> 0 satisfies (25) and is independent of 𝐾, we can
get

𝐿𝑉
𝑛
≤ − (𝑛

2

𝐾 − 2
2𝑝−1

𝑛𝑑
∗

(

𝑛

∑

𝑖=1

𝐾
(𝑖−1)𝑝−(𝑖−1)

)

2

)‖𝑥‖
2𝑝

∞

−

𝑛−1

∑

𝑗=1

1

𝐾2𝑗−2

× ((𝑛 − 4
(𝑝−1)(𝑗−1)

)𝐾 − 2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑗

)𝑤
2𝑝

𝑗

−
1

𝐾2𝑛−5
𝑤
2𝑝

𝑛
,

(36)

where

𝑉
𝑛
(𝑥, 𝑤
[𝑛]

) = (𝑛 + 1) 𝑥
𝑇

𝑃𝑥 +
1

𝑝 + 1

𝑛

∑

𝑗=1

1

𝐾𝑗
𝑤
𝑝+1

𝑗
. (37)

Remark 7. The item (𝑥
2𝑝

1
+ 𝑥
2𝑝

2
/𝐾
2

+ ⋅ ⋅ ⋅ + 𝑥
2𝑝

𝑛
/𝐾
2𝑛−2

) is
canceled at step 𝑛 − 1. By the following analysis, we obtain
the maximum value interval of 𝐾 to ensure the system to be
globally asymptotically stable in probability at the origin.

5. Performance Analysis

Next, we give the main result in this paper.

Theorem 8. If Assumption 5 holds for stochastic nonlinear
system (9) under the controllers (10) and (35), then there always
exists a constant 𝐾∗ ≥ 0, such that for any 𝐾 > 𝐾

∗,
(1) the closed-loop system has an almost surely unique

solution on [0,∞) for any 𝑥
0
;

(2) the equilibrium at the origin of the closed-loop system
is globally asymptotically stable in probability.

Proof. Using 𝐾 ≥ 0, (18), (23), and (31), obviously, if

𝐾 > max{



2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
1

𝑛



,



2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
2

𝑛 − 4𝑝−1



, . . . ,



2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)



}

=



2
4𝑝−1

𝑝𝑛𝑑
∗V2𝑝
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)



(38)

holds, then conclusions (1) and (2) follow from (36), (37), and
Lemma 3. In the following, we analyze (38). From (13), (25),
and (31), it is easy to find that 𝑑∗ depends on 𝐾. Substituting
(13) into (38) leads to

𝐾 >
2
4𝑝−1

𝑝𝑛V2𝑝
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)
⋅
(𝑛 + 1) ‖𝑃‖ 𝑑

2

𝐾2𝑛−2

⋅ (

𝑛−1

∑

𝑖=0

(𝑖 + 1)𝐾
𝑖

+

2𝑛−2

∑

𝑖=𝑛

(2𝑛 − 𝑖 − 1)𝐾
𝑖

) ;

(39)

equivalently,

𝐾
2𝑛−1

>
𝑛

𝑛 − 4(𝑝−1)(𝑛−1)
⋅ 2
4𝑝−1

⋅ 𝑝 ⋅ V2𝑝
𝑛

⋅ (𝑛 + 1) ‖𝑃‖ 𝑑
2

(

𝑛−1

∑

𝑖=0

(𝑖 + 1)𝐾
𝑖

+

2𝑛−2

∑

𝑖=𝑛

(2𝑛 − 𝑖 − 1)𝐾
𝑖

) ,

(40)

which is equivalent to

𝐾
2𝑛−1

+

2𝑛−2

∑

𝑖=0

𝑎
𝑖
𝐾
𝑖

> 0 (41)

with the real numbers

𝑎
0
= − Δ,

𝑎
1
= − 2Δ,

...

𝑎
𝑛−1

= − 𝑛Δ,

𝑎
𝑛
= − (𝑛 − 1) Δ,

𝑎
𝑛+1

= − (𝑛 − 2) Δ,

...

𝑎
2𝑛−2

= − Δ − (𝑛 + 1) ‖𝑃‖
2

, Δ = 2
4𝑝−1

𝑝𝑛 (𝑛 + 1) 𝑑
2V2𝑝
𝑛−1

.

(42)

According to the factorization theorem of real coefficient
polynomial, (41) can be further expressed as

(𝐾 − 𝐾
1
)
𝑚
1

⋅ ⋅ ⋅ (𝐾 − 𝐾
𝑟
)
𝑚
𝑟

(𝐾
2

+ 𝑝
1
𝐾 + 𝑞

1
)
𝑛
1

⋅ ⋅ ⋅ (𝐾
2

+ 𝑝
𝑠
𝐾 + 𝑞

𝑠
)
𝑛
𝑠

> 0,

(43)

where 𝑚
𝑖
, 𝑛
𝑗
are positive integers with ∑

𝑟

𝑖=1
𝑚
𝑖
+ 2∑
𝑠

𝑗=1
𝑛
𝑗
=

2𝑛 − 1, 𝐾
𝑖
, 𝑖 ≤ 𝑟, are different real numbers, and (𝑝

𝑗
, 𝑞
𝑗
),

𝑗 ≥ 𝑠, satisfy 𝑝
2

𝑗
− 4𝑞
𝑗

< 0 for all 𝑗 = 1, . . . , 𝑠. Obviously,
𝐾
2
+ 𝑝
𝑗
𝐾 + 𝐾

𝑗
> 0 for all 𝑗 = 1, . . . , 𝑠. Now, we divide into

two cases to discuss the choice of 𝐾
𝑖
. (1) If there is at least

one positive number for 𝐾
1
, . . . , 𝐾

𝑟
under the condition of

appropriate value of 𝑝, one chooses 𝐾
∗

= max
1≤𝑖≤𝑟

{𝐾
𝑖
}. (2)

Otherwise, 𝐾∗ = 0. Thus there always exists 𝐾
∗

≥ 0, such
that for any 𝐾 > 𝐾

∗, (38) holds.

6. Inverse Optimal Controller Design

In this section we will design the inverse optimal controller
on the basis of Theorem 8 to meet specific performance
indicators besides achieving control objectives.
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Theorem 9. The control law

𝑢
∗

= −𝜃𝐾
𝑛V
𝑛
𝑤
𝑝

𝑛
, 𝜃 ≥ 2, (44)

solves the problemof inverse optimal stabilization in probability
for (9) by minimizing the cost function

𝐽 (𝑢) = 𝐸{∫

∞

0

[𝑙 (𝑥, 𝑥) +
1

𝐾2(𝑛−1)

V−1
𝑛

(𝑥)

𝐾𝑛
𝑢
2

]𝑑𝑟} , (45)

where 𝜑
1
(𝑥, 𝑥) = (Φ

𝑇
(𝑥), 0, . . . , 0)

𝑇, 𝜑
2
(𝑥, 𝑥) = (0, . . . , 0, 1)

𝑇,
𝑉 = 𝑉

𝑛
.

Proof. Equations (10) and (11) can be represented as

(
𝑑𝑥

𝑑𝑥
) = 𝜑

1
(𝑥, 𝑥) 𝑑𝜔 + 𝜑

2
(𝑥, 𝑥) 𝑢 𝑑𝑡, (46)

where 𝜑
1
, 𝜑
2
are identified in Theorem 9. Choosing 𝛾(𝑟) =

(1/2𝐾
2(𝑛−1)

)𝑟
2, we can get (𝛾)−1(𝑟) = 𝐾

2(𝑛−1)
𝑟 and ℓ𝛾(𝑟) =

(1/2)𝐾
2(𝑛−1)

𝑟
2. Applying Lemma 4, we get

𝑢 = 𝛽 (𝑥) = −𝑅
−1

2
(𝑥)

1

𝐾2(𝑛−1)
𝑤
𝑝

𝑛

1

2
𝐾
2(𝑛−1)

= −
1

2
𝑅
−1

2
(𝑥)𝑤
𝑝

𝑛
.

(47)

According to Theorem 8 and Lemma 4, the inverse optimal
controller can be designed as follows:

𝑢
∗

= 𝛽
∗

(𝑥) = −
𝜃

2
𝑅
−1

2
(𝑥)

1

𝐾2(𝑛−1)
𝑤
𝑝

𝑛
𝐾
2(𝑛−1)

= −
𝜃

2
𝑅
−1

2
(𝑥)𝑤
𝑝

𝑛
= 𝜃𝛽 (𝑥) = 𝜃𝑢, 𝜃 ≥ 2,

(48)

where 𝑅
2
(𝑥) = 1/2𝐾

𝑛V
𝑛
.

7. Simulation Examples

In this section, for a numerical example, we design the
output-feedback controller by using two methods, where
one method is introduced in this paper and the other is
introducted in [19, 20].

Consider the following stochastic system:

𝑑𝑥
1
= 𝑥
2
𝑑𝑡 +

1

10
𝑥
3

1
sin𝑥
2
𝑑𝜔,

𝑑𝑥
2
= 𝑢𝑑𝑡 +

1

10
(𝑥
3

1
+ 𝑥
3

2
) 𝑑𝜔,

𝑦 = 𝑥
1
,

(49)

where
𝜑1 (x)

 =



1

10
𝑥
3

1
sin𝑥
2


≤

1

10

𝑥1


3

,

𝜑2 (x)
 =



1

10
(𝑥
3

1
+ 𝑥
3

2
)


≤

1

10
(
𝑥1



3

+
𝑥2



3

) .

(50)
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Figure 1: The responses of the closed-loop systems (49)∼(53).
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Figure 2:The responses of the closed-loop systems (49)∼(53) when
adopting the method in [19, 20].

With the notation of Assumption 5, one can take 𝑝 = 3, 𝑐 =

1/10.
In line with designmethod discussed in Section 4, we can

design the observer states as follows:
̇̂𝑥
1
= 𝑥
2
+ 𝐾 (𝑦 − 𝑥

1
) ,

̇̂𝑥
2
= 𝑢 + 𝐾

2

(𝑦 − 𝑥
1
) .

(51)

According to the design procedure in Section 4, we construct
the controller as follows:

𝛽
1
(𝑥
1
) = −𝐾V

1
𝑤
3

1
, V
1
= 2.75,

𝑢 = −𝐾
2V
2
𝑤
3

2
, V
2
= 8.27,

(52)

where 𝐾 will be chosen later, ℎ
1

= ℎ
2

= 1, and 𝑑
∗

=

(1/12) × 10
−4

‖𝑃‖(1 + 1/𝐾)
2, ‖𝑃‖ = ((15 + 5√5)/8)

1/2. With
Theorem 8, one gets 𝐾 > 42.35. According to the design
procedure in Section 6, we choose 𝜃 = 2 and construct the
inverse optimal controller as follows:

𝑢
∗

= −2𝐾
2V
2
𝑤
3

2
. (53)

In simulation, we choose the initial values 𝑥
1
(0) = 0.02,

𝑥
2
(0) = 0.01, 𝑥

1
(0) = 0.01, 𝑥

2
(0) = −0.01, and 𝐾 =

50. Figure 1 shows the responses of the closed-loop system
(49)∼(53), which demonstrate the effectiveness of the control
scheme.

If the method in [19, 20] is adopted for the same systems,
Figure 2 gives the corresponding responses of the systems
(here the controller design theory of [19, 20] is not tackled
details, and the interested readers can consult the relevant
literature).

Remark 10. By comparing the two figures, we can observe
that the value of the control of Figure 1 is far less thanFigure 2.
In other words, our method requires less control effort to
ensure the closed-loop system to be globally asymptotically
stable in probability, and it demonstrates the advantage of this
method clearly.

8. Concluding and Outlook

In this paper, we have studied the output-feedback sta-
bilization for a class of stochastic nonlinear systems. We
have given a design of the output-feedback controller so
as to make the equilibrium at the origin of the closed-
loop system globally asymptotically stable in probability by
using the backstepping design technique and choosing a
high-gain parameter, and the inverse optimal stabilization in
probability is achieved. Our main contribution is extending
the linear growth conditions to the more general power
growth conditions so as to enable the result to bemore general
and to have a broader field of use.

There are two problems to be investigated.
(1) By extending the value of 𝑝 in Assumption 5 from

positive integers to the rationales, it can further
weaken the conditions of the system (5). For this
system, output-feedback problem deserves further
research.
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(2) Another is to extend stochastic nonlinear systems in
this paper to delay systems and study the design of
controller.
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