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This paper investigates the stability analysis problem for a class of discrete-time networked control systems (NCSs) with random
time delays and packet dropouts based on unified Markov jump model. The random time delays and packet dropouts existed in
feedback communication link are modeled by two independent Markov chains; the resulting closed-loop system is described by a
newMarkovian jump linear system (MJLS) withMarkov delays. Sufficient conditions of the stochastic stability for NCSs is obtained
by constructing a novel Lyapunov functional, and the mode-dependent output feedback controller design method is presented
based on linear matrix inequality (LMI) technique. A numerical example is given to illustrate the effectiveness of the proposed
method.

1. Introduction

Networked control systems (NCSs) are a type of closed-
loop systems, in which the control loops are closed through
communication networks. Compared with the traditional
control systems, the use of the communication networks
bring many advantages such as low cost, reduced weight, and
simple installation andmaintenance as well as high efficiency,
flexibility, and reliability. Consequently, NCSs are applied
in a broad range such as manufacturing plants, vehicles,
aircrafts, spacecrafts, and remote surgery [1]. However, the
communication networks in control loops also present some
constraints such as time delays and packet dropouts due
to limited bandwidth; quantization errors caused by hybrid
nature of NCSs; variable sampling or transmission intervals
due to multiple nodes; clock asynchronization among local
and remote nodes; network security and safety and network
security due to shared communication networks [2, 3]. It
is generally known that any of these networked-induced
communication imperfections and constraints can degrade
closed-loop performance or, even worse, can harm closed-
loop stability of NCSs.Therefore, it is important to know how
these effects influence the stability properties. Recently, some

important results of NCSs have been reported in the existing
literature for instance, the discussions of packet dropouts [4–
13], time delays [14–24], quantization [25], distributed syn-
chronization [26], communication constraints [27], stability
and controller design [28–33], both data quantizations and
packet losses [34], both time delays and packet dropouts [35–
44], and output feedback control problem [19, 45, 46].

In NCSs, time delays and packet dropouts are two
important issues. To study these issues, many efforts have
been made for NCSs with time delays [14–24] and packet
dropouts [4–13]; for more details review, please refer to the
literature therein. However, both time delays and packet
dropouts exist in NCSs by the insertion of communication
network in the feedback control loop. Xie andXia [35] studied
the robust fault tolerant controller design for NCSs with
fast varying delay and packet dropout. Zhang and Yu [36]
presented a switched system model to describe the NCSs
with both delay and packet dropout, and the state feedback
stabilizing controllers are designed by augmenting technique.
Yu and Shi [37] addressed the two-mode-dependent state
feedback controller design in NCSs with time delays and
packet dropouts by augmenting the state variable approach.
Dong et al. [38] studied the robust 𝐻

∞
filtering problem
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for a class of uncertain nonlinear networked systems with
both stochastic time-varying communication delays and
packet dropouts. Jiang et al. [39] introduced the design of
observer-based controller for NCSs with network induced
delay and packet dropout. Li et al. [40] considered the
observer-based fault detection problem for NCSs with long
time delays and packet dropout by modeling the observers
system as an uncertain switched system. Li et al. [41] studied
the guaranteed const control of NCSs with the S-C packet
dropouts and time delays. Wang and Yang [42] considered
the problem of 𝐻

∞
controller design for NCSs with time

delay and packet dropout by applying the linear estimation-
based time delay and packet dropout compensation method.
Liu et al. [43] investigated the receding horizon 𝐻

∞
control

problem for a class NCSs with random delay and packet
disordering by using the receding optimization principle. Qiu
et al. [44] considered the state feedback control problem
of NCS with both time delays and packet dropouts. In [19,
45, 46], the output feedback control problem of NCSs were
investigated. To the best of the authors’ knowledge, up to
now, little attention has been paid to the study of NCSs with
random time delays and packet dropouts based on Markov
jump unified model, which motivates our investigation.

In this paper, we address the unified model and stability
analysis problem of NCSs with the random time delays
and packet dropouts under a Markovian jump linear system
(MJLS) framework. The feedback communication link ran-
dom time delays and packet dropouts are modeled by two
independentMarkov chains, the resulting closed-loop system
is modeled as a newMJLS with Markov delays. Then, we give
stability analysis and output feedback controller designwhich
are for discrete-time NCSs with both time delays and packet
dropouts by the Lyapunov stability theory and linear matrix
inequality method.

Notations. In the sequel, if not explicit, matrices are assumed
to have appropriate dimensions.R𝑛 andR𝑛×𝑚 denote, respec-
tively, the 𝑛 dimensional Euclidean space and the set of all
𝑛×𝑚 realmatrices.The notations𝐴 > 0 and𝐴 < 0 are used to
denote the positive and negative definite matrix, respectively.
diag(𝐴

1
, . . . , 𝐴

𝑛
) refers to a 𝑛 × 𝑛 diagonal matrix with 𝐴

𝑖

as its 𝑖th diagonal entry. 𝐼 and 0 denote the identity matrix
and zero matrix with appropriate dimensions, respectively.
The superscript 𝑇 denotes the transpose for vectors or
matrices.E[⋅]denotes themathematical expectation operator.
The symbol ∗ denotes blocks that are readily inferred by
symmetry.

2. Problem Description

The framework of the system over a network medium is
depicted in Figure 1. Considering the same assumption in
[14], the sensor, the controller, and the actuator are time-
driven and are connected over a network medium. Under
the assumption, it is known that the controller updates at the
instant 𝑘 will always use the most recent data; otherwise, it
will maintain the old data. In the NCS as Figure 1, network
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Figure 1: The structure of the NCS with random delays and/or
packet dropouts.

induced time delays and packet dropouts exist in the feedback
communication link.

The discrete-time plant with a time-varying controller is
described as

𝑥
𝑝
(𝑘 + 1) = 𝐴𝑥

𝑝
(𝑘) + 𝐵𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥
𝑝
(𝑘) ,

(1)

where 𝑥
𝑝
(𝑘) ∈ R𝑛 is the system state, 𝑢(𝑘) ∈ R𝑚 is the control

input, and 𝑦(𝑘) ∈ R𝑝 is measurable output. 𝐴, 𝐵, and 𝐶 are
known real constant matrices with appropriate dimensions.
Random time delays and packet dropouts exist in link from
sensor-to-controller (S-C), as shown in Figure 1. Here, 𝜏(𝑘)
represents the bounded random S-C time delays. One way to
model the delays 𝜏(𝑘) is using the finite state Markov chain as
shown in [17–19]. The main advantage of the Markov model
is that the dependencies between the delays are taken into
account since the current time delays in real networks are
usually relatedwith the previous delays [17]. In this paper 𝜏(𝑘)
is modeled as a homogeneous Markov chain that take values
in 𝑆
2
= {0, 1, . . . , 𝑠

2
}. 𝑆 denotes the network switches between

the S-C. 𝛼(𝑘) (𝛼(𝑘) = 0, 1) denotes the states of 𝑆. When 𝑆

is in state 𝛼(𝑘) = 0, the packet is received successfully and
the 𝑦(𝑘) = 𝑦(𝑘 − 𝜏(𝑘)). Whereas when 𝑆 is in state 𝛼(𝑘) = 1,
the packet is lost and the switch output is held at the previous
value 𝑦(𝑘) = 𝑦(𝑘 − 1). The behavior of the S-C time delays
and packet dropouts can be modeled as

𝑦 (𝑘) = (1 − 𝛼 (𝑘)) 𝑦 (𝑘 − 𝜏 (𝑘)) + 𝛼 (𝑘) 𝑦 (𝑘 − 1) , (2)

where

𝛼 (𝑘) = {
0, if 𝑆 is closed and the packet is received,
1, if 𝑆 is open and the packet is lost.

(3)

Considering the mode-dependent output feedback con-
troller:

𝑢 (𝑘) = 𝐾 (𝛼 (𝑘) , 𝜏 (𝑘)) 𝑦 (𝑘) , (4)

where𝐾(𝛼(𝑘), 𝜏(𝑘)) is the output feedback controller gain.
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Let 𝑥(𝑘) = [𝑥
𝑝
(𝑘)
𝑇

𝑦(𝑘 − 1)
𝑇

]
𝑇

be the augmented state
vector. Under the control (4), the closed-loop system of (1) is

𝑥 (𝑘 + 1) = 𝐴 (𝛼 (𝑘)) 𝑥 (𝑘) + 𝐵 (𝛼 (𝑘))𝐻𝑥 (𝑘 − 𝜏 (𝑘)) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝜏max, −𝜏max + 1, . . . , 0,
(5)

where 𝐴(𝛼(𝑘)) = [
𝐴 𝛼(𝑘)𝐵𝐾(𝛼(𝑘),𝜏(𝑘))

0 𝛼(𝑘)𝐼
], 𝐵(𝛼(𝑘)) =

[
(1−𝛼(𝑘))𝐵𝐾(𝛼(𝑘),𝜏(𝑘))𝐶

(1−𝛼(𝑘))𝐶
], 𝐻 = [𝐼 0], 𝜏max = max{𝜏(𝑘)},

and 𝜑(𝑘) is the initial condition of 𝑥(𝑘).
In system (5), {𝛼(𝑘), 𝑘 ∈ Z} and {𝜏(𝑘), 𝑘 ∈ Z} are

two independent discrete-time homogeneousMarkov chains
taking value in a finite set 𝑆

1
= {0, 1} and 𝑆

2
= {0, 1, . . . , 𝑠

2
}

with transition probabilities:

Pr {𝛼 (𝑘 + 1) = 𝑗 | 𝛼 (𝑘) = 𝑖} = 𝜋
𝑖𝑗
, 𝜋

𝑖
= Pr (𝜋

0
= 𝑖) ,

Pr {𝜏 (𝑘 + 1) = 𝑛 | 𝜏 (𝑘) = 𝑚} = 𝜆
𝑚𝑛
,

𝜆
𝑚
= Pr (𝜆

0
= 𝑚) ,

(6)

where 𝜋
𝑖𝑗
≥ 0 and 𝜆

𝑚𝑛
≥ 0 for all 𝑖, 𝑗 ∈ 𝑆

1
,𝑚, 𝑛 ∈ 𝑆

2
and

1

∑

𝑗=0

𝜋
𝑖𝑗
= 1,

𝑠
2

∑

𝑛=0

𝜆
𝑚𝑛

= 1. (7)

For 𝛼(𝑘) = 𝑖, 𝑖 ∈ 𝑆
1
, when 𝛼(𝑘) in mode 𝑖 = 0 and

𝑖 = 1, the 𝛼(𝑘) in (5) take value 𝛼(𝑘) = 0 and 𝛼(𝑘) =

1, respectively. 𝐴(𝛼(𝑘)) and 𝐵(𝛼(𝑘)) are known constant
matrices of appropriate dimensions.

Remark 1. The closed-loop system (5) is a MJLS with two
Markov chains, which describe the behavior of the S-C
time delays and packet dropouts, respectively. This enables
us to analyze and synthesize such NCSs by applying MJLS
theory. Note that modeling the S-C time delays and packet
dropouts simultaneously in NCSs based on unified Markov
jump model has not been done in the literature.

Definition 2 (see [19]). The system in (5) is stochastically
stable if for every finite 𝑥

0
= 𝑥(0), initial mode 𝛼

0
= 𝛼(0) ∈

𝑆
1
, and 𝜏

0
= 𝜏(0) ∈ 𝑆

2
, there exists a finite W > 0 such that

the following holds:

E{
∞

∑

𝑘=0

‖𝑥 (𝑘)‖
2

| 𝑥
0
, 𝛼
0
, 𝜏
0
} < 𝑥

𝑇

0
W𝑥
0
. (8)

3. Main Results

By applying a new Lyapunov functional, sufficient condi-
tions for the stochastic stability and synthesis of the mode-
dependent output feedback controller design for system (5)
will be established in this section.

Theorem 3. For system (5), given random but bounded scalar
𝜏(𝑘) ∈ [𝜏min 𝜏max], if for each mode 𝑖 ∈ 𝑆

1
, 𝑚 ∈ 𝑆

2
, there

exist matrices 𝑃
𝑖,𝑚

> 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑅

1
> 0, and

𝑅
2
> 0 such that the following matrix inequalities:

[
[
[

[

Ξ
1

Ξ
2

Ξ
3

Ξ
4

∗ −𝑃
𝑖,𝑚

0 0

∗ ∗ −𝑅
1

0

∗ ∗ ∗ −𝑅
2

]
]
]

]

< 0, (9)

where

Ξ
1
=

[
[
[

[

Π
𝑖,𝑚

𝐻
𝑇

𝑅
1

0 0

𝑅
1
𝐻 −𝑄

3
− 2𝑅
1
− 2𝑅
2

𝑅
2

𝑅
1
+ 𝑅
2

0 𝑅
2

−𝑄
2
− 𝑅
2

0

0 𝑅
1
+ 𝑅
2

0 −𝑄
1
− 𝑅
1
− 𝑅
2

]
]
]

]

,

Ξ
2
= [𝑃
𝑖,𝑚
𝐴
𝑖
𝑃
𝑖,𝑚
𝐵
𝑖
0 0]
𝑇

,

Ξ
3
= [𝜏max𝑅1𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝑅1𝐻𝐵

𝑖
0 0]
𝑇

,

Ξ
4
= [𝜏𝑅

2
𝐻(𝐴
𝑖
− 𝐼) 𝜏𝑅

2
𝐻𝐵
𝑖
0 0]
𝑇

,

𝜏 = 𝜏max − 𝜏min,

𝑃
𝑖,𝑚

=

1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
𝜆
𝑚𝑛
𝑃
𝑗,𝑛
,

Π
𝑖,𝑚

= −𝑃
𝑖,𝑚

+ 𝐻
𝑇

(𝑄
1
+ 𝑄
2
)𝐻

+ (𝜏max − 𝜏min + 1)𝐻
𝑇

𝑄
3
𝐻 −𝐻

𝑇

𝑅
1
𝐻,

𝐴
𝑖
= [

𝐴 𝑖𝐵𝐾 (𝑖, 𝑚)

0 𝑖𝐼
] ,

𝐵
𝑖
= [

(1 − 𝑖) 𝐵𝐾 (𝑖, 𝑚)𝐶

(1 − 𝑖) 𝐶
] ,

(10)

and𝐻 is defined in (5).
Hold for all 𝑖, 𝑗 ∈ 𝑆

1
and 𝑚, 𝑛 ∈ 𝑆

2
; then system (5) is

stochastically stable.

Proof. For the closed-loop system (5), stochastic Lyapunov
functional is constructed as follows:

𝑉 (𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘)) =

4

∑

𝜌=1

𝑉
𝜌
(𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘))

=

4

∑

𝜌=1

𝑉
𝜌
,

(11)

where

𝑉
1
= 𝑥(𝑘)

𝑇

𝑃 (𝛼 (𝑘) , 𝜏 (𝑘)) 𝑥 (𝑘) ,

𝑉
2
=

𝑘−1

∑

𝑙=𝑘−𝜏max

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
1
𝐻𝑥 (𝑙) +

𝑘−1

∑

𝑙=𝑘−𝜏min

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
2
𝐻𝑥 (𝑙) ,

𝑉
3
=

−𝜏min+1

∑

𝜃=−𝜏max+2

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

+

𝑘−1

∑

𝑙=𝑘−𝜏(𝑘)

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙) ,
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𝑉
4
=

0

∑

𝜃=−𝜏max+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝜏max𝛿(𝑙)
𝑇

𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

+

−𝜏min

∑

𝜃=−𝜏max+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

(𝜏max − 𝜏min)

× 𝛿(𝑙)
𝑇

𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙) ,

(12)

and 𝛿(𝑙) = 𝑥(𝑙 + 1) − 𝑥(𝑙). In the following when 𝛼(𝑘) = 𝑖 and
𝜏(𝑘) = 𝑚, we will write 𝑃(𝛼(𝑘), 𝜏(𝑘)), 𝐾(𝛼(𝑘), 𝜏(𝑘)), 𝐴(𝛼(𝑘))
and 𝐵(𝛼(𝑘)) as 𝑃

𝑖,𝑚
,𝐾
𝑖,𝑚
, 𝐴
𝑖
, and 𝐵

𝑖
, respectively. We denote:

Δ𝑉 (𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘))

=

4

∑

𝜌=1

Δ𝑉
𝜌

=

4

∑

𝜌=1

[𝑉
𝜌
(𝑥 (𝑘 + 1) , 𝛼 (𝑘 + 1) , 𝜏 (𝑘 + 1) | 𝑥 (𝑘) ,

𝛼 (𝑘) , 𝜏 (𝑘)) −𝑉
𝜌
(𝑥 (𝑘) , 𝛼 (𝑘) , 𝜏 (𝑘))] .

(13)

Let 𝜉(𝑘) = [𝑥(𝑘)
𝑇

(𝐻𝑥(𝑘 − 𝑚))
𝑇

(𝐻𝑥(𝑘 − 𝜏min))
𝑇

(𝐻𝑥(𝑘 − 𝜏max))
𝑇

]
𝑇

. Then, along the solution of system (5) we
have

E [Δ𝑉
1
] = 𝑥(𝑘 + 1)

𝑇[

[

1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
𝜆
𝑚𝑛
𝑃
𝑗,𝑛

]

]

× 𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃
𝑖,𝑚
𝑥 (𝑘)

= 𝜉
𝑇

(𝑘)

[
[
[
[
[
[

[

𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

0

0

]
]
]
]
]
]

]

𝑃
𝑖,𝑚

[𝐴
𝑖
𝐵
𝑖
0 0] 𝜉 (𝑘)

− 𝑥
𝑇

(𝑘) 𝑃
𝑖,𝑚
𝑥 (𝑘) ,

(14)

where 𝑃
𝑖,𝑚

is defined inTheorem 3.
We have
E [Δ𝑉

2
] = 𝑥
𝑇

(𝑘)𝐻
𝑇

(𝑄
1
+ 𝑄
2
)𝐻𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝜏max)𝐻
𝑇

𝑄
1
𝐻𝑥 (𝑘 − 𝜏max)

− 𝑥
𝑇

(𝑘 − 𝜏min)𝐻
𝑇

𝑄
2
𝐻𝑥 (𝑘 − 𝜏min) ,

(15)

E [Δ𝑉
3
] = (𝜏max − 𝜏min + 1) 𝑥(𝑘)

𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘)

−

𝑘−𝜏min

∑

𝜃=𝑘−𝜏max+1

𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

+ (

𝑘−1

∑

𝑙=𝑘−𝑛+1

−

𝑘−1

∑

𝑙=𝑘−𝑚+1

)𝑥(𝑙)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

− 𝑥(𝑘 − 𝑚)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘 − 𝑚) .

(16)

Note that

𝑘−1

∑

𝑙=𝑘−𝑛+1

𝑥
𝑇

(𝑙)𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

= [

[

𝑘−1

∑

𝑙=𝑘−𝜏min+1

+

𝑘−𝜏min

∑

𝑙=𝑘−𝑛+1

]

]

𝑥
𝑇

(𝑙)𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙)

≤ [

[

𝑘−1

∑

𝑙=𝑘−𝑚+1

+

𝑘−𝜏min

∑

𝑙=𝑘−𝜏max+1

]

]

𝑥
𝑇

(𝑙)𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑙) .

(17)

By combining (16) and (17), we have

E [Δ𝑉
3
] ≤ (𝜏max − 𝜏min + 1) 𝑥(𝑘)

𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘)

− 𝑥(𝑘 − 𝑚)
𝑇

𝐻
𝑇

𝑄
3
𝐻𝑥 (𝑘 − 𝑚) ,

(18)

E [Δ𝑉
4
] = 𝜏
2

max𝛿
𝑇

(𝑘)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑘)

−

𝑘−1

∑

𝑙=𝑘−𝜏max

𝜏max𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

+ (𝜏max − 𝜏min)
2

𝛿
𝑇

(𝑘)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑘)

−

𝑘−𝜏min−1

∑

𝑙=𝑘−𝜏max

(𝜏max − 𝜏min) 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙) .

(19)

By Jensen’s inequality, we can get

𝑘−1

∑

𝑙=𝑘−𝜏max

𝜏max𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

= (

𝑘−𝜏
𝑘
−1

∑

𝑙=𝑘−𝜏max

+

𝑘−1

∑

𝑙=𝑘−𝜏
𝑘

)(𝜏max − 𝜏𝑘 + 𝜏𝑘)

× 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

≥ (𝜏max − 𝜏𝑘)

𝑘−𝜏
𝑘
−1

∑

𝑙=𝑘−𝜏max

𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

+ 𝜏
𝑘

𝑘−1

∑

𝑙=𝑘−𝜏
𝑘

𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
1
𝐻𝛿 (𝑙)

≥ (

𝑘−𝜏
𝑘
−1

∑

𝑙=𝑘−𝜏max

𝛿 (𝑙))

𝑇

𝐻
𝑇

𝑅
1
𝐻(

𝑘−𝜏
𝑘
−1

∑

𝑙=𝑘−𝜏max

𝛿 (𝑙))

+ (

𝑘−1

∑

𝑙=𝑘−𝜏
𝑘

𝛿 (𝑙))

𝑇

𝐻
𝑇

𝑅
1
𝐻(

𝑘−1

∑

𝑙=𝑘−𝜏
𝑘

𝛿 (𝑙))
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≥ (𝑥 (𝑘 − 𝜏max) − 𝑥 (𝑘 − 𝜏𝑘))
𝑇

𝐻
𝑇

𝑅
1
𝐻

× (𝑥 (𝑘 − 𝜏max) − 𝑥 (𝑘 − 𝜏𝑘))

+ (𝑥 (𝑘 − 𝜏
𝑘
) − 𝑥 (𝑘))

𝑇

𝐻
𝑇

𝑅
1
𝐻(𝑥 (𝑘 − 𝜏

𝑘
) − 𝑥 (𝑘))

≥ 𝜉(𝑘)
𝑇

{{{

{{{

{

[
[
[

[

𝐻
𝑇

𝑅
1
𝐻 −𝐻

𝑇

𝑅
1
0 0

−𝑅
1
𝐻 2𝑅

1
0 −𝑅

1

0 0 0 0

0 −𝑅
1

0 𝑅
1

]
]
]

]

}}}

}}}

}

𝜉 (𝑘) .

(20)

Similarly, we have

𝑘−𝜏min−1

∑

𝑙=𝑘−𝜏max

(𝜏max − 𝜏min) 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙)

= (

𝑘−𝜏
𝑘
−1

∑

𝑙=𝑘−𝜏max

+

𝑘−𝜏min−1

∑

𝑙=𝑘−𝜏
𝑘

)

× (𝜏max − 𝜏𝑘 + 𝜏𝑘 − 𝜏min) 𝛿
𝑇

(𝑙)𝐻
𝑇

𝑅
2
𝐻𝛿 (𝑙)

≥ 𝜉(𝑘)
𝑇

{{{

{{{

{

[
[
[

[

0 0 0 0

0 2𝑅
2
−𝑅
2
−𝑅
2

0 −𝑅
2

𝑅
2

0

0 −𝑅
2

0 𝑅
2

]
]
]

]

}}}

}}}

}

𝜉 (𝑘) .

(21)

By combining (19), (20), and (21), we have

E [Δ𝑉
4
] ≤ 𝜉(𝑘)

𝑇

{{{{

{{{{

{

[
[
[
[

[

𝜏max(𝐻 (𝐴
𝑖
− 𝐼))
𝑇

𝜏max(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]

]

× 𝑅
1
[𝜏max𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝐻𝐵

𝑖
0 0]

+

[
[
[
[

[

𝜏(𝐻(𝐴
𝑖
− 𝐼))
𝑇

𝜏(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]

]

× 𝑅
2
[𝜏𝐻 (𝐴

𝑖
− 𝐼) 𝜏𝐻𝐵

𝑖
0 0]

+

[
[
[

[

−𝐻
𝑇

𝑅
1
𝐻 𝐻

𝑇

𝑅
1
0 0

𝑅
1
𝐻 −2𝑅

1
0 𝑅
1

0 0 0 0

0 𝑅
1

0 −𝑅
1

]
]
]

]

+

[
[
[

[

0 0 0 0

0 −2𝑅
2

𝑅
2

𝑅
2

0 𝑅
2

−𝑅
2

0

0 𝑅
2

0 −𝑅
2

]
]
]

]

}}}}

}}}}

}

𝜉 (𝑘) ,

(22)

where 𝜏 is defined inTheorem 3.
By combining (14), (15), (18), and (22), we have

E [Δ𝑉] ≤ 𝜉
𝑇

(𝑘)

{{{{{{

{{{{{{

{

[
[
[

[

Π
𝑖,𝑚

𝐻
𝑇

𝑅
1

0 0

𝑅
1
𝐻 −𝑄

3
− 2𝑅
1
− 2𝑅
2

𝑅
2

𝑅
1
+ 𝑅
2

0 𝑅
2

−𝑄
2
− 𝑅
2

0

0 𝑅
1
+ 𝑅
2

0 −𝑄
1
− 𝑅
1
− 𝑅
2

]
]
]

]

+

[
[
[
[
[
[

[

𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

0

0

]
]
]
]
]
]

]

𝑃
𝑖,𝑚

[𝐴
𝑖
𝐵
𝑖
0 0] +

[
[
[
[
[
[

[

𝜏max(𝐻 (𝐴
𝑖
− 𝐼))
𝑇

𝜏max(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]
]
]

]

𝑅
1
[𝜏max𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝐻𝐵

𝑖
0 0]

+

[
[
[
[
[
[

[

𝜏(𝐻(𝐴
𝑖
− 𝐼))
𝑇

𝜏(𝐻𝐵
𝑖
)
𝑇

0

0

]
]
]
]
]
]

]

𝑅
2
[𝜏𝐻 (𝐴

𝑖
− 𝐼) 𝜏𝐻𝐵

𝑖
0 0]

}}}}}}

}}}}}}

}

𝜉 (𝑘)

= 𝜉
𝑇

(𝑘)Θ
𝑖,𝑚
𝜉 (𝑘) ,

(23)

where Π
𝑖,𝑚

and 𝜏 are defined inTheorem 3.
By Schur complement and from (9), we have Θ

𝑖,𝑚
< 0.

Therefore,

E [Δ𝑉] ≤ −𝜆min (−Θ𝑖,𝑚) 𝜉(𝑘)
𝑇

𝜉 (𝑘) ≤ −𝜂𝑥(𝑘)
𝑇

𝑥 (𝑘) , (24)

where 𝜆min(−Θ𝑖,𝑚) denotes the minimal eigenvalue of −Θ
𝑖,𝑚

and 𝜂 = inf{𝜆min(−Θ𝑖,𝑚)}. From (24), it is seen that for any
𝑡 > 0

E [𝑉 (𝑥 (𝑘 + 1) , 𝛼 (𝑘 + 1) , 𝜏 (𝑘 + 1))]

− E [𝑉 (𝜑, 𝛼 (0) , 𝜏 (0))] ≤ −𝜂

𝑡

∑

𝑘=0

𝐸 [𝑥(𝑘)
𝑇

𝑥 (𝑘)] .
(25)
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Furthermore
𝑡

∑

𝑘=0

E [𝑥(𝑘)
𝑇

𝑥 (𝑘)] ≤
1

𝜂
E [𝑉 (𝜑, 𝛼 (0) , 𝜏 (0))] . (26)

By taking limit as 𝑡 → ∞, we have

∞

∑

𝑘=0

E [𝑥(𝑘)
𝑇

𝑥 (𝑘)] ≤
1

𝜂
E [𝑉 (𝜑, 𝛼 (0) , 𝜏 (0))] < ∞. (27)

According to Definition 2, the closed-loop system (5) is
stochastically stable. This completes the proof.

Theorem 3 gives the sufficient conditions for the stochas-
tic stability of system (5). However, it should be noted that
the conditions (9) are no more LMI conditions. To handle
this, the equivalent LMI conditions are given in Theorem 4
by Cone Complementarity Linearization (CCL) algorithm.

Theorem 4. Consider system (5) with random but bounded
scalar 𝜏(𝑘) ∈ [𝜏min 𝜏max].There exists an output feedback con-
troller (4) such the resulting closed-loop system is stochastically
stable if for each mode 𝑖 ∈ 𝑆

1
, 𝑚 ∈ 𝑆

2
, there exist matrices

𝑃
𝑖,𝑚

> 0, 𝑋
𝑖,𝑚

> 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑅

1
> 0, 𝑅

2
> 0,

𝑈
1
> 0, 𝑈

2
> 0, and 𝐾

𝑖,𝑚
such that

[
[
[

[

Ξ
1

Ξ̂
2

Ξ̂
3

Ξ̂
4

∗ −𝑋
𝑗,𝑛

0 0

∗ ∗ −𝑈
1

0

∗ ∗ ∗ −𝑈
2

]
]
]

]

< 0, (28)

𝑃
𝑖,𝑚
𝑋
𝑖,𝑚

= 𝐼, 𝑅
1
𝑈
1
= 𝐼, 𝑅

2
𝑈
2
= 𝐼, (29)

where

Ξ̂
2
= [L
𝑖,𝑚
𝐴
𝑖
L
𝑖,𝑚
𝐵
𝑖
0 0]
𝑇

,

Ξ̂
3
= [𝜏max𝐻(𝐴

𝑖
− 𝐼) 𝜏max𝐻𝐵

𝑖
0 0]
𝑇

,

Ξ̂
4
= [𝜏𝐻 (𝐴

𝑖
− 𝐼) 𝜏𝐻𝐵

𝑖
0 0]
𝑇

,

𝑋
𝑗,𝑛

= diag {𝑋
0,0
, 𝑋
0,1
, . . . , 𝑋

0,𝑠
2

, 𝑋
1,0
, 𝑋
1,1
, . . . , 𝑋

1,𝑠
2

} ,

(L
𝑖,𝑚
𝐴
𝑖
)
𝑇

= [√𝜋
𝑖0
𝜆
𝑚0

𝐴
𝑇

𝑖
√𝜋
𝑖0
𝜆
𝑚1

𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖0
𝜆
𝑚𝑠
2

𝐴
𝑇

𝑖
√𝜋
𝑖1
𝜆
𝑚0

𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖1
𝜆
𝑚𝑠
2

𝐴
𝑇

𝑖
] ,

(L
𝑖,𝑚
𝐵
𝑖
)
𝑇

= [√𝜋
𝑖0
𝜆
𝑚0

𝐵
𝑇

𝑖
√𝜋
𝑖0
𝜆
𝑚1

𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖0
𝜆
𝑚𝑠
2

𝐵
𝑇

𝑖
√𝜋
𝑖1
𝜆
𝑚0

𝐵
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖1
𝜆
𝑚𝑠
2

𝐵
𝑇

𝑖
] ,

𝐴
𝑖
= [

𝐴 0

0 𝑖𝐼
] + [

𝑖𝐵

0
]𝐾
𝑖,𝑚

[0 𝐼] ,

𝐴
𝑖
− 𝐼 = [

𝐴 − 𝐼 0

0 (𝑖 − 1) 𝐼
] + [

𝑖𝐵

0
]𝐾
𝑖,𝑚

[0 𝐼] ,

𝐵
𝑖
= [

0

(1 − 𝑖) 𝐶
] + [

(1 − 𝑖) 𝐵

0
]𝐾
𝑖,𝑚
𝐶,

𝐻 (𝐴
𝑖
− 𝐼) = [𝐴 − 𝐼 0] + 𝑖𝐵𝐾

𝑖,𝑚
[0 𝐼] ,

𝐻𝐵
𝑖
= (1 − 𝑖) 𝐵𝐾

𝑖,𝑚
𝐶.

(30)

Ξ
1
and 𝜏 are defined inTheorem 3. Moreover, if (28) (29) have

solutions, the controller gain is given by 𝐾
𝑖,𝑚
.

Proof. By Schur complement, (28) is equivalent to

[
[
[

[

Ξ
1

Ξ̂
2

Ξ̂
3

Ξ̂
4

∗ −𝑃
−1

𝑗,𝑛
0 0

∗ ∗ −𝑅
−1

1
0

∗ ∗ ∗ −𝑅
−1

2

]
]
]

]

< 0. (31)

Let 𝑃−1
𝑗,𝑛

= 𝑋
𝑗,𝑛
, 𝑅−1
1

= 𝑈
1
, and 𝑅−1

2
= 𝑈
2
; we can obtain (28),

(29). This completes the proof.

The conditions state in Theorem 4 are a set of LMIs
with some matrix inverse constraints. Although they are

nonconvex, which prevents us from solving them using
the existing convex optimization tool, we can use the con
complementary linearization to algorithm transform this
problem into the nonlinear minimization problem with LMI
constraints as follows:

min Trace(
2

∑

𝑠=1

𝑅
𝑠
𝑈
𝑠
+

1

∑

𝑖=0

𝑠
2

∑

𝑚=0

𝑃
𝑖,𝑚
𝑋
𝑖,𝑚
)

s ⋅ t

{{{{{

{{{{{

{

(i) LMI (28)

(ii) [𝑅𝑠 𝐼

𝐼 𝑈
𝑠

] > 0, 𝑠 ∈ {1, 2} ,

(iii) [𝑃𝑖,𝑚 𝐼

𝐼 𝑋
𝑖,𝑚

] > 0, 𝑖 ∈ 𝑆
1
, 𝑚 ∈ 𝑆

2

.

(32)
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The above nonlinear minimization problem can be solved by
an iterative algorithm presented in the following.

Algorithm 5. Step 1. Find a feasible solution satisfying LMIs
(i), (ii), and (iii) in (32); set as (𝑅0

1
, 𝑈
0

1
, 𝑅
0

2
, 𝑈
0

2
, 𝑃
0

𝑖,𝑚
, 𝑋
0

𝑖,𝑚
, 𝐾
0

)

and 𝑘 = 0.

Step 2. Solve the following LMI optimization problem
for variables (𝑅

1
, 𝑈
1
, 𝑅
2
, 𝑈
2
, 𝑃
𝑖,𝑚
, 𝑋
𝑖,𝑚
, 𝐾). Minimize trace

{∑
2

𝑠=1
(𝑅
𝑘

𝑠
𝑈
𝑠
+𝑅
𝑠
𝑈
𝑘

𝑠
)+∑
1

𝑖=0
∑
𝑠
2

𝑚=0
(𝑃
𝑘

𝑖,𝑚
𝑋
𝑖,𝑚
+𝑃
𝑖,𝑚
𝑋
𝑘

𝑖,𝑚
)}, subject

to LMIs (32). Set𝑅𝑘+1
1

= 𝑅
1
,𝑈𝑘+1
1

= 𝑈
1
,𝑅𝑘+1
2

= 𝑅
2
,𝑈𝑘+1
2

= 𝑈
2
,

𝑃
𝑘+1

𝑖,𝑚
= 𝑃
𝑖,𝑚
,𝑋𝑘+1
𝑖,𝑚

= 𝑋
𝑖,𝑚
, and𝐾𝑘+1 = 𝐾.

Step 3. If (31) is satisfied, then exit the iteration. If (31) is not
satisfied, let 𝑘 = 𝑘 + 1, and then return to Step 2.

4. Numerical Example

To illustrate the effectiveness of the proposed method, we
apply the results in Section 3 to a classical angular positioning
system [43] in Figure 2, where 𝜃 is the angular position of
the antenna, 𝜃

𝑟
is the angular position of the moving object,

and the angular velocity of the antenna ̇𝜃 is measurable. The
control problem is to use the input voltage to the motor to
rotate the antenna so that it always points in the direction of
a moving object in the plant. The output feedback controller
is designed for the following values of the matrices 𝐴, 𝐵, and
𝐶:

𝐴 = [
1 0.0995

0 0.99
] ,

𝐵 = [
0.0039

0.0783
] ,

𝐶 = [
1.4 0.8

−0.2 0.4
] .

(33)

The stochastic jumping parameter 𝛼(𝑘) ∈ {0, 1} and the
random delays involved in system (5) are 𝜏(𝑘) ∈ {0, 1, 2}; the
transition probability matrices 𝜋 and 𝜆 are taken by

𝜋 = [
0.4 0.6

0.55 0.45
] , 𝜆 = [

[

0.36 0.54 0.1

0.26 0.52 0.22

0.18 0.62 0.2

]

]

. (34)

Figures 3 and 4 show part of the simulation of the
stochastic jumping parameter 𝛼(𝑘) and S-C delay 𝜏(𝑘) gov-
erned by their corresponding transition probability matrices,
respectively.

The initial value 𝑥(0) = [−0.4 0.6]
𝑇. By Theorem 4, we

can obtain the gain matrices 𝐾
𝑖,𝑚

of controller (4) which are
constructed as

𝐾
0,0

= [−1.1356 −1.6672] ,

𝐾
0,1

= [−0.2870 −0.4926] ,

𝐾
0,2

= [−0.2898 −0.4909] ,

Target object
Goal: 𝜃 ≅ 𝜃r

Antenna
Motor

Actuator Sensor 𝜃𝜃r

𝜏(k)

y(k)

u(k) Network

S

y(k)

Controller

𝜃u

Figure 2: The angular positioning system.
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Figure 3: Values of 𝛼(𝑘).

𝐾
1,0

= [−0.2886 −0.4900] ,

𝐾
1,1

= [−0.2857 −0.4909] ,

𝐾
1,2

= [−0.2829 −0.4805] .

(35)

The state trajectories and the delay output trajectories are
shown in Figures 5 and 6, where four curves represent
state trajectories and the delay output trajectories under the
controller gains𝐾

𝑖,𝑚
. Figures 5 and 6 indicate that system (5)

is stochastically stable. In contrast with the proposedmethod,
the controller gain𝐾dlqr of a standard linear-quadratic regula-
tor for nominal discrete-time systems designed by MATLAB
command dlqr is

𝐾dlqr = [0.9332 1.6804] . (36)

The eigenvalues of 𝐴 + 𝐵𝐾
lqr are 1.1686 and 0.9567. Hence,

𝐾
lqr cannot stabilize the system in this case. The proposed

controller works much better for networked control system
than the contrastive dlqr method.
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Figure 4: S-C random delays 𝜏(𝑘).
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Figure 5: State trajectories under 𝐾
𝑖,𝑚
.

5. Conclusion

The stability analysis problem for NCSs with random time
delays and packet dropouts is investigated in this paper. The
random time delays and packet dropouts existed in feed-
back communication link are modeled by two independent
Markov chains. Then the resulting closed-loop system is
modeled as a MJLS with Markov delays. Sufficient condi-
tions on stochastic stability and stabilization are obtained
by the Lyapunov stability theory and LMI method. The
CCL algorithm is employed to obtain the mode-dependent
output feedback controller. Finally, an example is presented
to illustrate the effectiveness of the approach. Although the
NCSs with random time delays and packet dropouts on only
sensor to controller link are considered in this paper, the
method of unified modeling and the Lyapunov functional
constructing can be extended to the NCSs with the random
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Figure 6: The trajectories of delay output 𝑦(𝑘).

time delays and packet dropouts existing in both the sensor
to controller and controller to actuator.
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