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This paper deals with the problem of fault detection for linear uncertain time-delay systems.The proposed method for Luenberger
observers is developed for unknown input observers (UIOs), and a novel procedure for the design of residual based on UIOs
is presented. The design procedure is carried out based on the 𝐻

∞
model matching approach which minimizes the difference

between generated residuals by the optimal observer and those by the designed observer in the presence of uncertainties. The
optimal observer is designed for the ideal system and works so that the fault effect is maximized while the exogenous disturbances
and noise effects are minimized.This observer can give disturbance decoupling in the presence of noise and uncertainties for linear
uncertain time-delay systems. The developed method is applied to a numerical example, and the simulation results show that the
proposed approach is able to detect faults reliably in the presence of modeling errors, disturbances, and noise.

1. Introduction

Fault detection and isolation (FDI) is an essential and
challenging problem inmany industrial applications. Among
the various reported methods, much attention has been paid
to model based approaches in the field of control engineering
in recent years. For example, fault detection problem for
discrete-time Markov jump systems and switched systems
is investigated in [1, 2], respectively. The problem of fault
reconstruction for a class of descriptor linear systems using
sliding mode observers is presented in [3]. The sliding mode
observers have been designed such that the actuator fault
can be reconstructed using output measurements. The data-
driven scheme for FDI is presented in [4] which exploits an
adaptive residual generator and a bank of isolation observers.
The designed scheme obtains observer parameters without
identification of complete process model.

However, model based approaches are based on some
idealized assumptions, one of which is that the mathematical
model of the plant is a faithful replica of the plant dynamics
[5]. As themathematicalmodel of a plant hardly represents its
complete behavior, due to the existence of model uncertainty,
noise, and unknown disturbances, it is essential to design a
fault diagnosis system to take these effects into consideration.
Motivated by the abovementioned issues, a robust fault detec-
tion scheme is exploited to design fault detection systems
so that high sensitivity to faults as well as low sensitivity
to uncertainties and perturbation can be obtained. Opti-
mization techniques are widely used to solve this problem.
One of the commonly used approaches to design such FDI
scheme is representing the design procedure by 𝐻

∞
and 𝐻

−

performance indexes. The main advantage of this approach
is that it can be solved by linear matrix inequality (LMI) [6].
In [7, 8], a two-step FDI design methodology is presented.
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In this methodology, the optimal fault detection filter (FDF)
has firstly been designed, neglecting the existence of model
uncertainty. Next, the FDF, which is used as residual gener-
ator, has been obtained via 𝐻

∞
model matching technique.

The same approach is used in [9]; however, different dynamics
is considered for the FDF.

Time delay is an inherent characteristic of many indus-
trial systems; therefore, robust FDI problem for LTI systems
with time delay received great attention over recent decades,
and numerous articles have been presented. One approach
is to solve the formulated design procedure using the eigen-
structure assignment approach in which the residual signal
is thoroughly decoupled from delay-free unknown input.
Then the effect of the unknown input is minimized using
𝐻
∞

norm [10]. In the presence of uncertainty, the same
approach as delay-free case can be employed to obtain a
robust FDI system. Indeed, solving the 𝐻

∞
model matching

problem results in achieving an FDF which acts the same
as the optimal one [11–13]. Although the same approach is
considered in these references, solving procedures are com-
pletely different owing to the difference between the dynamic
of the filter and system. In [14], the problem of robust
FDF design for the class of linear systems has been inves-
tigated. The system is subjected to mixed neutral and dis-
crete time-varying delays and some nonlinear perturbations.
The Luenberger type observer has been utilized to design
FDF such that the residual signals effectively show fault
occurrence.

Another approach commonly used to robust FDI scheme
is to employ the unknown input observers (UIO), in which
the residual is designed to be sensitive to faults but insensitive
to unknown disturbances. Although theUIO has beenwidely
used in estimation problems in both time delay and delay-
free systems [15–18], there are few references that handle the
problem of designing robust FDI [19, 20]. In [20], a design
procedure has been proposed for delay-free systems so that
perturbations and exogenous signals have less effect on the
residual signal and the fault has a detectable effect on the
residual; however, the problem has not been presented in𝐻

∞

model matching technique. Motivated by this consideration,
a robust FDF design using UIO for uncertain systems with
time delay is presented and solved using𝐻

∞
model matching

approach. In contrast to our previous work [18], we are
concerned to design a robust FDF for the case in which
the dynamic characteristic of fault signal is known. For
this purpose, a two-step design procedure is developed. In
the first step, the optimal fault detection based on UIO
is designed for the system without uncertainty. Next, the
UIO-based fault detection filter is approached to optimal
one in the sense of 𝐻

∞
norm. It is demonstrated through

simulation that the presented fault detection observer is
robust against uncertainty and sensitive enough to the
faults.

Notation. The notations used throughout the paper are
fairly standard. I and 0 represent identity matrix and zero
matrix; the superscript “𝑇” stands for matrix transposition.
‖ ⋅ ‖ refers to the Euclidean vector norm or the induced
matrix 2-norm. diag{⋅} represents a block diagonal matrix.

The notation 𝑃 > 0 means that 𝑃 is real symmet-
ric and positive definite; the symbol ∗ denotes the ele-
ments below the main diagonal of a symmetric block
matrix.

2. Problem Statement

Many different industrial systems such as mechanical, elec-
trical, meteorological, chemical, economic, and biological
systems include time delay. In many studies linearized model
of these systems around point of operation is considered.
However, there are always some discrepancies between the
real dynamics of the system and linearized model. These
differences arise from systems uncertainty, as a consequence
of neglecting dynamics, and changes in system parameters.
Therefore, the following linear uncertain systemwith additive
disturbances and time delay is considered to represent the
described model:

�̇� (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡)) 𝑥 (𝑡 − 𝜏)

+ (𝐵 + Δ𝐵 (𝑡)) 𝑢 (𝑡) + 𝐸𝑑 (𝑡) + 𝐹
𝑥
𝑓 (𝑡) + 𝑅𝑛 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹
𝑦
𝑓 (𝑡) + 𝐷𝑛 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑝 is the
output vector, 𝑢(𝑡) ∈ R𝑞 is the input vector, 𝑑(𝑡) ∈ R𝑚

is an unknown scalar function representing the disturbance
that belongs to 𝐿

𝑚

2
(0,∞), 𝑓(𝑡) ∈ R𝑓 denotes the faults, and

𝑛(𝑡) ∈ R𝑟 represents the noise. Note that Δ𝐴(𝑡), Δ𝐵(𝑡), and
Δ𝐴
𝑑
(𝑡) are the norm bounded time-varying uncertainties of

thematrices𝐴,𝐵, and𝐴
𝑑
, respectively, and 𝜏 ≥ 0 is a constant

delay. It is assumed that the characteristics of uncertainty
matrices belong to

Ω
1
= {Δ𝐴 (𝑡) | Δ𝐴 (𝑡) = 𝑀

1
Σ
1
(𝑡)𝑁
1
, Σ
𝑇

1
(𝑡) Σ
1
(𝑡) ≤ 𝐼} ,

Ω
2
= {Δ𝐵 (𝑡) | Δ𝐵 (𝑡) = 𝑀

2
Σ
2
(𝑡)𝑁
2
, Σ
𝑇

2
(𝑡) Σ
2
(𝑡) ≤ 𝐼} ,

Ω
3
= {Δ𝐴

𝑑
(𝑡) | Δ𝐴

𝑑
(𝑡) = 𝑀

3
Σ
3
(𝑡)𝑁
3
, Σ
𝑇

3
(𝑡) Σ
3
(𝑡) ≤ 𝐼} ,

(2)

where𝑀
𝑖
and𝑁

𝑖
are predefined matrices. It is supposed that

all over the paper the dimensions of matrices are compatible
if they are not explicitly mentioned.

The dynamic characteristic of fault signal can be
described by [21]

̇𝜃 (𝑡) = 𝐴
𝜃
𝜃 (𝑡) , 𝑡 ≥ 𝑡

𝑓
,

𝜃 (𝑡) = 0, 𝑡 ∈ [0, 𝑡
𝑓
] ,

𝜃 (𝑡
𝑓
) = 𝜃
0
,

𝑓 (𝑡) = 𝐹
𝜃
𝜃 (𝑡) ,

(3)

where 𝑡
𝑓
is the time when a fault occurs and 𝐴

𝜃
and 𝐹

𝜃

are known matrices with appropriate dimensions. The initial
time, 𝑡

𝑓
, and initial state, 𝜃

0
, are supposed to be unknown.

The dynamic equation (3) represents any fault with known
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dynamic characteristic and unknown amplitude and phase
[21].

Unknown input observer for the class of time-delay
system (1) is considered as [22]

�̇� (𝑡) = 𝐹𝑧 + 𝐺𝑧 (𝑡 − 𝜏) + 𝐻𝑢 (𝑡) + 𝐾
1𝑧
𝑦 (𝑡) + 𝐾

2𝑧
𝑦 (𝑡 − 𝜏) ,

𝑥 (𝑡) = 𝑧 (𝑡) + 𝐿
1
𝑦 (𝑡) ,

(4)

where 𝑥(𝑡) is the estimated state vector. The dynamic of 𝑥(𝑡)
is governed by

̇̂𝑥 (𝑡) = 𝐹𝑥 + 𝐺𝑥 (𝑡 − 𝜏) + 𝐻𝑢 (𝑡) + 𝐿
1

̇𝑦 (𝑡)

+ 𝐿
2
𝑦 (𝑡) + 𝐿

3
𝑦 (𝑡 − 𝜏) ,

(5)

where 𝐹, 𝐺, 𝐻, and 𝐿
1
are the observer matrices and 𝐿

2
=

𝐾
1𝑧

− 𝐹𝐿
1
, 𝐿
3
= 𝐾
2𝑧

− 𝐺𝐿
1
.

The observer matrices will be designed such that the
disturbance and input are decoupled from the estimation
error defined by 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡). When UIO-based filter
defined by (4) is applied to the system described in (1), the
state estimation error will be

̇𝑒 (𝑡) = 𝐹𝑒 (𝑡) + 𝐺𝑒 (𝑡 − 𝜏) + ((𝐼 − 𝐿
1
𝐶)𝐴 − 𝐿

2
𝐶 − 𝐹) 𝑥 (𝑡)

+ ((𝐼 − 𝐿
1
𝐶)𝐴
𝑑
− 𝐿
3
𝐶 − 𝐺) 𝑥 (𝑡 − 𝜏)

+ ((𝐼 − 𝐿
1
𝐶)𝐵 − 𝐻) 𝑢 (𝑡)

+ (𝐼 − 𝐿
1
𝐶)𝐸𝑑 (𝑡)

+ ((𝐼 − 𝐿
1
𝐶)𝐹
𝑥
𝐹
𝜃
− 𝐿
2
𝐹
𝑦
𝐹
𝜃
− 𝐿
1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) 𝜃 (𝑡)

− 𝐿
3
𝐹
𝑦
𝐹
𝜃
𝜃 (𝑡 − 𝜏) + ((𝑅 − 𝐿

1
𝐶𝑅) − 𝐿

2
𝐷) 𝑛 (𝑡)

− 𝐿
3
𝐷𝑛 (𝑡 − 𝜏) − 𝐿

1
𝐷 ̇𝑛 (𝑡)

+ (𝐼 − 𝐿
1
𝐶)Δ𝐴 (𝑡) 𝑥 (𝑡) + (𝐼 − 𝐿

1
𝐶)Δ𝐴

𝑑
(𝑡) 𝑥 (𝑡 − 𝜏)

+ (𝐼 − 𝐿
1
𝐶)Δ𝐵 (𝑡) 𝑢 (𝑡) .

(6)

In the absence of uncertainties and faults, it is shown that
the observer, defined by (4), is UIO for the predefined system
by (1) if the following conditions are satisfied [22].

Condition 1:

̇𝑒 (𝑡) = 𝐹𝑒 (𝑡) + 𝐺𝑒 (𝑡 − 𝜏) is asymptotically stable. (7)

Condition 2:

𝐹 = (𝐼 − 𝐿
1
𝐶)𝐴 − 𝐿

2
𝐶. (8)

Condition 3:

𝐺 = (𝐼 − 𝐿
1
𝐶)𝐴
𝑑
− 𝐿
3
𝐶. (9)

Condition 4:

𝐻 = (𝐼 − 𝐿
1
𝐶)𝐵. (10)

Condition 5:

(𝐼 − 𝐿
1
𝐶)𝐸 = 0, (11)

where 0 denotes a null matrix with compatible dimension.
Using these relationships, and considering definitions in (12),
the state estimation error dynamic (6) is transformed to (13):

𝑇 = (𝐼 − 𝐿
1
𝐶) ,

𝐹 = [(𝐼 − 𝐿
1
𝐶)𝐹
𝑥
𝐹
𝜃
− 𝐿
2
𝐹
𝑦
𝐹
𝜃
− 𝐿
1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃

−𝐿
3
𝐹
𝑦
𝐹
𝜃
] ,

𝑅 = [−𝐿
1
𝐷 (𝐼 − 𝐿

1
𝐶)𝑅 − 𝐿

2
𝐷 −𝐿

3
𝐷] ,

𝜃 = [𝜃
𝑇

(𝑡) 𝜃
𝑇

(𝑡 − 𝜏)]
𝑇

,

𝑛 = [ ̇𝑛
𝑇

(𝑡) 𝑛
𝑇

(𝑡) 𝑛
𝑇

(𝑡 − 𝜏)]
𝑇

,

(12)

̇𝑒 (𝑡) = 𝐹𝑒 (𝑡) + 𝐺𝑒 (𝑡 − 𝜏) + 𝐹 𝜃 + 𝑅 𝑛

+ 𝑇Δ𝐴 (𝑡) 𝑥 (𝑡) + 𝑇Δ𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏)

+ 𝑇Δ𝐵 (𝑡) 𝑢 (𝑡) .

(13)

In order to use the UIO for fault detection purposes,
a residual signal should be defined. Difference between
measured output and estimated output is usually considered
as a residual signal. In current work, a more general form for
residual reference signal is considered as follows:

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑟 (𝑡) = 𝑉
1
(𝑦 (𝑡) − 𝑦 (𝑡)) + 𝑉

2
(𝑦 (𝑡 − 𝜏) − 𝑦 (𝑡 − 𝜏))

= 𝑉
1
𝐶𝑒 (𝑡) + 𝑉

2
𝐶𝑒 (𝑡 − 𝜏) + 𝐾

1
𝜃 (𝑡) + 𝐾

2
𝑛 (𝑡) ,

𝐾
1
= [𝑉
1
𝐹
𝑦
𝐹
𝜃

𝑉
2
𝐹
𝑦
𝐹
𝜃
] ,

𝐾
2
= [0 𝑉

1
𝐷 𝑉
2
𝐷] .

(14)

The goal of robust fault detection problem is to mini-
mize the performance index defined in (15) for all classes
of model uncertainties belonging to Ω

𝑖
. In general, this

performance index is minimized using 𝐻
∞

model match-
ing approach which minimizes the difference between the
residual signal (𝑟(𝑡)) and reference residual signal (𝑟

𝑓
(𝑡))
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in the presence of the worst case disturbance signals. This
performance index has been minimized by the following
steps.

Step 1. The ideal residual signal generator system has been
designed for the system without uncertainty defined in
(16). The residual signal shows the maximum sensitivity to
the fault signal while it has the minimum sensitivity to
disturbance, noise, and unknown inputs.

Step 2. The residual signal generator system has been de-
signed such that the performance index (17) isminimized and
the overall system (19) is asymptotically stable:

𝐽
𝑟
= min
(Δ𝐴,Δ𝐵,Δ𝐴𝑑) ∈Ω𝑖

𝐺𝑟[𝑑 𝑛]
∞


𝐺
𝑟𝑓

∞

, (15)

̇𝑒
𝑓
(𝑡) = 𝐹

∗

𝑒
𝑓
(𝑡) + 𝐺

∗

𝑒
𝑓
(𝑡 − 𝜏) + 𝐹

∗

𝜃 (𝑡) + 𝑅
∗

𝑛 (𝑡) ,

𝑟
𝑓
(𝑡) = 𝑉

∗

1
𝐶𝑒
𝑓
(𝑡) + 𝑉

∗

2
𝐶𝑒
𝑓
(𝑡 − 𝜏) + 𝐾

∗

1
𝜃 (𝑡) + 𝐾

∗

2
𝑛 (𝑡) ,

(16)

𝐽
𝑟𝑒
= sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑)∈Ω𝑖

𝑟𝑒
2

‖𝜔‖
2

< 𝛾, (17)

where

𝑟
𝑒
(𝑡) = 𝑟 (𝑡) − 𝑟

𝑓
(𝑡) ,

𝜔 = [𝑢
𝑇

𝜃
𝑇

𝑑
𝑇

𝑛
𝑇]
𝑇

,

(18)

̇𝜁 (𝑡) = (𝐴 + Δ𝐴) 𝜁 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
) 𝜁 (𝑡 − 𝜏)

+ (𝐵
𝜔1

+ Δ𝐵
𝜔1
) 𝜔 (𝑡) ,

𝑟
𝑒
(𝑡) = 𝐶

1
𝜁 (𝑡) + 𝐶

2
𝜁 (𝑡 − 𝜏) + 𝐷𝜔 (𝑡) ,

(19)

where

𝜁 (𝑡) = [𝑒
𝑇

(𝑡) 𝑒
𝑇

𝑓
(𝑡) 𝑥
𝑇

(𝑡)]
𝑇

,

𝐴 = [

[

𝐹 0 0
0 𝐹
∗ 0

0 0 𝐴

]

]

, 𝐴
𝑑
= [

[

𝐺 0 0
0 𝐺
∗ 0

0 0 𝐴
𝑑

]

]

,

𝐵
𝜔1

= [

[

0 𝐹 0 𝑅

0 𝐹
∗ 0 𝑅

∗

𝐵 𝐾
3

𝐸 𝐾
4

]

]

, Δ𝐴 = [

[

0 0 𝑇Δ𝐴

0 0 0
0 0 Δ𝐴

]

]

,

Δ𝐴
𝑑
= [

[

0 0 𝑇Δ𝐴
𝑑

0 0 0
0 0 Δ𝐴

𝑑

]

]

, Δ𝐵
𝜔1

= [

[

𝑇Δ𝐵 0 0 0
0 0 0 0
Δ𝐵 0 0 0

]

]

,

𝐶
1
= [𝑉
1
𝐶 −𝑉

∗

1
𝐶 0] , 𝐶

2
= [𝑉
2
𝐶 −𝑉

∗

2
𝐶 0] ,

𝐷 = [0 𝐾
1
− 𝐾
∗

1
0 𝐾
2
− 𝐾
∗

2
] ,

𝐾
3
= [𝐹
𝑥
𝐹
𝜃

0] , 𝐾
4
= [0 𝑅 0] .

(20)

Furthermore, using (2) it is easy to see thatΔ𝐴,Δ𝐴
𝑑
,Δ𝐵
𝜔1

can be expressed by

Δ𝐴 = �̃�
1
Σ
1
(𝑡) �̃�
1
= [

[

𝑇𝑀
1

0
𝑀
1

]

]

Σ
1
(𝑡) [0 0 𝑁

1
] ,

Δ𝐴
𝑑
= �̃�
2
Σ
2
(𝑡) �̃�
2
= [

[

𝑇𝑀
2

0
𝑀
2

]

]

Σ
2
(𝑡) [0 0 𝑁

2
] ,

Δ𝐵
𝜔1

= �̃�
3
Σ
3
(𝑡) �̃�
3
= [

[

𝑇𝑀
3

0
𝑀
3

]

]

Σ
3
(𝑡) [𝑁

3
0 0 0] .

(21)

Before developing theorems that are utilized in designed
procedure, the following lemmas, which are useful to prove
the theorems, are introduced.

Lemma 1 (see [22]). Condition 5 is solvable if and only if the
following relation holds:

rank (𝐶𝐸) = 𝑚, 𝑚 ≤ 𝑝. (22)

The general solution of condition 5 can be calculated by

𝐿
1
= 𝐸(𝐶𝐸)

+

+ 𝑌 [𝐼 − 𝐶𝐸(𝐶𝐸)
+

]

= Θ
1
+ 𝑌Θ
2
,

(23)

where𝑌 is an arbitrary matrix with an appropriate dimension.

Lemma 2. Suppose that M, N, and Σ(𝑡) are compatible and
Σ
𝑇

(𝑡)Σ(𝑡) ≤ 𝐼; then there exists a scalar 𝜀 > 0 such that the
following equation holds:

𝑀Σ𝑁 + (𝑀Σ𝑁)
𝑇

≤ 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁. (24)

(a) Reference Model Selection (Step 1). Reference model selec-
tion is an important key to the design of robust fault detection
filter for linear uncertain time-delay systems. To this end,
the analogues procedure as that for fault detection in [6]
is extended for delay systems considering the UIO as the
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fault detection filter. According to (16), the reference residual
signal can be written as sum of two signals, 𝑟

𝑓𝑛
(𝑡) and

𝑟
𝑓𝜃
(𝑡). The reference model should be chosen such that the

effect of exogenous signals on the reference residual signal is
minimized while the effect of fault signal is maximized.These
two tasks are described mathematically by


𝑇 (𝑟
𝑓𝑛
, 𝑛)

∞
≤ 𝛼,


𝑇 (𝑟
𝑓𝑓

, 𝑓)
−

≥ 𝛽,

(25)

where 𝑇(⋅, ⋅) is the transfer function between two signals.The
following two theorems provide conditions which ensure the

asymptotic stability of (16). They also provide the conditions
that increase the sensitivity of the residual signal from faults
and decrease the sensitivity of residual signal from noise.

Theorem 3. For given 𝛼 > 0, if there exist symmetric positive
matrices 𝑃,𝑄,𝑉∗

1
,𝑉∗
2
,Φ∗
1
,Φ∗
2
, andΦ

∗

3
such that the following

LMI holds:

[
[
[

[

𝑃𝐹
∗

+ 𝐹
∗𝑇

𝑃 + 𝑄 𝑃𝐺
∗

𝑃𝑅
∗

𝐶
𝑇

𝑉
∗

1

𝑇

∗ −𝑄 0 𝐶
𝑇

𝑉
∗

2

𝑇

∗ ∗ −𝛼
2

𝐼 𝐾
∗𝑇

2

∗ ∗ ∗ −𝐼

]
]
]

]

< 0, (26)

where

𝑃𝐹
∗

= 𝑃 (𝐴 − Θ
1
𝐶𝐴) − Φ

∗

1
(Θ
2
𝐶𝐴) − Φ

∗

2
𝐶,

𝑃𝐺
∗

= 𝑃 (𝐴
𝑑
− Θ
1
𝐶𝐴
𝑑
) − Φ
∗

1
(Θ
2
𝐶𝐴
𝑑
) − Φ
∗

3
𝐶,

𝑃𝑅
∗

= [−𝑃 (Θ
1
𝐷) − Φ

∗

1
(Θ
2
𝐷) 𝑃 (𝑅 − Θ

1
𝐶𝑅) − Φ

∗

1
(Ψ
2
𝐶𝑅) − Φ

∗

2
𝐷 −Φ

∗

3
𝐷] ,

𝐾
∗

2
= [0 𝑉

∗

1
𝐷 𝑉
∗

2
𝐷] ,

(27)

then the system (28) is asymptotically stable and
‖𝑇(𝑟
𝑓𝑛
, 𝑛)‖
∞

≤ 𝛼. Furthermore, the UIOmatrices are obtained
from conditions 2 to 5, and 𝑌

∗

= 𝑃
−1

Φ
1
, 𝐿
2
= 𝑃
−1

Φ
2
, 𝐿
3
=

𝑃
−1

Φ
3
,

̇𝑒
𝑓𝑛

(𝑡) = 𝐹
∗

𝑒
𝑓𝑛

(𝑡) + 𝐺
∗

𝑒
𝑓𝑛

(𝑡 − 𝜏) + 𝑅
∗

𝑛 (𝑡) ,

𝑟
𝑓𝑛

(𝑡) = 𝑉
∗

1
𝐶𝑒
𝑓𝑛

(𝑡) + 𝑉
∗

2
𝐶𝑒
𝑓𝑛

(𝑡 − 𝜏) + 𝐾
∗

2
𝑛 (𝑡) .

(28)

Proof. Condition ‖𝑇(𝑟
𝑓𝑛

, 𝑛)‖
∞

≤ 𝛼 is equivalent to 𝐽
𝑟𝑓𝑛

:

∫
∞

0

(𝑟
𝑇

𝑓𝑛
(𝑡)𝑟
𝑓𝑛
(𝑡) − 𝛼

2

𝑛
𝑇

(𝑡)𝑛(𝑡))𝑑𝑡 ≥ 0. Now Consider the

Lyapunov-Krasovskii function which is defined as 𝑉(𝑡) =

𝑒
𝑇

𝑓𝑛
(𝑡)𝑃𝑒
𝑓𝑛
(𝑡) + ∫

𝑡

𝑡−𝜏

𝑒
𝑇

𝑓𝑛
(𝑠)𝑄𝑒
𝑓𝑛
(𝑠)𝑑𝑠. Then we have

𝐽
𝑟𝑓𝑛

= ∫

∞

0

(𝑟
𝑇

𝑓𝑛
(𝑡) 𝑟
𝑓𝑛

(𝑡) − 𝛼
2

𝑛
𝑇

(𝑡) 𝑛 (𝑡) + �̇� (𝑡)) 𝑑𝑡

+ 𝑉 (0) − 𝑉 (∞) .

(29)

Assume 𝑟
𝑓𝑛
(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Since 𝑉(∞) > 0, it can

be concluded that

𝐽
𝑟𝑓𝑛

≤ ∫

∞

0

(𝑟
𝑇

𝑓𝑛
(𝑡) 𝑟
𝑓𝑛

(𝑡) − 𝛼
2

𝑛
𝑇

(𝑡) 𝑛 (𝑡) + �̇� (𝑡)) 𝑑𝑡. (30)

Taking derivative from 𝑉(𝑡) and considering (28) yield

𝐽
𝑟𝑓𝑛

≤ ∫

𝑡

𝑡−𝜏

[

[

𝑒
𝑓𝑛

(𝑡)

𝑒
𝑓𝑛

(𝑡 − 𝜏)

𝑛 (𝑡)

]

]

𝑇

[
[

[

𝑃𝐹
∗

+ 𝐹
∗𝑇

𝑃 + 𝑄 + 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 𝑃𝑅

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

2

∗ 𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 − 𝑄 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

2

∗ ∗ −𝛼
2

𝐼 + 𝐾
∗𝑇

2
𝐾
∗

2

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ

[

[

𝑒
𝑓𝑛

(𝑡)

𝑒
𝑓𝑛

(𝑡 − 𝜏)

𝑛 (𝑡)

]

]

. (31)
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Hence, Ξ < 0 implies 𝐽
𝑟𝑓𝑛

< 0. Using the Schur
complement theorem (26) is concluded from (31). Indeed, the
inequality (26), without considering (27), includes nonlinear
terms of 𝑃𝑌

∗, 𝑃𝐿
∗

2
, and 𝑃𝐿

∗

3
which lead the LMI to be

infeasible. To overcome this problem, define Φ
∗

1
= 𝑃𝑌

∗,

Φ
∗

2
= 𝑃𝐿
∗

2
, and Φ

∗

3
= 𝑃𝐿
∗

3
. Using conditions 2, 3 and (23) it

can be shown that (27) makes the LMI feasible. It completes
the proof.

Theorem 4. For given 𝛽 > 0, if there exists symmetric positive
matrices 𝑃, 𝑄, 𝑉∗

1
, 𝑉∗
2
,Φ∗
1
,Φ∗
2
, andΦ

∗

3
such that the following

LMI holds:

[
[
[

[

𝑃𝐹
∗

+ 𝐹
∗𝑇

𝑃 − 𝑄 + 2𝜑
1
(𝑉
∗

1
, 𝑉
𝑛

1𝑐
) −𝑃𝐺

∗

−𝑃𝐹
∗

𝐶
𝑇

𝑉
∗𝑇

1

∗ −𝑄 + 2𝜑
2
(𝑉
∗

2
, 𝑉
𝑛

2𝑐
) 0 𝐶

𝑇

𝑉
∗𝑇

2

∗ ∗ 𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
+ 2𝜑
3
(𝐾
∗

1
, 𝐾
𝑛

1
) 𝐾

∗𝑇

1

∗ ∗ ∗ −𝐼

]
]
]

]

< 0, (32)

where

𝑃𝐹
∗

= 𝑃 (𝐴 − Θ
1
𝐶𝐴) − Φ

∗

1
(Θ
2
𝐶𝐴) − Φ

∗

2
𝐶,

𝑃𝐺
∗

= 𝑃 (𝐴
𝑑
− Θ
1
𝐶𝐴
𝑑
) − Φ
∗

1
(Θ
2
𝐶𝐴
𝑑
) − Φ
∗

3
𝐶,

𝑃𝐹
∗

= [𝑃 (𝐹
𝑥
𝐹
𝜃
− Θ
1
𝐶𝐹
𝑥
𝐹
𝜃
) − Φ
∗

1
(Θ
2
𝐶𝐹
𝑥
𝐹
𝜃
) − Φ
∗

2
𝐹
𝑦
𝐹
𝜃
− 𝑃 (Ψ

1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) − Φ
∗

1
(Ψ
2
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) −Φ

∗

3
𝐹
𝑦
𝐹
𝜃
] ,

𝐾
∗

1
= [𝑉
∗

1
𝐹
𝑦
𝐹
𝜃

𝑉
∗

2
𝐹
𝑦
𝐹
𝜃
] ,

(33)

𝑉
𝑛

1𝑐
= 𝑉
∗

1

𝑛−1

𝐶, 𝑉
𝑛

2𝑐
= 𝑉
∗

2

𝑛−1

𝐶, 𝐾
𝑛

11
= 𝑉
∗

1

𝑛−1

𝐹
𝑦
𝐹
𝜃
, 𝐾
𝑛

12
= 𝑉
∗

2

𝑛−1

𝐹
𝑦
𝐹
𝜃
, 𝑓𝑜𝑟 𝑛 = 1, 2, . . . ,

𝐾
𝑛

1
= [𝐾
𝑛

11
𝐾
𝑛

12
] ,

𝜑
1
(𝑉
∗

1
, 𝑉
𝑛

1𝑐
) = (𝑉

𝑛

1𝑐
)
𝑇

𝑉
𝑛

1𝑐
− (𝑉
𝑛

1𝑐
)
𝑇

𝑉
∗

1
𝐶 − 𝐶

𝑇

𝑉
∗

1

𝑇

𝑉
𝑛

1𝑐
,

𝜑
2
(𝑉
∗

2
, 𝑉
𝑛

2𝑐
) = (𝑉

𝑛

2𝑐
)
𝑇

𝑉
𝑛

2𝑐
− (𝑉
𝑛

2𝑐
)
𝑇

𝑉
∗

2
𝐶 − 𝐶

𝑇

𝑉
∗𝑇

2
𝑉
𝑛

2𝑐
,

𝜑
3
(𝐾
∗

1
, 𝐾
𝑛

1
) = (𝐾

𝑛

1
)
𝑇

𝐾
𝑛

1
− (𝐾
𝑛

1
)
𝑇

𝑉
∗

1
𝐹
𝑦
𝐹
𝜃
− 𝐹
𝑇

𝜃
𝐹
𝑇

𝑦
𝑉
∗𝑇

1
𝐾
𝑛

1
,

(34)

then the system (35) is asymptotically stable, and
‖𝑇(𝑟
𝑓𝜃
, 𝑓)‖
−

≥ 𝛽. Moreover, the UIO matrices are obtained
from conditions 2 to 5, and 𝑌

∗

= 𝑃
−1

Φ
1
, 𝐿
2
= 𝑃
−1

Φ
2
, 𝐿
3
=

𝑃
−1

Φ
3
,

̇𝑒
𝑓𝜃

(𝑡) = 𝐹
∗

𝑒
𝑓 𝜃

(𝑡) + 𝐺
∗

𝑒
𝑓𝜃

(𝑡 − 𝜏) + 𝐹
∗

𝜃 (𝑡) ,

𝑟
𝑓𝜃

(𝑡) = 𝑉
∗

1
𝐶𝑒
𝑓𝜃

(𝑡) + 𝑉
∗

2
𝐶𝑒
𝑓𝜃

(𝑡 − 𝜏) + 𝐾
∗

2
𝜃 (𝑡) .

(35)

Proof. Condition ‖𝑇(𝑟
𝑓𝑓

, 𝑓)‖
−

≥ 𝛽 is equivalent to 𝐽
𝑟
𝑓𝑓

:

∫
∞

0

(𝑟
𝑇

𝑓𝜃

(𝑡)𝑟
𝑓𝜃
(𝑡) − 𝛽

2

𝑓
𝑇

(𝑡)𝑓(𝑡))𝑑𝑡 ≥ 0. Now consider the
Lyapunov-Krasovskii function which is defined as 𝑉(𝑡) =

𝑒
𝑇

𝑓𝜃

(𝑡)𝑃𝑒
𝑓𝜃
(𝑡) + ∫

𝑡

𝑡−𝜏

𝑒
𝑇

𝑓𝜃

(𝑠)𝑄𝑒
𝑓𝜃
(𝑠)𝑑𝑠. Then we have

𝐽
𝑟
𝑓𝜃

= ∫

∞

0

(𝑟
𝑇

𝑓𝜃
(𝑡) 𝑟
𝑓𝜃

(𝑡) − 𝛽
2

𝑓
𝑇

(𝑡)

×𝑓 (𝑡) − �̇� (𝑡)) 𝑑𝑡 − 𝑉 (0) + 𝑉 (∞) .

(36)

Assume 𝑟
𝑓𝜃
(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Since 𝑉(∞) > 0, we

have

𝐽
𝑟
𝑓𝜃

≥ ∫

∞

0

(𝑟
𝑇

𝑓𝜃
(𝑡) 𝑟
𝑓𝜃

(𝑡) − 𝛽
2

𝑓
𝑇

(𝑡) 𝑓 (𝑡) − �̇� (𝑡)) 𝑑𝑡. (37)

Taking derivative from 𝑉(𝑡) and considering (35) yield

𝐽
𝑟
𝑓𝜃

> ∫

𝑡

𝑡−𝜏

[
[

[

𝑒
𝑓𝜃

(𝑡)

𝑒
𝑓𝜃

(𝑡 − 𝜏)

𝜃 (𝑡)

]
]

]

𝑇

[
[

[

−𝑃𝐹
∗

− 𝐹
∗
𝑇

𝑃 − 𝑄 + 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 −𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 −𝑃𝐹

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

1

∗ 𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 + 𝑄 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

1

∗ ∗ −𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
+ 𝐾
∗

1

𝑇

𝐾
∗

1

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ

[
[

[

𝑒
𝑓𝜃

(𝑡)

𝑒
𝑓𝜃

(𝑡 − 𝜏)

𝜃 (𝑡)

]
]

]

. (38)
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Hence, Ξ > 0 implies 𝐽
𝑟
𝑓𝜃

> 0. Ξ > 0 is equivalent to

[
[

[

𝑃𝐹
∗

+ 𝐹
∗
𝑇

𝑃 + 𝑄 − 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 −𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 −𝑃𝐹

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

1

∗ −𝑄 − 𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

1

∗ ∗ 𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
− 𝐾
∗𝑇

1
𝐾
∗

1

]
]

]

< 0. (39)

Then, (39) can be written as

[
[

[

𝑃𝐹
∗

+ 𝐹
∗
𝑇

𝑃 + 𝑄 − 2𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 −𝑃𝐺

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

2
𝐶 −𝑃𝐹

∗

+ 𝐶
𝑇

𝑉
∗𝑇

1
𝐾
∗

1

∗ −𝑄 − 2𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 𝐶

𝑇

𝑉
∗𝑇

2
𝐾
∗

1

∗ ∗ 𝛽
2

𝐹
𝑇

𝜃
𝐹
𝜃
− 2𝐾
∗𝑇

1
𝐾
∗

1

]
]

]

+ [𝐶
𝑇

𝑉
∗𝑇

1
𝐶
𝑇

𝑉
∗𝑇

2
𝐾
∗𝑇

1
] 𝐼 [

[

𝑉
∗

1
𝐶

𝑉
∗

2
𝐶

𝐾
∗

1

]

]

< 0. (40)

Making use of Lemma 2 with 𝜀 = 1, we have

−𝐶
𝑇

𝑉
∗𝑇

1
𝑉
∗

1
𝐶 ≤ (𝑉

𝑛

1𝑐
)
𝑇

𝑉
𝑛

1𝑐
− (𝑉
𝑛

1𝑐
)
𝑇

𝑉
∗

1
𝐶 − 𝐶

𝑇

𝑉
∗𝑇

1
𝑉
𝑛

1𝑐
,

−𝐶
𝑇

𝑉
∗𝑇

2
𝑉
∗

2
𝐶 ≤ (𝑉

𝑛

2𝑐
)
𝑇

𝑉
𝑛

2𝑐
− (𝑉
𝑛

2𝑐
)
𝑇

𝑉
∗

2
𝐶 − 𝐶

𝑇

𝑉
∗𝑇

2
𝑉
𝑛

2𝑐
,

−𝐾
∗𝑇

1
𝐾
∗

1
≤ (𝐾
𝑛

1
)
𝑇

𝐾
𝑛

1
− (𝐾
𝑛

1
)
𝑇

𝑉
∗

1
𝐹
𝑦
𝐹
𝜃
− 𝐹
𝑇

𝜃
𝐹
𝑇

𝑦
𝑉
∗𝑇

1
𝐾
𝑛

1
.

(41)

Applying Schur complement to (40) and changing variables
𝜑
1
(𝑉
∗

1
, 𝑉
𝑛

1𝑐
), 𝜑
2
(𝑉
∗

2
, 𝑉
𝑛

2𝑐
), and 𝜑

3
(𝐾
∗

1
, 𝐾
𝑛

1
), the LMI (32) is

obtained. To overcome the infeasibility of (33), the same
variables as those selected inTheorem 3 are used. It completes
the proof.

Corollary 5. The system is asymptotically stable and satisfies
(16) if there exists symmetric positive matrices 𝑃, 𝑄, 𝑉∗

1
, 𝑉∗
2
,

Φ
∗

1
, Φ∗
2
, and Φ

∗

3
such that the LMIs (26) and (32) hold.

Remark 6. It is desired to obtain a reference residual system
which has maximum sensitivity to the fault as well as the
minimum sensitivity to the exogenous signal. This aim can
be formulated by performance index defined by inf 𝛼/𝛽. To
this end, an iterative optimization method presented in [6] is

developed for the proposed structure. The procedures of this
method are as follows.

(1) Choose appropriate values of 𝛼 and 𝛽.
(2) Solve the LMI (26), and find a feasible solution for 𝑃,

𝑄, 𝑉∗
1
, 𝑉∗
2
, Φ∗
1
, Φ∗
2
, and Φ

∗

3
matrices.

(3) Set 𝑉𝑛
1𝑐

= 𝑉
∗𝑛−1

1
𝐶, 𝑉𝑛
2𝑐

= 𝑉
∗𝑛−1

2
𝐶, 𝐾𝑛
11

= 𝑉
∗

1

𝑛−1

𝐹
𝑦
𝐹
𝜃
,

and 𝐾
𝑛

12
= 𝑉
∗𝑛−1

2
𝐹
𝑦
𝐹
𝜃
. Then, solve (26) and (32) by

increasing 𝑛 to find a feasible solution for 𝑃, Q, 𝑉∗
1
,

𝑉
∗

2
, Φ∗
1
,Φ∗
2
, and Φ

∗

3
.

(4) Increase 𝛽 and decrease 𝛼 and go to step 2. Continue
this procedure until the feasible solution cannot be
found for LMIs (26) and (32).

(b) Robust UIO Design (Step 2). As mentioned before, the
residual signal generator system is obtained by minimizing
(17). To this end, Theorem 8 is presented which guarantees
that the overall system (19) is asymptotically stable and
performance index (17) is minimized. Before presenting
Theorem 8, the following theorem is presented which helps
proveTheorem 8.
Theorem 7. For a given 𝛾 > 0 and the system (37), if
there exist symmetric positive matrices 𝑃,𝑄 and constants
𝜀
1
, 𝜀
2
, 𝑎𝑛𝑑 𝜀

3
such that the LMI (44) holds, then the system (37)

is asymptotically stable and ‖𝜐(𝑡)‖
2
≤ 𝛾‖𝑢(𝑡)‖

2
:

̇𝜒 (𝑡) = (𝐴 + Δ𝐴)𝜒 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
) 𝜒 (𝑡 − 𝜏) + (𝐵

𝑢
+ Δ𝐵
𝑢
) 𝑢 (𝑡) , (42)

𝜐 (𝑡) = 𝐶
1
𝜒 (𝑡) + 𝐶

2
𝜒 (𝑡 − 𝜏) + 𝐷𝑢 (𝑡) , (43)

[
[
[
[
[
[
[
[
[
[

[

𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄 + 𝜀
−1

1
�̃�
𝑇

1
�̃�
1

𝑃𝐴
𝑑

𝑃𝐵
𝑢

𝐶
𝑇

1
𝑃�̃�
1

𝑃�̃�
2

𝑃�̃�
3

∗ −𝑄 + 𝜀
−1

2
�̃�
𝑇

2
�̃�
2

0 𝐶
𝑇

2
0 0 0

∗ ∗ −𝛾
2

𝐼 + 𝜀
−1

3
�̃�
𝑇

3
�̃�
3

𝐷
𝑇 0 0 0

∗ ∗ ∗ −𝐼 0 0 0
∗ ∗ ∗ ∗ −𝜀

−1

1
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
−1

2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
−1

3
𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0. (44)
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Proof. Define the following Lyapunov-Krasovskii function:

𝑉 (𝑡) = 𝜒
𝑇

(𝑡) 𝑃𝜒 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜒
𝑇

(𝑠) 𝑄𝜒 (𝑠) 𝑑𝑠. (45)

The performance index ‖𝜐(𝑡)‖
2
≤ 𝛾‖𝑢(𝑡)‖

2
can be written

as
𝐽
𝜐
= ∫

∞

0

(𝜐
𝑇

(𝑡) 𝜐 (𝑡) − 𝛾
2

𝑢
𝑇

(𝑡) 𝑢 (𝑡) + �̇� (𝑡)) 𝑑𝑡

+ 𝑉 (0) − 𝑉 (∞) .

(46)

Assume 𝜒(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Since𝑉(∞) > 0, we have

𝐽
𝜐
≤ ∫

∞

0

(𝜐
𝑇

(𝑡) 𝜐 (𝑡) − 𝛾
2

𝑢
𝑇

(𝑡) 𝑢 (𝑡) + �̇� (𝑡)) 𝑑𝑡. (47)

Taking derivative from (45) and considering (37) yield

𝐽
𝑟𝑒
≤ ∫

∞

0

[

[

𝜒 (𝑡)

𝜒 (𝑡 − 𝜏)

𝑢 (𝑡)

]

]

𝑇

[
[

[

𝑃 (𝐴 + Δ𝐴) + (𝐴 + Δ𝐴)
𝑇

𝑃 + 𝑄 + 𝐶
𝑇

1
𝐶
1

𝑃 (𝐴
𝑑
+ Δ𝐴
𝑑
) + 𝐶
𝑇

1
𝐶
2

𝑃 (𝐵
𝑢
+ Δ𝐵
𝑢
) + 𝐶
𝑇

1
𝐷

∗ −𝑄 + 𝐶
𝑇

2
𝐶
2

0
∗ ∗ −𝛾

2

𝐼 + 𝐷
𝑇

𝐷

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ

× [

[

𝜒 (𝑡)

𝜒 (𝑡 − 𝜏)

𝑢 (𝑡)

]

]

𝑑𝑡.

(48)

Ξ < 0 implies 𝐽
𝑟𝑒
< 0. The Ξ < 0 can be written as

[

[

𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄 𝑃𝐴
𝑑

𝑃𝐵
𝑢

∗ −𝑄 0
∗ ∗ −𝛾

2

𝐼

]

]

+ [

[

𝐶
𝑇

1

𝐶
𝑇

2

𝐷
𝑇

]

]

𝐼 [𝐶
1

𝐶
2

𝐷]

+ [

[

𝑃Δ𝐴 + Δ𝐴
𝑇

𝑃 𝑃Δ𝐴
𝑑

𝑃Δ𝐵
𝑢

∗ 0 0
∗ ∗ 0

]

]

< 0.

(49)

Using Lemma 2, one can write the following inequality:

[

[

𝑃Δ𝐴 + Δ𝐴
𝑇

𝑃 𝑃Δ𝐴
𝑑

𝑃Δ𝐵
𝑢

∗ 0 0
∗ ∗ 0

]

]

≤ [

[

𝑃�̃�
1

𝑃�̃�
2

𝑃�̃�
3

0 0 0
0 0 0

]

]

[

[

𝜀
1
𝐼 0 0
0 𝜀
2
𝐼 0

0 0 𝜀
3
𝐼

]

]

×[

[

𝑃�̃�
1

𝑃�̃�
2

𝑃�̃�
3

0 0 0
0 0 0

]

]

𝑇

+ [

[

�̃�
𝑇

1
0 0

0 �̃�
𝑇

2
0

0 0 �̃�
𝑇

3

]

]

× [

[

𝜀
1
𝐼 0 0
0 𝜀
2
𝐼 0

0 0 𝜀
3
𝐼

]

]

−1

[

[

�̃�
1

0 0
0 �̃�
2

0
0 0 �̃�

3

]

]

.

(50)

Considering (49), (50) and using Schur complement (48)
lead to (44). It completes the proof.

Theorem8. For a given 𝛾 > 0, if there exist symmetric positive
matrices 𝑃

1
, 𝑃
2
, 𝑃
3
, 𝑄
1
, 𝑄
2
, and 𝑄

3
, matrices Φ1, Φ2, and Φ3,

and constants 𝜀
1
, 𝜀
2
, and 𝜀

3
such that LMI [𝑠

𝑖𝑗
]
14×14

< 0 holds,
then the overall system (19) is asymptotically stable, and 𝐽

𝑟𝑒
< 𝛾.

The observer matrices are calculated by considering (4), (5),
and conditions 2 to 5, and 𝑌 = 𝑃

−1

1
Φ
1
, 𝐿
2
= 𝑃
−1

1
Φ
2
, and 𝐿

3
=

𝑃
−1

1
Φ
3
. The LMI coefficients are defined as

𝑠
1,1

= 𝑃
1
𝐹 + (𝑃

1
𝐹)
𝑇

+ 𝑄
1
, 𝑠
1,4

= 𝑃
1
𝐺, 𝑠

1,8
= 𝑃
1
𝐹,

𝑠
1,10

= 𝑃
1
𝑅, 𝑠

1,11
= 𝐶
𝑇

𝑉
𝑇

1
, 𝑠
1,12

= 𝑃
1
(𝑇𝑀
1
) ,

𝑠
1,13

= 𝑃
1
(𝑇𝑀
2
) , 𝑠

1,14
= 𝑃
1
(𝑇𝑀
3
) ,

𝑠
2,2

= 𝑃
2
𝐹
∗

+ (𝑃
2
𝐹
∗

)
𝑇

+ 𝑄
2
, 𝑠
2,5

= 𝑃
2
𝐺
∗

, 𝑠
2,8

= 𝑃
2
𝐹
∗

,

𝑠
2,10

= 𝑃
2
𝑅
∗

, 𝑠
2,11

= −𝐶
𝑇

𝑉
∗

1

𝑇

,

𝑠
3,3

= 𝑃
3
𝐴 + (𝑃

3
𝐴)
𝑇

+ 𝑄
3
+ 𝜀
−1

1
𝑁
𝑇

1
𝑁
1
, 𝑠
3,6

= 𝑃
3
𝐴
𝑑
,

𝑠
3,7

= 𝑃
3
𝐵, 𝑠

3,8
= 𝑃
3
𝐾
3
, 𝑠
3,9

= 𝑃
3
𝐸, 𝑠

3,10
= 𝑃
3
𝐾
4
,

𝑠
3,12

= 𝑃
3
(𝑀
1
) , 𝑠

3,13
= 𝑃
3
(𝑀
2
) , 𝑠

3,14
= 𝑃
3
(𝑀
3
) ,

𝑠
4,4

= −𝑄
1
, 𝑠
4,11

= 𝐶
𝑇

𝑉
𝑇

2
,

𝑠
5,5

= −𝑄
2
, 𝑠
5,11

= 𝐶
𝑇

𝑉
∗

2

𝑇

, 𝑠
6,6

= −𝑄
3
+ 𝜀
−1

2
𝑁
𝑇

2
𝑁
2
,

𝑠
7,7

= −𝛾𝐼 + 𝜀
−1

3
𝑁
𝑇

3
𝑁
3
, 𝑠
8,8

= −𝛾𝐼, 𝑠
8,11

= 𝐾
𝑇

1
− 𝐾
∗

1

𝑇

,

𝑠
9,9

= −𝛾𝐼, 𝑠
10,10,

= −𝛾𝐼, 𝑠
10,11

= 𝐾
𝑇

2
− 𝐾
∗

2

𝑇

,

𝑠
11,11

= −𝐼, 𝑠
12,12

= −𝜀
−1

1
𝐼,
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𝑠
13,13

= −𝜀
−1

2
𝐼, 𝑠
14,14

= −𝜀
−1

3
𝐼,

otherwise 𝑠
𝑖,𝑗

= 0,
(51)

where

𝑃
1
𝑇 = 𝑃

1
(𝐼 − Θ

1
𝐶) − Φ

1
(Θ
2
𝐶) ,

𝑃
1
𝐹 = 𝑃

1
(𝐴 − Θ

1
𝐶𝐴) − Φ

1
(Θ
2
𝐶𝐴) − Φ

2
𝐶,

𝑃
1
𝐺 = 𝑃

1
(𝐴
𝑑
− Θ
1
𝐶𝐴
𝑑
) − Φ
1
(Θ
2
𝐶𝐴
𝑑
) − Φ
3
𝐶,

𝑃
1
𝐹 = [𝑃

1
(𝐹
𝑥
𝐹
𝜃
− Θ1𝐶𝐹𝑥𝐹𝜃) − Φ

1
(Θ
2
𝐶𝐹
𝑥
𝐹
𝜃
) − Φ
2
𝐹
𝑦
𝐹
𝜃
− 𝑃
1
(Θ
1
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) − Φ
1
(Θ
2
𝐹
𝑦
𝐹
𝜃
𝐴
𝜃
) −Φ

3
𝐹
𝑦
𝐹
𝜃
] ,

𝑃
1
𝑅 = [𝑃

1
(𝑅 − Θ

1
𝐶𝑅) − Φ

1
(Θ
2
𝐶𝑅) − Φ

2
𝐷 −Φ

3
𝐷 −𝑃

1
(Θ
1
𝐷) − Φ

1
(Θ
2
𝐷)] .

(52)

Proof. In Theorem 7 assume that 𝑃 = diag(𝑃
1

𝑃
2

𝑃
3
) and

𝑄 = diag(𝑄
1

𝑄
2

𝑄
3
). Then, using system dynamic (19) it is

straight forward to see that 𝑠
𝑖𝑗
are the same as (37). Without

considering (52), the inequality (51) includes nonlinear terms
of 𝑃𝑌, 𝑃𝐿

2
, and 𝑃𝐿

3
which lead the LMI to be infeasible. To

overcome this problem, define Φ
1
= 𝑃
1
𝑌, Φ
2
= 𝑃
1
𝐿
2
, and

Φ
3
= 𝑃
1
𝐿
3
. Using conditions 2, 3 and (23) it can be seen that

(52) makes the obtained LMI feasible. It completes the proof.

Remark 9. It should be noted that the present work differs
from [18] in the following perspectives.

(a) The results in [18] are obtained without considering
dynamic characteristic for fault; however, the current
results are achieved by considering dynamic char-
acteristic that is modeled by (3). Hence, the design
procedure in [18] is not applicable for the current case.

(b) The residual signal 𝑟(𝑡) is constructed based on
(14) which uses both estimation error and delay
in estimation error; however, the residual signal in
[18] is constructed using estimation error. Since two
design parameters 𝑉

1
and 𝑉

2
appear in the LMIs, the

obtained LMIs are more flexible.

Remark 10. After designing the FDI system, residual eval-
uation methods and appropriate level of threshold should
be selected to take a decision about the occurrence of fault.
According to (13) and (14), the residual signal for fault-free
system 𝑟

0

(𝑡) satisfies the following equation:


𝑟
0

(𝑡)
2

=
𝑟𝑛 (𝑡) + 𝑟

𝑢
(𝑡)

2

≤
𝑟𝑛 (𝑡)

2
+
𝑟𝑢 (𝑡)

2
≤ 𝐽th,𝑛 + 𝐽th,𝑢,

(53)

where

𝐽th,𝑛 = sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑) ∈Ω𝑖

𝑟𝑛 (𝑡)
2
,

𝐽th,𝑢 = sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑) ∈Ω𝑖

𝑟𝑢 (𝑡)
2
.

(54)

𝐽th,𝑛 can be computed offline, and under the assumption that
𝑛 ∈ 𝐿

2
we have sup

(Δ𝐴,Δ𝐵,Δ𝐴𝑑)∈Ω𝑖
‖𝑟
𝑛
(𝑡)‖
2

= 𝑀
𝑛
. Since the

signal 𝑢 is supposed to be known online, the value of 𝐽th,𝑢
can be determined online by 𝐽th,𝑢 = 𝛾

𝑢
‖𝑢(𝑡)‖

2
, where 𝛾

𝑢
=

sup
(Δ𝐴,Δ𝐵,Δ𝐴𝑑)∈Ω𝑖

(‖𝑟
𝑢
(𝑡)‖
2
)/(‖𝑢(𝑡)‖

2
). 𝛾
𝑢
can be computed by

Theorem 7. Therefore, the threshold value can be evaluated
by

𝐽th = 𝑀
𝑛
+ 𝛾
𝑢
‖𝑢(𝑡)‖

2
. (55)

Since values of (53) and (54) increase by passing the time and,
consequently, needmorememory in real application, one can
use root-mean-square (RMS) norm of 𝑟(𝑡), defined in (56), to
detect the fault signals:

‖𝑟 (𝑡)‖
𝑇

2
= ∫

𝑡2

𝑡1

𝑟
𝑇

(𝑡) 𝑟 (𝑡) 𝑑𝑡, 𝑇 = 𝑡
2
− 𝑡
1
, (56)

where T is designed parameter.

3. Simulation Results

The main objective of this section is to investigate the
effectiveness of the designed UIO. To this end, a numerical
example is used and simulation results are presented. Con-
sider a system which is defined by (1) with the following
matrices:

𝐴 = [

[

−3.8 1.5 −0.5

0.5 −3 1

−0.3 0.7 −2.4

]

]

, 𝐴
𝑑
= [

[

0.4 0.1 −0.2

0.1 −0.8 0.2

0.7 −0.1 0.5

]

]

,

𝐵 = [

[

0.1

0.2

−0.4

]

]

, 𝐹
𝑥
= [

[

0.6

−0.5

0.4

]

]

, 𝐸 = [

[

−0.4

0.1

−0.3

]

]

,

𝐶 = [

[

1 0 0

0 1 0

0 0 1

]

]

, 𝐹
𝑦
= [

[

0.2

0.8

−1.2

]

]

, 𝑅 = [

[

0.1

0.2

−0.4

]

]

,

𝐷 = [

[

0.9

0.2

0.7

]

]

.

(57)
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Uncertainties are also defined by the following matrices
in (2):

𝑀
1
= [

[

0.1

0.2

0.1

]

]

, 𝑀
2
= [

[

0.1

0

−0.1

]

]

, 𝑀
3
= [

[

−0.1

0.2

0.1

]

]

,

𝑁
1
= [0 0.1 0.3] ,

𝑁
2
= [0.1 0 0] ,

𝑁
3
= 0.1.

(58)

The dynamic characteristic of fault is considered as

𝐴
𝜃
= 0, 𝐹

𝜃
= 1. (59)

The first step to design the fault detection system is to
solve the LMIs (26) and (32) in Theorems 3 and 4. The
Yalmip LMI toolbox is used to solve the LMIs. To start the
iterative optimization method presented in Remark 6, the
initial values 𝛼int = 3 and 𝛽int = 0 are selected. Using this
procedure, the following results are obtained:

𝑉
∗

1
= [

[

−0.0994 −0.0532 0.2714

−0.0532 −5.4751 1.3859

0.2714 1.3859 −0.7651

]

]

,

𝑉
∗

2
= [

[

−0.6315 −0.8304 0.1871

−0.8304 0.6711 0.5971

0.1871 0.5971 −0.5845

]

]

,

Φ
∗

1 = [

[

662.5 −250.8 −2628.5

−250.8 3855.7 −281.2

−2628.5 −281.2 2055.8

]

]

,

Φ
∗

2
= [

[

984.8 −1453.4 −842.7

−1453.4 2292 1253.8

−842.7 1253.8 733.6

]

]

,

Φ
∗

3 = [

[

−4.7395 13.0831 0.7977

13.0831 −8.5691 −14.9116

0.7977 −14.9116 −3.0645

]

]

,

𝛼 = 2.4, 𝛽 = 1.

(60)

Using these values, the LMI (51) is solved and the observer
dynamic matrices are obtained as follows:

𝐹 = [

[

−3.6557 −3.3806 2.9608

−0.3878 −1.4059 0.3008

−2.4404 −3.2245 1.9455

]

]

,

𝐺 = [

[

−0.0559 −0.7284 −0.1686

−0.0153 −0.1629 −0.0350

−0.0445 −0.557 −0.1273

]

]

,

𝐻 = [

[

0.6878

0.1535

0.5328

]

]

,
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Figure 1: An abrupt fault occurs at 𝑡 = 5.

𝐿
1
= [

[

0.0372 −1.1695 0.8939

−0.2145 0.7355 0.1978

−0.7462 −0.9036 1.6937

]

]

,

𝐾
1𝑧

= [

[

−0.7701 −0.1957 0.9507

−0.1730 −0.0567 0.2159

−0.5857 −0.1278 0.7254

]

]

,

𝐾
2𝑧

= [

[

0.2122 −0.3395 −0.7167

0.0496 −0.0777 −0.1591

0.1603 −0.2648 −0.5534

]

]

.

(61)

To verify the sensitivity of designed UIO, an abrupt fault,
shown in Figure 1, occurs in the 4 seconds elapsed from
running of the system. The step disturbance signal exerted
to the system between 3 to 7 seconds. The noise signal is
assumed to be white Gaussian noise with power 0.0005, and
the uncertainty Σ

𝑖
(𝑡) is considered sinusoidal signal. The

residual signals are shown in Figure 2. It can be seen that the
residual signals change when the fault occurs; however, the
residual signals do not show any sensitivity to the exerted dis-
turbance. The value of threshold 𝐽th is presented in Figure 3.
This figure indicates that the fault is detected rapidly and
the difference between threshold and norm of faulty residual
signal is high enough to detect the occurrence of fault in the
system.

The RMS of residual signals (56) has been depicted
in Figure 4. It can be seen that the RMS of faulty signals
suddenly changes in contrast to RMS of fault-free signals.
Therefore, the occurrence of fault can be effectively realized.

4. Conclusions

In this paper, a novel UIO-based residual generator is
developed for robust fault detection purposes.The developed
method is applicable to a variety of linear uncertain time-
delay systems. The proposed approach is able to decouple
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Figure 2: Residual signals of UIO fault detection filter.
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Figure 3: Euclidean norm of residual fault-free and faulty signals
and 𝐽th.

thoroughly exogenous disturbances whileminimizing uncer-
tainties and noise effects.The fault effect is also maximized at
the same time. To this end, first, the optimal fault detection
filter is designed for system without considering uncertain-
ties.Then, the fault detection filter is designed so that the𝐻

∞

norm between the fault detection filter and the optimal one is
minimized. Superiority of the proposed approach has been
verified through a numerical example. Simulation results
show that the proposed approach is able to detect dynamic
faults. As a future work, one can extend this approach to non-
linear systems and descriptor system. Moreover, developing
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RMS norm of residual signal (50)
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Figure 4: Detecting occurrence of fault using RMS norm of ‖𝑟(𝑡)‖𝑇
2
.

the data framework for designing unknown input observer
for time-delay system is an interesting area.
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