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This paper presents a novel suboptimal digital tracker for a class of time-delay singular systems. First, some existing techniques
are utilized to obtain an equivalent regular time-delay system, which has a direct transmission term from input to output. The
equivalent regular time-delay system is important as it enables the optimal control theory to be conveniently combined with the
digital redesign approach. The linear quadratic performance index, specified in the continuous-time domain, can be discretized
into an equivalent decoupled discrete-time performance index using the newly developed extended delay-free model. Additionally,
although the extended delay-free model is large, its advantage is the elimination of all delay terms (which included a new extended
state vector), simplifying the proposed approach. As a result, the proposed approach can be applied to a class of time-delay singular
systems. An illustrative example demonstrates the effectiveness of the proposed design methodology.

1. Introduction

The singular systems naturally arise in describing large-scale
systems, and there are several examples occurring in power
and interconnected systems. In general, an interconnection
of state variable subsystems is conveniently described as a
singular system, even though an overall state space repre-
sentation may not even exist. Over the past decades, much
research into singular systems has solved many complex
problems concerning, for example, the stability [1–4], impul-
sive modes [5], controllability, observability [6], and the
sufficient and necessary conditions for the impulse control-
lability and observability of time-varying singular systems
[7–11]. However, the main purpose of such work is either
to stabilize the singular system or to prove its controllability
and observability. Here, the key note of this paper is about
tracking the issue.

This investigation considers a time-delay system. The
overwhelming majority of practical control systems are
described by continuous-time settings with input, output,
and state time delays. Those delays arise from inherent
physical phenomena and are commonly encountered in

various engineering systems. Several authors [12–15] have
studied the linear quadratic optimal analog controllers for the
analog system with input and state delays. Recently, robust
control and filtering for both continuous-time and discrete-
time nominal/uncertain systems with time delays have been
thoroughly studied byMahmoud [16]. Despitemuch progress
in both analog control theory and digital control theory
over the last few decades, effective digital control of analog
plants with input and state delays (input-state delayed hybrid
control systems) is still being developed [17, 18].

The objective of this paper is to develop a novel observer-
based suboptimal digital tracker for a class of time-delay
singular systems. The developed digital tracker can make
the outputs of the digitally controlled time-delay singular
system track the desired reference signals. First, the time-
delay singular system is converted into a regular time-delay
system that contains a direct transmission term from input
to output.Then, for effective utilization of the well-developed
discrete-time optimal control theory for a regular time-delay
system, it is converted into a new extended discrete delay-
free model. The performance cost function is discretized
using the extended discrete delay-free model. When the
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states of the continuous time-delay singular system are not
available for measurements, a suboptimal digital observer
for the original continuous time-delay singular system is
constructed by using the duality of the digital redesign
technique for the controller and the digital-to-analog model
conversion technique [19]. As a result, the proposed novel
observer-based suboptimal digital tracker is able to make the
output of the digitally controlled analog time-delay system
track the desired reference signals.

The rest of the paper is organized as follows. Section 2
presents the problem description and preliminary results.
Section 3 presents the novel optimal tracker and a novel
observer-based suboptimal tracker for the time-delay singu-
lar system and proposes a systematic designmethodology for
designing a set of high-performance trackers for a class of
time-delay systems. Finally, an illustrative example is given
to demonstrate the effectiveness of the proposed approach.

2. Problem Description and Preliminaries

2.1. Problem Description. Consider the following continuous
time-delay singular system:

𝐸�̇�
𝑐
(𝑡) = 𝐴𝑥

𝑐
(𝑡) +

𝑁
1

∑

𝑖=1

𝐴
𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁
2

∑

𝑗=1

𝐵
𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(1a)

𝑦
𝑐
(𝑡) = 𝐶𝑥

𝑐
(𝑡 − 𝜏

𝑜
) , (1b)

where 𝑥
𝑐
(𝑡) ∈ R𝑛 is the state vector, 𝑢

𝑐
(𝑡) ∈ R𝑚 is the control

input vector, and 𝑦
𝑐
(𝑡) ∈ R𝑝 is the output vector. 𝐸, 𝐴, 𝐴

𝑖
,

𝐵
𝑗
, and 𝐶 are known constant systemmatrices of appropriate

dimensions and 𝐸 is a singular matrix. The corresponding
state time delay 𝜏

𝑠,𝑖
, 𝑖 = 1, 2, . . . , 𝑁

1
, input time delay 𝜏

𝑖,𝑗
,

𝑗 = 1, 2, . . . , 𝑁
2
, and output time delay 𝜏

𝑜
are assumed to be

known.
The continuous time-delay singular system (1a) and (1b)

may be in impulsive modes. Directly designing the controller
or observer for (1a) and (1b) is very difficult because impulsive
modes are uncontrollable. To solve this problem, the regular
pencil, the standard pencil, and the preliminary feedback
control methods are used to eliminate impulsive modes and
then obtain an equivalent regular time-delay system that can
be applied to the original continuous time-delay singular
system (1a) and (1b). The following section systematically
develops the design of the novel controller and observer using
the equivalent regular time-delay system.

2.2. Preliminaries. The regular pencil and standard pencil are
defined below.

Definition 1 (regular pencil [20]). Let 𝐸 and 𝐴 be two square
constant matrices. If det(𝑠𝐸−𝐴) ̸= 0, for all 𝑠, then (𝑠𝐸−𝐴) is
called a regular pencil.

Definition 2 (standard pencil [21]). Let (𝑠𝐸
𝑛
−𝐴

𝑛
) be a regular

pencil. If there exists scalars𝛼 and𝛽 such that𝛼𝐸
𝑛
+𝛽𝐴

𝑛
= 𝐼

𝑛
,

then (𝑠𝐸
𝑛
− 𝐴

𝑛
) is called a standard pencil.

Notably, for any regular pencil, (𝑠𝐸 − 𝐴) can be
easily transformed into a standard pencil by multiplying

(𝛼𝐸+𝛽𝐴)
−1 to𝐸 and𝐴, respectively, where𝛼 and𝛽 are scalars

such that det(𝛼𝐸 + 𝛽𝐴) ̸= 0. Therefore, the matrix coefficients
of a standard pencil (𝑠𝐸

𝑛
− 𝐴

𝑛
) become

𝐸
𝑛
= (𝛼𝐸

𝑟
+ 𝛽𝐴)

−1

𝐸, (2a)

𝐴
𝑛
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐴. (2b)

The modified system retains its state vector 𝑥
𝑐
(𝑡) and the

matrices 𝐸
𝑛
and 𝐴

𝑛
have the following nice properties.

Lemma 3 (see [22]). Consider

(a) 𝐸
𝑛
𝐴
𝑛
= 𝐴

𝑛
𝐸
𝑛
, meaning that𝐸

𝑛
and𝐴

𝑛
commute each

other;
(b) 𝐸

𝑛
and 𝐴

𝑛
have the same eigenspaces.

The above properties enable a singular system to be
decomposed into a reduced-order regular subsystem and a
nondynamic subsystem.

3. Main Results

3.1. Decomposition of Time-Delay Singular System. By (2a)
and (2b) the regular pencil (𝑠𝐸 − 𝐴) can be transformed into
a standard pencil (𝑠𝐸

𝑛
− 𝐴

𝑛
). Notably since 𝐸

𝑛
is a singular

matrix, which has at least one zero eigenvalue, 𝛽 cannot be
equal to zero.Hence,multiplying (1a) by (𝛼𝐸+𝛽𝐴)−1 can yield
the following equation:

𝐸
𝑛
�̇�
𝑐
(𝑡) = 𝐴

𝑛
𝑥
𝑐
(𝑡) +

𝑁
1

∑

𝑖=1

𝐴
𝑛,𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁
2

∑

𝑗=1

𝐵
𝑛,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(3)

where
𝐸
𝑛
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐸,

𝐴
𝑛,𝑖
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐴
𝑖
,

𝐵
𝑛,𝑗
= (𝛼𝐸 + 𝛽𝐴)

−1

𝐵
𝑗
.

(4)

Since 𝛼𝐸
𝑛
+𝛽𝐴

𝑛
= 𝐼

𝑛
, the pencil (𝑠𝐸

𝑛
−𝐴

𝑛
) is a standard one,

and has the properties that are mentioned in Lemma 3. To
decompose system (3), the state 𝑥

𝑐
(𝑡) is converted into 𝑥

𝑐
(𝑡)

by

𝑥
𝑐
(𝑡) = 𝑀𝑥

𝑐
(𝑡) , (5)

where the constant matrix 𝑀 is a block modal matrix of
𝐸
𝑛
and determined by means of the extended matrix sign

function [23, 24].The𝑀matrix of state space transformation
is as follows.

Step 1. Find sign(𝐸
𝑛
) using the extendedmatrix sign function

with an adequate 𝜔, where

𝐸
𝑛
= (𝐸

𝑛
− 𝜔𝐼

𝑛
) (𝐸

𝑛
+ 𝜔𝐼

𝑛
)
−1

. (6)

Step 2. Find sign+(𝐸
𝑛
) = (1/2)[𝐼

𝑛
+sign(𝐸

𝑛
)] and sign−(𝐸

𝑛
) =

(1/2)[𝐼
𝑛
− sign(𝐸

𝑛
)].
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Step 3. Construct the matrix 𝑀 = [ind(sign+(𝐸
𝑛
))

ind(sign−(𝐸
𝑛
))], where ind(⋅) represents the collection of

linearly independent column vectors of (⋅).

Substituting (5) into (3) and multiplying by 𝑀−1 on the
left yield

𝑀
−1

𝐸
𝑛
𝑀�̇�

𝑐
(𝑡) = 𝑀

−1

𝐴
𝑛
𝑀𝑥

𝑐
(𝑡) +

𝑁
1

∑

𝑖=1

𝑀
−1

𝐴
𝑛,𝑖
𝑀𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

𝑀
−1

𝐵
𝑛,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

=
1

𝛽
(𝐼
𝑛
− 𝛼𝐸

𝑛
) 𝑥

𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

𝑀
−1

𝐴
𝑛,𝑖
𝑀𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

𝑀
−1

𝐵
𝑛,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(7)

If𝑀−1

𝐴
𝑛,𝑖
𝑀 can be diagonalized, then (7) yields,

[
𝐸
1
𝑂

𝐸
2

] �̇�
𝑐
(𝑡)

=

[
[
[

[

1

𝛽
(𝐼
𝑘
− 𝛼𝐸

1
) 𝑂

𝑂
1

𝛽
(𝐼
𝑛−𝜅
− 𝛼𝐸

2
)

]
]
]

]

𝑥
𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

[
𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

]𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

[
𝐵
1,𝑗

𝐵
2,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(8)

where 𝑥
𝑐
(𝑡) = [𝑥

𝑇

𝑠
(𝑡), 𝑥

𝑇

𝑓
(𝑡)]

𝑇 and 𝑀
−1

𝐸
𝑛
𝑀 = block

diagonal {𝐸
1
, 𝐸

2
}. 𝐸

1
is invertible with rank(𝐸

1
) = deg{det

(𝑠𝐸
𝑟
− 𝐴)} ≜ 𝑘, [𝐵𝑇

1,𝑗
, 𝐵

𝑇

2,𝑗
]
𝑇

= 𝑀
−1

𝐵
𝑛,𝑗
, and 𝐸

2
is a nilpotent

matrix with dimension (𝑛−𝑘)×(𝑛−𝑘). Since det(𝐼
𝑛−𝑘
−𝛼𝐸

2
) =

1, it is invertible. Simplifying (8) by premultiplying the block
diagonal {𝐸−1

1
, 𝛽(𝐼

𝑛−𝑘
− 𝛼𝐸

2
)
−1

} on both sides, one has

[
𝐼
𝑘
𝑂

𝑂 𝐸
𝑓

] �̇�
𝑐
(𝑡) = [

𝐴
𝑠
𝑂

𝑂 𝐼
𝑛−𝜅

] 𝑥
𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

[
𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

]𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

[
𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(9)

where
𝐸
𝑓
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐸
2
,

𝐴
𝑠
=
1

𝛽
(𝐸

−1

1
− 𝛼𝐼

𝜅
) ,

𝐴
1,𝑖
= 𝐸

−1

1
𝐴
1,𝑖
,

𝐴
2,𝑖
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐴
2,𝑖
,

𝐵
𝑠,𝑗
= 𝐸

−1

1
𝐵
1,𝑗
,

𝐵
𝑓,𝑗
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐵
2,𝑗
.

(10)
Remarkably, since

rank (𝐸) − deg {det (𝑠𝐸 − 𝐴)} = rank (𝐸
𝑓
) , (11)

it is much easier to determine the number of the impulsive
mode using the above equation relating to (9).

For simplicity, only those singular systems that include at
least one impulsivemode are discussed. First, assume that the
singular system (9) has 𝑞; then, rank(𝐸

𝑓
) = 𝑞. By a previously

proposed method [12], the preliminary feedback gain 𝐾
𝑓,𝑗

is found and 𝐾
𝑓,𝑗

is proven to eliminate the impulsive
modes. For the time-delay singular system (9), the proposed
method yields a similar result (AppendixA) to that previously
developed method [12] and the linear preliminary feedback
control is

𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) = − 𝐾

𝑓,𝑗
𝑥
𝑐,𝑓
(𝑡) + V

𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

= − [𝑂
𝑚×𝑘
, 𝐾

𝑓,𝑗
] 𝑥

𝑐
(𝑡) + V

𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(12)

The time-delay singular system (9) can be transformed into
(Appendix A)

𝐸
𝑘

̇̂𝑥
𝑐
(𝑡) = 𝐴

𝑘
𝑥
𝑐
(𝑡) +

𝑁
1

∑

𝑖=1

𝐴
𝑘,𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(13)

where

𝐸
𝑘
= [

𝐼
𝑘
𝑂

𝑂 𝐸
𝑓

] ,

𝐴
𝑘
=

[
[
[
[
[
[

[

𝐴
𝑠

−

𝑁
2

∑

𝑗=1

𝐵
𝑠,𝑗
𝐾
𝑓,𝑗

𝑂 𝐼
𝑛−𝑘
−

𝑁
2

∑

𝑗=1

𝐵
𝑓,𝑗
𝐾
𝑓,𝑗

]
]
]
]
]
]

]

,

𝐴
𝑘,𝑖
= [

𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

] ,

𝐵
𝑘,𝑗
= [

𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] ,

(14)

in which
𝐸
𝑓
= 𝑈

−1

𝐸
𝑓
𝑈,

𝐴
𝑠
= 𝐴

𝑠
,

𝐴
1,𝑖
= 𝐸

−1

1
𝐴
1,𝑖
,
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𝐴
2,𝑖
= 𝛽(𝐼

𝑛−𝜅
− 𝛼𝐸

2
)
−1

𝐴
2,𝑖
,

𝐵
𝑠,𝑗
= 𝐵

𝑠,𝑗
,

𝐵
𝑓,𝑗
= 𝑈

−1

𝐵
𝑓,𝑗
,

(15)

and 𝑈 is a modal matrix of 𝐸
𝑓
with dimension (𝑛 − 𝑘) ×

(𝑛 − 𝑘) such that 𝑈−1

𝐸
𝑓
𝑈 is in the Jordan block form. The

time-delay singular system in (13) is obtained by applying
the linear preliminary feedback control law 𝑢(𝑡) from (12)
to the system that is given by (9). Equation (13) has the
𝑞 finite modes (where 𝑞 = rank(𝐸

𝑓
) = rank(𝐸

𝑓
)) and

the 𝑘 original finite modes.All of these finite modes are
guaranteed to be controllable. The next task is to decompose
the singular system into a reduced-order regular system
with (𝑘 + 𝑞) controllable finite modes and the nondynamic
equation with (𝑛 − 𝑘 − 𝑞) infinite nondynamic ones. This
task can be accomplished by using previously outlined steps.
First, the regular form is transformed into a standard one by
multiplying (13) by (𝛾𝐸

𝑘
+𝜂𝐴

𝑘
)
−1, where 𝛾 and 𝜂 are arbitrary

scalars such that (𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
) is invertible. Therefore,

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘

̇̂𝑥
𝑐
(𝑡)

= (𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘
𝑥
𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(16)

Let

𝑥
𝑐
(𝑡) = �̃�𝑥

𝑐
(𝑡) , (17)

where the constant matrix �̃� is determined by using the
extended matrix sign function. The procedure is the same as
that elucidated above for finding𝑀, except that it operates on
(𝛾𝐸

𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
. Substituting (17) into (16) and multiplying

by �̃�−1 yield

�̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
�̃� ̇̃𝑥

𝑐
(𝑡)

= �̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘
�̃�𝑥

𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

�̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
�̃�𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

�̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

= �̃�
−1
1

𝜂
[𝐼
𝑛
− 𝛾(𝛾𝐸

𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
] �̃�𝑥

𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

�̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
�̃�𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

�̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

=
1

𝜂
[𝐼
𝑛
− 𝛾�̃�

−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
�̃�] 𝑥

𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

�̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖
�̃�𝑥

𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

�̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(18)

That is,

[
𝐸
𝑠𝑘

𝑂

𝑂 𝐸
𝑓𝑘

] ̇̃𝑥
𝑐
(𝑡)

=

[
[
[

[

1

𝜂
(𝐼
𝑘+𝑞
− 𝛾𝐸

𝑠𝑘
) 𝑂

𝑂
1

𝜂
(𝐼
𝑛−𝑘−𝑞

− 𝛾𝐸
𝑓𝑘
)

]
]
]

]

𝑥
𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

[
Λ

1,𝑖
𝑂

𝑂 Λ
2,𝑖

] 𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

[
𝐵
𝑠𝑘,𝑗

𝐵
𝑓𝑘,𝑗

] V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(19)

where 𝑥
𝑐
(𝑡) = [𝑥

𝑇

𝑠
(𝑡), 𝑥

𝑇

𝑓
(𝑡)]

𝑇, �̃�−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐸
𝑘
�̃� =

block diagonal {𝐸
𝑠𝑘
, 𝐸

𝑓𝑘
} = block diagonal {𝐸

𝑠𝑘
, 𝑂

(𝑛−𝑞−𝑘)
}.

𝐸
𝑠𝑘
is invertiblewith rank(𝐸

𝑠𝑘
) = deg{det(𝑠𝐸

𝑘
−𝐴

𝑘
)} = (𝑞+𝑘).

𝐸
𝑓𝑘

is a null matrix and [𝐵𝑇
𝑠𝑘,𝑗
, 𝐵

𝑇

𝑓𝑘,𝑗
]

𝑇

= �̃�
−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐵
𝑘,𝑗
. In (19), �̃�−1

(𝛾𝐸
𝑘
+ 𝜂𝐴

𝑘
)
−1

𝐴
𝑘,𝑖

is assumed to be able to
be diagonalized as block diagonal {Λ

1,𝑖
, Λ

2,𝑖
}. Then, (19) can

be rewritten as

̇̃𝑥
𝑠
(𝑡) =

1

𝜂
(𝐸

−1

𝑠𝑘
− 𝛾𝐼

𝑘+𝑞
) 𝑥

𝑠
(𝑡)

+

𝑁
1

∑

𝑖=1

𝐸
−1

𝑠𝑘
Λ

1,𝑖
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁
2

∑

𝑗=1

𝐸
−1

𝑠𝑘
𝐵
𝑠𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(20a)

0 = 𝑥
𝑓
(𝑡) +

𝑁
1

∑

𝑖=1

𝜂Λ
2,𝑖
𝑥
𝑓
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁
2

∑

𝑗=1

𝜂𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(20b)

and the time-delay singular system output (1b) can be rewrit-
ten as (Appendix B)

𝑦
𝑐
(𝑡) = 𝐶𝑥

𝑐
(𝑡 − 𝜏

𝑜
)

= [𝐶
1
𝐶
2
] [
𝑥
𝑠
(𝑡 − 𝜏

𝑜
)

𝑥
𝑓
(𝑡 − 𝜏

𝑜
)
]
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= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

2
𝑥
𝑓
(𝑡 − 𝜏

𝑜
)

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) − 𝐶

2

𝑁
2

∑

𝑗=1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(21a)

where 𝐶𝑀𝑉�̃� = [𝐶
1
𝐶
2
].

Finally, the time-delay singular system (1a) and (1b) can
be decomposed as the equivalent regular time-delay system
as follows:

̇̃𝑥
𝑠
(𝑡) = 𝐴

𝑠
𝑥
𝑠
(𝑡) +

𝑁
1

∑

𝑖=1

𝐴
𝑑,𝑖
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁
2

∑

𝑗=1

𝐵
𝑑,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(22a)

𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁
2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (22b)

where
𝐴
𝑠
=
1

𝜂
(𝐸

−1

𝑠𝑘
− 𝛾𝐼

𝑘+𝑞
) ,

𝐴
𝑑,𝑖
= 𝐸

−1

𝑠𝑘
Λ

1,𝑖
,

𝐵
𝑑,𝑗
= 𝐸

−1

𝑠𝑘
𝐵
𝑠𝑘,𝑗
,

𝐷
𝑗
= 𝐶

2
𝐵
𝑓𝑘,𝑗
.

(23)

Following the transformation, the time-delay singular
system (1a) and (1b) can be converted into a regular system
(22a) and (22b) that contains a direct transmission term from
input to output and the impulsive mode can be eliminated by
means of themethod [12]. In the next section, (22a) and (22b)
will be used to develop the new optimal tracker and observer
for a time-delay singular system (1a) and (1b) with a series of
time-delays. The proposed approaches are more general and
applicable to actual systems.

3.2. Based on Digital Redesign and Optimal Control to
Discretize the Continuous Time-Delay Singular System
and Construct the Performance Index

3.2.1. Discretization of Continuous Time-Delay Singular Sys-
tem. Consider the continuous time-delay singular system
(22a) and (22b). To discretize (22a) and (22b), assume that
V
𝑐
(𝑡) is a piecewise constant input function:

V
𝑐
(𝑡) = V

𝑑
(𝑘𝑇) , 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1) 𝑇, (24)

where 𝑇 is the sampling period. Let the state delay time be
given by 𝜏

𝑠,𝑖
= 𝜌

𝑖
𝑇 + Γ

𝑖
, where 0 ≤ Γ

𝑖
< 𝑇 and 𝜌

𝑖
≥ 0 is an

integer, and let the input delay time be given by 𝜏
𝑖,𝑗
= 𝜂

𝑗
𝑇 +

𝜎
𝑗
, where 0 ≤ 𝜎

𝑗
< 𝑇 and 𝜂

𝑗
≥ 0 is an integer. The time-

delay singular system (22a) and (22b), by both the Newton
extrapolationmethod and theChebyshev quadraturemethod
[25, 26], becomes
𝑥
𝑑𝑠
((𝑘 + 1) 𝑇)

= 𝐺𝑥
𝑑𝑠
(𝑘𝑇) +

𝑁
1

∑

𝑖=1

[𝐺
(1)

𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 + 𝑇)

+ 𝐺
(2)

𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇)

+𝐺
(3)

𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 − 𝑇)]

+

𝑁
2

∑

𝑗=1

[𝐻
(0)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇) + 𝐻

(1)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇 − 𝑇)] ,

(25)

where

𝐺 = 𝑒
𝐴
𝑠
𝑇

,

𝐺
(1)

𝑖
=
𝑇

2
[𝑄

(2)

𝑖
+ 𝑄

(3)

𝑖
]𝐴

𝑑,𝑖
,

𝐺
(2)

𝑖
= 𝑇 [𝑄

(1)

𝑖
− 𝑄

(3)

𝑖
] 𝐴

𝑑,𝑖
,

𝐺
(3)

𝑖
=
𝑇

2
[𝑄

(3)

𝑖
− 𝑄

(2)

𝑖
]𝐴

𝑑,𝑖
,

𝐻
(0)

𝑗
= [𝐺

1−𝛾
𝑗 − 𝐼

𝑛
] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
,

𝐻
(1)

𝑗
= [𝐺 − 𝐺

1−𝛾
𝑗] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
,

(26)

in which

𝛾
𝑗
=

𝜎
𝑗

𝑇
, 𝛽

𝑖
=
Γ
𝑖

𝑇
,

𝑄
(1)

𝑖
= [𝐺 − 𝐼

𝑛
] (𝐴

𝑠
𝑇)

−1

,

𝑄
(2)

𝑖
= [𝑄

(1)

𝑖
− (1 − 𝛽

𝑖
) 𝐼

𝑛
− 𝛽

𝑖
𝐺] (𝐴

𝑠
𝑇)

−1

,

𝑄
(3)

𝑖
= [2𝑄

(2)

𝑖
− (1 − 𝛽

𝑖
)
2

𝐼
𝑛
− 𝛽

2

𝑖
𝐺] (𝐴

𝑠
𝑇)

−1

.

(27)

Some terms in (25) may be combined because of the same
delay, so (25) can be reduced to

𝑥
𝑑𝑠
((𝑘 + 1) 𝑇) = 𝐺𝑥

𝑑𝑠
(𝑘𝑇) +

𝑀
1

∑

𝑖=1

𝐺
𝑖
𝑥
𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝐻V
𝑑
(𝑘𝑇) +

𝑀
2

∑

𝑗=1

𝐻
𝑗
V
𝑑
(𝑘𝑇 − 𝑗𝑇) .

(28)

For the output (22b), the time-delay state 𝑥
𝑐
(𝑡 − 𝜏

𝑜
) for 𝑘𝑇 ≤

𝑡 − 𝜏
𝑜
< (𝑘 + 1)𝑇 must be evaluated. System (22a) and (22b)

can be rewritten as

𝑥
𝑠
(𝑡 − 𝜏

𝑜
) = 𝑒

𝐴
𝑠
(𝑡−𝜏
𝑜
−𝑘𝑇)

𝑥
𝑑𝑠
(𝑘𝑇)

+

𝑁
1

∑

𝑖=1

∫

𝑡−𝜏
𝑜

𝑘𝑇

𝑒
𝐴
𝑠
(𝑡−𝜏
𝑜
−𝜆)

𝐴
𝑑,𝑖
𝑥
𝑑𝑠
(𝜆 − 𝜏

𝑠,𝑖
) 𝑑𝜆

+

𝑁
2

∑

𝑗=1

∫

𝑡−𝜏
𝑜

𝑘𝑇

𝑒
𝐴
𝑠
(𝑡−𝜏
𝑜
−𝜆)

𝐵
𝑑,𝑗
V
𝑑
(𝜆 − 𝜏

𝑖,𝑗
) 𝑑𝜆

= 𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑁
1

∑

𝑖=1

[𝛿
(1)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 + 𝑇)



6 Journal of Applied Mathematics

+ 𝛿
(2)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇)

+ 𝛿
(3)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

× 𝑥
𝑑𝑠
(𝑘𝑇 − 𝜌

𝑖
𝑇 − 𝑇) ]

+

𝑁
2

∑

𝑗=1

[𝜑
(0)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇)

+ 𝜑
(1)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

× V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇 − 𝑇) ] ,

(29)

where

𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) = 𝑒

𝐴
𝑠
(𝑡−𝜏
𝑜
−𝑘𝑇)

,

𝛿
(1)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) =

𝑇

2
[𝑞

(2)

𝑖
+ 𝑞

(3)

𝑖
] 𝐴

𝑑,𝑖
,

𝛿
(2)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) = 𝑇 [𝑞

(1)

𝑖
− 𝑞

(3)

𝑖
] 𝐴

𝑑,𝑖
,

𝛿
(3)

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) =

𝑇

2
[𝑞

(3)

𝑖
− 𝑞

(2)

𝑖
] 𝐴

𝑑,𝑖
,

𝜑
(0)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

= {
𝑂
𝑛×𝑚
, 𝑡 − 𝜏

𝑜
< 𝜎

𝑗
,

[𝑒
−𝐴
𝑠
𝜎
𝑗𝛿

1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) − 𝐼

𝑛
] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
, 𝑡 − 𝜏

𝑜
≥ 𝜎

𝑗
,

𝜑
(1)

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)

= {
[𝛿

1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) − 𝐼

𝑛
] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
, 𝑡 − 𝜏

𝑜
< 𝜎

𝑗

𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) [𝐼

𝑛
− 𝑒

−𝐴
𝑠
𝜎
𝑗] 𝐴

−1

𝑠
𝐵
𝑑,𝑗
, 𝑡 − 𝜏

𝑜
≥ 𝜎

𝑗
,

(30)

in which

𝑞
(1)

𝑖
= [𝛿

1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) − 𝐼

𝑛
] (𝐴

𝑠
𝑇)

−1

,

𝑞
(2)

𝑖
= [𝑞

(1)

𝑖
− (

𝑡 − 𝜏
𝑜
− 𝑘𝑇

𝑇
− 𝛽

𝑖
) 𝐼

𝑛

−𝛽
𝑖
𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)] (𝐴

𝑠
𝑇)

−1

,

𝑞
(3)

𝑖
= [2𝑞

(2)

𝑖
− (

𝑡 − 𝜏
𝑜
− 𝑘𝑇

𝑇
− 𝛽

𝑖
)

2

𝐼
𝑛

+𝛽
2

𝑖
𝛿
1
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)] (𝐴

𝑠
𝑇)

−1

.

(31)

Also, some terms in (29)may be combined as in (28), and (29)
may be rewritten as

𝑥
𝑠
(𝑡 − 𝜏

𝑜
) = 𝛿

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑀
1

∑

𝑖=1

𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝜑
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀
2

∑

𝑗=1

𝜑
𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) .

(32)

Then, the output (22b) can be rewritten as

𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁
2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

= 𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑀
1

∑

𝑖=1

𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝐶
1
𝜑
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀
2

∑

𝑗=1

𝐶
1
𝜑
𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇)

−

𝑁
2

∑

𝑗=1

[𝐷
(0)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇)

+𝐷
(1)

𝑗
V
𝑑
(𝑘𝑇 − 𝜂

𝑗
𝑇 − 𝑇)] ,

(33)

where

𝐷
(0)

𝑗
= 𝐷

∗

𝑗
(𝐵

𝑇

𝑑,𝑗
𝐵
𝑑,𝑗
)
−1

𝐻
(0)

𝑗
,

𝐷
(1)

𝑗
= 𝐷

∗

𝑗
(𝐵

𝑇

𝑑,𝑗
𝐵
𝑑,𝑗
)
−1

𝐻
(1)

𝑗
,

𝐷
∗

𝑗
= [𝐷

𝑗
𝑂]

𝑇

.

(34)

Similarly, some terms in (33) can be combined, so (33) can
be rewritten as

𝑦
𝑐
(𝑡) = 𝐶

1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇)

+

𝑀
1

∑

𝑖=1

𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇)

+ 𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀
2

∑

𝑗=1

𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) .

(35)

Thus, the discretization of continuous time-delay singular
system (22a) and (22b) is carried out using (28) and (35).

3.2.2. Establishing Performance Index for Discrete Time-Delay
Singular System. The optimal state-feedback control law
minimizes the following performance cost function:

𝐽 = ∫

𝑡
𝑓

0

{{

{{

{

[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁
2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡)]

]

𝑇
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× 𝑄[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) −

𝑁
2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡)]

]

+ V𝑇
𝑐
(𝑡) 𝑅V

𝑐
(𝑡)

}}

}}

}

,

(36)

where 𝑄 is the positive semidefinite matrix, 𝑅 is the positive
definite matrix, 𝑟(𝑡) ∈ R𝑞 is the reference input vector, and
the final time 𝑡

𝑓
< ∞. To discretize the cost function 𝐽, given

by (36), 𝑡
𝑓
= 𝑁𝑇 is chosen and 𝐽 can be rewritten as

𝐽 =

𝑁−1

∑

𝑘=0

∫

(𝑘+1)𝑇

𝑘𝑇

{{

{{

{

[
[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
)

−

𝑁
2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡)]

]

𝑇

× 𝑄[

[

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
)

−

𝑁
2

∑

𝑗=1

𝐷
𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) − 𝑟 (𝑡) ]

]

+ V𝑇
𝑐
(𝑡) 𝑅V

𝑐
(𝑡)

}}

}}

}

.

(37)

Let 𝑟∗(𝑘𝑇) ∈ R𝑞 be the piecewise-constant reference input
vector to be determined in terms of 𝑟(𝑘𝑇) for the tracking
purpose. Then, cost function (37) can be rewritten as [27]

𝐽 =

𝑁−1

∑

𝑘=0

∫

(𝑘+1)𝑇

𝑘𝑇

{

{

{

[

[

𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇) +

𝑀
1

∑

𝑖=1

𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇) + 𝜑

∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀
2

∑

𝑗=1

𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) − 𝑟

∗

(𝑘𝑇)]

]

𝑇

× 𝑄[𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇) +

𝑀
1

∑

𝑖=1

𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑖𝑇) + 𝜑

∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇)

+

𝑀
2

∑

𝑗=1

𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇) V

𝑑
(𝑘𝑇 − 𝑗𝑇) − 𝑟

∗

(𝑘𝑇)]

]

+ V𝑇
𝑑
(𝑘𝑇) 𝑅V

𝑑
(𝑘𝑇) 𝑑𝑡

}

}

}

= ⋅ ⋅ ⋅

=

𝑁−1

∑

𝑘=0

[𝑥
𝑇

𝑑𝑠
(𝑘𝑇) 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇) V𝑇

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V𝑇

𝑑
(𝑘𝑇 −𝑀

2
𝑇) 𝑟

∗𝑇

(𝑘𝑇) V𝑇
𝑑
(𝑘𝑇)]

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
1

𝑄
31

⋅ ⋅ ⋅ 𝑄
3𝑀
1

𝑀
21

⋅ ⋅ ⋅ 𝑀
2𝑀
2

−𝑀
3

𝑀
1

𝑄
𝑇

31
𝑄
211

⋅ ⋅ ⋅ 𝑄
21𝑀
1

𝑀
511

⋅ ⋅ ⋅ 𝑀
51𝑀
2

−𝑀
61

𝑀
41

...
... d

...
... d

...
...

...
𝑄
𝑇

3𝑀
1

𝑄
2𝑀
1
1
⋅ ⋅ ⋅ 𝑄

2𝑀
1
𝑀
1

𝑀
5𝑀
1
1
⋅ ⋅ ⋅ 𝑀

5𝑀
1
𝑀
2

−𝑀
6𝑀
1

𝑀
4𝑀
1

𝑀
𝑇

21
𝑀

𝑇

511
⋅ ⋅ ⋅ 𝑀

𝑇

5𝑀
1
1

𝑅
211

⋅ ⋅ ⋅ 𝑅
21𝑀
2

−𝑀
81

𝑅
41

...
... d

...
... d

... ⋅ ⋅ ⋅
...

𝑀
𝑇

2𝑀
2

𝑀
𝑇

51𝑀
2

⋅ ⋅ ⋅ 𝑀
𝑇

5𝑀
1
𝑀
2

𝑅
2𝑀
2
1
⋅ ⋅ ⋅ 𝑅

2𝑀
2
𝑀
2

−𝑀
8𝑀
2

𝑅
4𝑀
2

−𝑀
𝑇

3
−𝑀

𝑇

61
⋅ ⋅ ⋅ −𝑀

𝑇

6𝑀
1

−𝑀
𝑇

81
⋅ ⋅ ⋅ −𝑀

𝑇

8𝑀
2

𝑅
3

−𝑀
7

𝑀
𝑇

1
𝑀

𝑇

41
⋅ ⋅ ⋅ 𝑀

𝑇

4𝑀
1

𝑅
𝑇

41
⋅ ⋅ ⋅ 𝑅

𝑇

4𝑀
2

−𝑀
𝑇

7
𝑅
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

× [𝑥
𝑑𝑠
(𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇) V

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V

𝑑
(𝑘𝑇 −𝑀

2
𝑇) 𝑟

∗

(𝑘𝑇) V
𝑑
(𝑘𝑇)]

𝑇

,

(38)
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where

𝑄
1
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑄
2𝑖𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝛿
𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑄
3𝑖
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
1
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
2𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

×𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
3
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

𝑄]𝑑𝑡,

𝑀
4𝑖
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
5𝑖𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑀
6𝑖
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝛿
𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

𝑄]𝑑𝑡,

𝑀
7
= ∫

(𝑘+1)𝑇

𝑘𝑇

[𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))] 𝑑𝑡,

𝑀
8𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

𝑄]𝑑𝑡,

𝑅
1
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

0
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) + 𝑅] 𝑑𝑡,

𝑅
2𝑖𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡,

𝑅
3
= ∫

(𝑘+1)𝑇

𝑘𝑇

𝑄𝑑𝑡,

𝑅
4𝑗
= ∫

(𝑘+1)𝑇

𝑘𝑇

[(𝐶
1
𝜑
∗

𝑖
(𝑡 − 𝜏

𝑜
− 𝑘𝑇))

𝑇

× 𝑄 (𝐶
1
𝜑
∗

𝑗
(𝑡 − 𝜏

𝑜
− 𝑘𝑇)) ] 𝑑𝑡.

(39)

Construct an extended virtual state vector:

𝑋
𝑑
(𝑘𝑇) = [𝑥

𝑑𝑠
(𝑘𝑇) 𝑥

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇) V

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V

𝑑
(𝑘𝑇 −𝑀

2
𝑇) 𝑟

∗

(𝑘𝑇)]
𝑇

. (40)

The extended delay-free system that is equivalent to the
original time-delay singular system (28) and (35) is obtained
as

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
V
𝑑
(𝑘𝑇) , (41a)

𝑦
𝑑
(𝑘𝑇) = 𝐶

𝑒
𝑋
𝑑
(𝑘𝑇) . (41b)

We assume that the reference input 𝑟(𝑡) is a step functionwith
a constant magnitude, 𝑟∗((𝑘 + 1)𝑇) = 𝑟∗(𝑘𝑇). Designing a
systembased on such a reference input can lead to predictable
time-response characteristics. Although our design method-
ology is based on a step function, it should be pointed out
that the resulting control system, if properly designed, enables
to give good time responses for any arbitrary reference input
𝑟(𝑡). Also, the reference input 𝑟∗(𝑘𝑇) is entered in the last row
of𝑋

𝑑
(𝑘𝑇) at the beginning of step 𝑘. As a result, the extended

new system does not have any time-delay terms and it can
be utilized to simplify the representation of the cost function
(38). Now, (38) can be rewritten as

𝐽 =

𝑁−1

∑

𝑘=0

[𝑋
𝑇

𝑑
(𝑘𝑇) V𝑇

𝑑
(𝑘𝑇)] [

𝑄 �̂�

�̂�
𝑇

�̂�
] [
𝑋
𝑑
(𝑘𝑇)

V
𝑑
(𝑘𝑇)

] , (42)

where

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
1

𝑄
31

⋅ ⋅ ⋅ 𝑄
3𝑀1

𝑀
21

⋅ ⋅ ⋅ 𝑀
2𝑀2

−𝑀
3

𝑄
𝑇

31
𝑄
211

⋅ ⋅ ⋅ 𝑄
21𝑀1

𝑀
511

⋅ ⋅ ⋅ 𝑀
51𝑀2

−𝑀
61

...
... d

...
... d

...
...

𝑄
𝑇

3𝑀1

𝑄
2𝑀11

⋅ ⋅ ⋅ 𝑄
2𝑀1𝑀1

𝑀
5𝑀11

⋅ ⋅ ⋅ 𝑀
5𝑀1𝑀2

−𝑀
6𝑀1

𝑀
𝑇

21
𝑀

𝑇

511
⋅ ⋅ ⋅ 𝑀

𝑇

5𝑀11
𝑅
211

⋅ ⋅ ⋅ 𝑅
21𝑀2

−𝑀
81

...
... d

...
... d

...
...

𝑀
𝑇

2𝑀2

𝑀
𝑇

51𝑀2

⋅ ⋅ ⋅ 𝑀
𝑇

5𝑀1𝑀2

𝑅
2𝑀21

⋅ ⋅ ⋅ 𝑅
2𝑀2𝑀2

−𝑀
8𝑀2

−𝑀
𝑇

3
−𝑀

𝑇

61
⋅ ⋅ ⋅ −𝑀

𝑇

6𝑀1

−𝑀
𝑇

81
⋅ ⋅ ⋅ −𝑀

𝑇

8𝑀2

𝑅
3

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

�̂� = [𝑀
𝑇

1
𝑀

𝑇

41
⋅ ⋅ ⋅ 𝑀

𝑇

4𝑀
1

𝑅
𝑇

41
⋅ ⋅ ⋅ 𝑅

𝑇

4𝑀
2

−𝑀
𝑇

7
]
𝑇

,

�̂� = [𝑅
1
] .

(43)
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Then, define a new virtual weighting matrix

𝑄 = 𝑄 − �̂��̂�
−1

�̂�
𝑇 (44)

and a new virtual control input

𝑆 (𝑘𝑇) = �̂�
−1

�̂�
𝑇

𝑋
𝑑
(𝑘𝑇) + V

𝑑
(𝑘𝑇) . (45)

Substituting (44) and (45) into (42) results in a decoupled
performance index:

𝐽 =

𝑁−1

∑

𝑘=0

[𝑋
𝑇

𝑑
(𝑘𝑇)𝑄𝑋

𝑑
(𝑘𝑇) + 𝑆

𝑇

(𝑘𝑇) �̂�𝑆 (𝑘𝑇)] . (46)

Substituting (45) into the extended delay-free singular system
(41a) and (41b) yields

𝑋
𝑑
((𝑘 + 1) 𝑇)

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
V
𝑑
(𝑘𝑇)

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
[𝑆 (𝑘𝑇) − �̂�

−1

�̂�
𝑇

𝑋
𝑑
(𝑘𝑇)]

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
𝑆 (𝑘𝑇) ,

(47)

where 𝐺
𝑒
= 𝐺

𝑒
− �̂�

𝑒
�̂�
−1

�̂�
𝑇.

Notably, the quadratic optimal control of the system that
is given by (41a) and (41b) with the performance index that is
given by (42) is equivalent to the quadratic optimal control of
the system that is given by (47) with the performance index
that is given by (46). The development of the desired optimal
virtual control vector 𝑆(𝑘𝑇) that minimizes the performance
index that is given by (46) can be described as follows.

3.3. Development of Optimal Tracker for Time-Delay Singular
System with States Available. Let the Hamilton function
depend on the cost function (46) [28]:

𝐻
𝑓
(𝑘𝑇) = [𝑋

𝑇

𝑑
(𝑘𝑇)𝑄𝑋

𝑑
(𝑘𝑇) + 𝑆

𝑇

(𝑘𝑇) �̂�𝑆 (𝑘𝑇)]

+ 𝜆
𝑇

((𝑘 + 1) 𝑇) [𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
𝑆 (𝑘𝑇)] ,

(48)

where 𝜆(𝑘𝑇) is a costate (Lagrange multiplier). Based on
the well-developed optimal control theory [29, 30], the state
equation is

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
𝑆 (𝑘𝑇) , (49)

and the costate equation is

𝜆 (𝑘𝑇) = 𝐺
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇) + 𝑄𝑋

𝑑
(𝑘𝑇) (50)

with the stationary condition

0 = �̂�
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇) + �̂�𝑆 (𝑘𝑇) , (51)

or

𝑆 (𝑘𝑇) = −�̂�
−1

�̂�
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇) , (52a)

and the boundary condition is

𝜆 (𝑁𝑇) = 𝑄𝑋
𝑑
(𝑁𝑇) . (52b)

Assume that 𝜆(𝑘𝑇) can be written as follows:

𝜆 (𝑘𝑇) = 𝑃 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇) , (53)

where 𝑃(𝑘𝑇) is a real symmetric matrix of appropriate
dimension. So far, the original optimal tracking problem has
been transformed into an optimal regulator problem.

To derive the optimal regulator, (53) is substituted into
(50):

𝑃 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇)

= 𝐺
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)𝑋

𝑑
((𝑘 + 1) 𝑇) + 𝑄𝑋

𝑑
(𝑘𝑇) ,

(54)

and (52a), (52b), and (53) are substituted into (49):

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
�̂�
−1

�̂�
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇)

= 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑒
�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× 𝑋
𝑑
((𝑘 + 1) 𝑇)

(55)

or

𝑋
𝑑
((𝑘 + 1) 𝑇) = [𝐼 + �̂�

𝑒
�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) .

(56)

Also, substituting (56) into (54) yields

𝑃 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇) = 𝐺

𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + �̂�
𝑒
�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

× 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇) + 𝑄𝑋

𝑑
(𝑘𝑇)

(57)

or

{𝑃 (𝑘𝑇) − 𝐺
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + �̂�
𝑒
�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
− 𝑄}𝑋

𝑑
(𝑘𝑇) = 0.

(58)

The above equation must hold for all𝑋
𝑑
(𝑘𝑇). Hence,

𝑃 (𝑘𝑇) = 𝑄 + 𝐺
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + �̂�
𝑒
�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
.

(59)

Equation (59) is called the Riccati equation. With reference
to (52a), (52b), and (53), when at 𝑘 = 𝑁,

𝜆 (𝑁𝑇) = 𝑄𝑋
𝑑
(𝑁𝑇) = 𝑃 (𝑁𝑇)𝑋

𝑑
(𝑁𝑇) (60)

or

𝑃 (𝑁𝑇) = 𝑄. (61)
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From (59) and (61), all 𝑃(𝑘𝑇) for 0 ≤ 𝑘 ≤ 𝑁 can be obtained.
With reference to (53) and (56), the desired optimal virtual
control input that is given by (52a) now becomes

𝑆 (𝑘𝑇) = −�̂�
−1

�̂�
𝑇

𝑒
𝜆 ((𝑘 + 1) 𝑇)

= −�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)𝑋

𝑑
((𝑘 + 1) 𝑇)

= −�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)

× [𝐼 + �̂�
𝑒
�̂�
−1

�̂�
𝑇

𝑒
𝑃 ((𝑘 + 1) 𝑇)]

−1

𝐺
𝑒
𝑋
𝑑
(𝑘𝑇)

= −�̂�
−1

�̂�
𝑇

𝑒
[𝑃

−1

((𝑘 + 1) 𝑇) + �̂�
𝑒
�̂�
−1

�̂�
𝑇

𝑒
]
−1

× 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇)

= −𝐾 (𝑘𝑇)𝑋
𝑑
(𝑘𝑇) ,

(62)

where 𝐾(𝑘𝑇) = �̂�
−1

�̂�
𝑇

𝑒
[𝑃

−1

((𝑘 + 1)𝑇) + �̂�
𝑒
�̂�
−1

�̂�
𝑇

𝑒
]
−1

𝐺
𝑒
.

From (45), the original optimal controller V
𝑑
(𝑘𝑇) is obtained

as follows:

V
𝑑
(𝑘𝑇) = 𝑆 (𝑘𝑇) − �̂�

−1

�̂�
𝑇

𝑋
𝑑
(𝑘𝑇) = −�̂� (𝑘𝑇)𝑋

𝑑
(𝑘𝑇) ,

(63)

where �̂�(𝑘𝑇) = 𝐾(𝑘𝑇) + �̂�−1�̂�𝑇. Notice that if there are no
state and input time delays, the above development can be
reduced to that in [30]. Equation (63) can be represented in
the following form:

V
𝑑
(𝑘𝑇)

= −�̂� (𝑘𝑇)𝑋
𝑑
(𝑘𝑇)

= −𝐾
𝑑
(𝑘𝑇)

× [𝑥
𝑇

𝑑𝑠
(𝑘𝑇) 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑑𝑠
(𝑘𝑇 −𝑀

1
𝑇)]

𝑇

− 𝐹
𝑑
(𝑘𝑇) [V𝑇

𝑑
(𝑘𝑇 − 𝑇) ⋅ ⋅ ⋅ V𝑇

𝑑
(𝑘𝑇 −𝑀

2
𝑇)]

𝑇

− 𝐸
𝑑
(𝑘𝑇) 𝑟

∗

(𝑘𝑇) ,

(64)

where �̂�(𝑘𝑇) = [𝐾
𝑑
(𝑘𝑇) 𝐹

𝑑
(𝑘𝑇) 𝐸

𝑑
(𝑘𝑇)], in which

𝐾
𝑑
(𝑘𝑇) = [𝐾

(0)

𝑑
(𝑘𝑇) 𝐾

(1)

𝑑
(𝑘𝑇) ⋅ ⋅ ⋅ 𝐾

(𝑀
1
)

𝑑
(𝑘𝑇)] ,

𝐹
𝑑
(𝑘𝑇) = [𝐹

(1)

𝑑
(𝑘𝑇) ⋅ ⋅ ⋅ 𝐹

(𝑀
2
)

𝑑
(𝑘𝑇)] .

(65)

Here, the discrete optimal controller (64) for the continuous
time-delay system (22a) and (22b) has been completely
derived. Figure 1 presents the realization of the time-varying
piecewise-constant optimal controller (64) for the digitally
controlled continuous time-delay singular system.

3.4. Development of Observer-Based Suboptimal Tracker for
Time-Delay Singular System with States Unavailable. When
the states of a continuous time-delay system (22a) and (22b)
are not available formeasurement, the continuous-time states

can be constructed using the recently developed continuous
time-delay observers [28, 31, 32]. However, the developed
digital tracker (64) requires the extended discrete-time state
Χ
𝑑
(𝑘𝑇) in (41a) and (41b). Using the prediction-based digital

redesign [27], a new observer-based suboptimal tracker for
the time-delay singular system can be designed as follows.

According to the digitally redesigned observer [27] and
controller [27], the extended digitally redesigned observer
and controller can be represented as

𝑋
𝑑
((𝑘 + 1) 𝑇) = 𝐺

𝑜
𝑋
𝑑
(𝑘𝑇) + �̂�

𝑜
V
𝑑
(𝑘𝑇)

+ 𝐿
𝑑
[𝑦

𝑑
(𝑘𝑇) − 𝐶

𝑒
𝑋
𝑑
(𝑘𝑇)] ,

(66a)

V
𝑑
(𝑘𝑇) = −�̂� (𝑘𝑇)𝑋

𝑑
(𝑘𝑇) , (66b)

where Χ̂
𝑑
(𝑘𝑇) ∈ R𝑝 is the estimate of the extended state

Χ
𝑑
(𝑘𝑇) ∈ R𝑝 in (41a) and (41b),

𝐺
𝑜
= 𝐺

𝑒
− 𝐿

𝑑
𝐶
𝑒
𝐺
𝑒
, (66c)

�̂�
𝑜
= �̂�

𝑒
− 𝐿

𝑑
𝐶
𝑒
�̂�
𝑒
. (66d)

Additionally, 𝐺
𝑒
= 𝑒

̂
𝐴𝑇 and �̂�

𝑒
= [𝐺

𝑒
− 𝐼

𝑝
]𝐴

−1

𝐵, where
𝐴 = (1/𝑇) ln(𝐺

𝑒
) and 𝐵 = 𝐴(𝐺

𝑒
− 𝐼)

−1

�̂�
𝑒
. To determine the

extended observer gain 𝐿
𝑑
in (66a), the equivalent extended

continuous-time observer (41a) and (41b) and controller (64)
can be represented [19], on the basis of the analog observer
and controller, as

̇̂
𝑋
𝑐
(𝑡) = 𝐴𝑋

𝑐
(𝑡) + 𝐵V

𝑐
(𝑡) + 𝐿

𝑐
[𝑦

𝑐
(𝑡) − 𝐶

𝑒
𝑋
𝑐
(𝑡)] , (67a)

V
𝑐
(𝑡) = −�̂�

𝑐
𝑋
𝑐
(𝑡) . (67b)

The algorithm for computing the analog system matrix 𝐴
in (67a) from the digital system matrix 𝐺

𝑒
in (41a) via the

geometric-series method [15] is as follows:

𝐴 =
1

𝑇
ln (𝐺

𝑒
)

=
2

𝑇
{�̂� +

1

3
�̂�
3

+ ⋅ ⋅ ⋅ +
1

𝑛
�̂�
𝑛

[𝐼
𝑝
−

1

(1 + 2/𝑛)
�̂�
2

]

−1

}

for 𝜎 (�̂�
2

)

< (1 +

2

𝑛
)

≅
2

𝑇
�̂�[𝐼

𝑝
−
1

3
�̂�
2

]

−1

for 𝑛 = 1

≅
2

𝑇
�̂� [𝐼

𝑝
−
4

15
�̂�
2

] [𝐼
𝑝
−
3

5
�̂�
2

]

−1

for 𝑛 = 3

≅ ⋅ ⋅ ⋅ ,

(67c)

where �̂� = [𝐺
𝑒
− 𝐼

𝑝
][𝐺

𝑒
+ 𝐼

𝑝
]
−1 and |𝜎(∘)| denotes the

absolute eigenspectrum of (∘). Based on the dual concept
of the digital redesign, the analog observer gain 𝐿

𝑐
in (67a)
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Figure 1: Digital redesign for time-delay singular system.

and the digitally redesigned observer gain 𝐿
𝑑
in (66a) can be

represented, respectively, as

𝐿
𝑐
= 𝑃

𝑜𝑏
𝐶
𝑇

𝑒
𝑅
−1

, (68)

𝐿
𝑑
= (𝐺

𝑒
− 𝐼

𝑝
)𝐴

−1

𝐿
𝑐
[𝐼 + 𝐶

𝑒
(𝐺

𝑒
− 𝐼

𝑝
)𝐴

−1

𝐿
𝑐
]
−1

, (69)

where 𝑃
𝑜𝑏
is the positive-definite and symmetric solution of

the following Riccati equation:

𝐴𝑃
𝑜𝑏
+ 𝑃

𝑜𝑏
𝐴
𝑇

− 𝑃
𝑜𝑏
𝐶
𝑇

𝑒
𝑅
−1

𝐶
𝑒
𝑃
𝑜𝑏
+ 𝐶

𝑇

𝑒
𝑄𝐶

𝑒
= 0, (70)

in which 𝑄 ≥ 0 and 𝑅 > 0 with appropriate dimensions.
Owing to the extended virtual state vector in (40), the

matrix 𝐺
𝑒
in (41a) and (41b) and (67a), (67b), and (67c) is

singular. The matrices 𝐴 and 𝐵 in (67a), (67b), and (67c)
cannot be directly determined. To solve this problem, an
alternative is derived via the matrix sign function method
[23, 24] as follows.

Following the procedures shown in Section 3 [23, 24], the
transformed matrix is

𝐺
𝑏
= (𝐺

𝑒
− 𝜁

2
𝐼
𝑝
) (𝐺

𝑒
+ 𝜁

2
𝐼
𝑝
)
−1

, (71)

where𝐺
𝑒
∈ R𝑝×𝑝 and 𝜁

2
is a radius of a circle from the origin

of the coordinates. Additionally, the associated matrix sign
functions are

Sign (𝐺
𝑏
) = 𝐺

𝑏
(
2
√𝐺

2

𝑏
)

−1

, (72)

Sign− (𝐺
𝑏
) =

1

2
(𝐼
𝑝
− Sign (𝐺

𝑏
)) , (73a)

Sign+ (𝐺
𝑏
) =

1

2
(𝐼
𝑝
+ Sign (𝐺

𝑏
)) , (73b)

respectively. A fast and stable algorithm for computing the
matrix sign function [23, 24] is given as follows.

For the order of the desired convergence rate 𝑟 = 2, one
has

𝑄 (𝑙 + 1) =
1

2
[𝑄 (𝑙) + 𝑄

−1

(𝑙)] ,

𝑄 (0) = 𝐺
𝑏
,

lim
𝑙→∞

𝑄 (𝑙) = Sign (𝐺
𝑏
) , for 𝑙 = 0, 1, 2, . . . .

(74)

By [19, 20], a transformation matrix 𝑇
𝑚
can be found such

that

𝐺
𝑚
= 𝑇

−1

𝑚
𝐺
𝑒
𝑇
𝑚
= [

𝐺
𝑚1

0
(𝑝−𝑔)×𝑔

0
𝑔×(𝑝−𝑔)

𝐺
𝑚2

] , (75)

where 𝐺
𝑚1

is a nonsingular matrix and 𝐺
𝑚2

is a singular
matrix whose eigenvalues are all null. Finally, the matrix 𝐴
is obtained by the following equation:

𝐴 = 𝑇
𝑚
𝐺ln𝑇

−1

𝑚
= 𝑇

𝑚
[
𝐺ln 1 0

0 𝐺ln 2
]𝑇

−1

𝑚
, (76a)

where 𝐺ln 1 = (1/𝑇) ln ( 3√𝐺
𝑚1
)

3

= (3/𝑇) ln( 3√𝐺
𝑚1
) and

𝐺ln 2 = ]𝐼
𝑔
, in which ] is a large negative real constant. The

algorithm for finding ln( 3√𝐺
𝑚1
) in (76a) can be found in (67c)

[19]. If the matrix 𝐺
𝑚1

has any negative real eigenvalue, then
the principal third root of 𝐺

𝑚1
is not defined for arg(𝜆

𝑖
) ̸= 𝜋

[23, 24]. The first part 𝐺ln 1 in (76a) can be rewritten as

𝐺ln 1 =
3

𝑇
ln( 3√𝐺

𝑚1
) =

3

𝑇
ln [( 3√𝐺

𝑚1
𝑒𝑖𝜃) 𝑒

−(𝑖𝜃/3)

] , (76b)
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where the matrix 𝐺
𝑚1

is rotated by a small positive real angle
𝜃. The second part 𝐺ln 2 in (76a) is utilized to recover the
property ln(0) = −∞. Matrix 𝐵 can be evaluated as

𝐵 = 𝐴(𝐺
𝑒
− 𝐼

𝑝
)
−1

�̂�
𝑒

= [(𝐺
𝑒
− 𝐼

𝑝
)𝐴

−1

]
−1

�̂�
𝑒

= (𝑇𝐼
𝑝
+
𝐴𝑇

2

2!
+
𝐴
2

𝑇
3

3!
+ ⋅ ⋅ ⋅ )

−1

�̂�
𝑒
.

(77)

Substituting (76a) and (76b) into the Riccati equation (70)
and solving it yield the observer gain matrices in (68) and
(69). Figure 2 presents the implementation of the observer-
based suboptimal tracker for the time-delay singular system.

4. An Illustrative Example

Consider a continuous time-delay singular system, described
in (1a) and (1b), with

𝐸 =

[
[
[
[
[
[
[

[

1 2 1 1 −3 −2

0 2 2 1 −3 −3

1 2 1 1 −3 −2

1 2 1 3 −5 −4

0 2 1 1 −2 −2

1 0 0 0 −1 0

]
]
]
]
]
]
]

]

, 𝐴 = 𝐼
6
,

𝐴
1
=

[
[
[
[
[
[
[

[

0.447 0 0 0 0.447 0

0 0.2236 −0.1118 0 −0.447 0

0 0 0.2236 0 0 0

0 0 0 0.447 −0.8944 0

0 0 0 0 0.447 0

0 0 0 0 −0.8944 0.447

]
]
]
]
]
]
]

]

,

𝐵
1
= [
1 0 0 0 0 −1

0 0 −1 1 0 0
]

𝑇

, 𝐶 = [
1 0 1 0 0 0

0 1 0 1 0 0
] ,

𝑁
1
= 𝑁

2
= 1, 𝜏

𝑠1
= 0, 𝜏

𝑖1
= 𝜏

𝑜
= 0.5 × 𝑇.

(78)

Let the sampling period 𝑇 = 0.01 (s) and apply the reference
input 𝑟(𝑡) = [0.5 sin(𝑡) 0.5 cos(𝑡)]𝑇 to the system. The
initial condition is 𝑥

𝑐
(0) = (𝑀𝑉�̃�)[𝑥

𝑇

𝑠
(0) 𝑥

𝑇

𝑓
(0)]

𝑇

=

[0 0 0 0 0 0]
𝑇, 𝑥

𝑠
(0) = [0 0 0 0]

𝑇, and 𝑥
𝑓
= [0 0]

𝑇.
Since 0 × 𝐸 + 𝐴 = 𝐼

6
, and according to the definition

of the standard form, {𝐸, 𝐴} is in standard form. If 𝛼 = 0

and 𝛽 = 1 are set, then 𝐸
𝑛
= 𝐸, 𝐴

𝑛
= 𝐴, 𝐴

𝑛,1
= 𝐴

1
,

and 𝐵
𝑛,1
= 𝐵

1
. Since 𝐸

𝑛
is singular, 𝐸

𝑛
includes some zero

eigenvalues, and the bilinear transform must be performed
to find the similarity transformationmatrix𝑀 of 𝐸

𝑛
. Assume

𝜔 = 0.5; the algorithm that was described in Section 3 yields,

𝐸
𝑛
=

[
[
[
[
[
[
[

[

0.3333 1.6 −2.4 0.16 0.9067 2.24

0 0.6 1.6 0.16 −1.76 −1.76

1.3333 1.6 −3.4 0.16 0.9067 2.24

1.3333 1.6 −2.4 0.76 −0.6933 0.64

0 1.6 −2.4 0.16 1.24 2.24

1.3333 0 0 0 −1.3333 −1

]
]
]
]
]
]
]

]

,

sign (𝐸
𝑛
) =

[
[
[
[
[
[
[

[

1 2 2 0 −4 −2

0 1 2 0 −2 −2

2 2 1 0 −4 −2

2 2 2 1 −6 −4

0 2 2 0 −3 −2

2 0 0 0 −2 −1

]
]
]
]
]
]
]

]

,

𝑀 =

[
[
[
[
[
[
[

[

1 1 0 0 −1 −1

0 1 0 0 0 −1

1 1 0 −1 −1 0

1 1 1 −1 −1 −1

0 1 0 0 −1 −1

1 0 0 −1 0 0

]
]
]
]
]
]
]

]

.

(79)

Based on Section 3.1 and Appendices, the time-delay singular
system can be decomposed as follows:

̇̃𝑥
𝑠
(𝑡) = 𝐴

𝑠
𝑥
𝑠
(𝑡) + 𝐴

𝑑,1
𝑥
𝑠
(𝑡 − 𝜏

𝑠,1
) + 𝐵

𝑑,1
V
𝑐
(𝑡 − 𝜏

𝑖,1
) ,

(80a)

𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) − 𝐷

1
V
𝑐
(𝑡 − 𝜏

𝑖,1
) , (80b)

where

𝐴
𝑠
=

[
[
[

[

1 0 0 −0.5

0 0.5 −0.25 −0.5

0 0 0.5 0

0 0 0 0.5

]
]
]

]

,

𝐴
𝑑,1
=

[
[
[

[

0.4472 0 0 −0.2236

0 0.2236 −0.1118 −0.2236

0 0 0.2236 0

0 0 0 0.2236

]
]
]

]

,

𝐵
𝑑,1
=

[
[
[

[

0.5 0.5

−0.25 −0.25

0.5 0.5

0.5 −0.5

]
]
]

]

,

𝐶
1
= [
1 0 1 0

1 0 0 0
] ,

𝐷
1
= [

0 2

0.5 1.5
] ,

(81)

and the other parameters are listed below:

�̃� =

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0.5 0 1

0 0 0 1 0 0

]
]
]
]
]
]
]

]

,

𝛾 = 2, 𝜂 = −1,

Λ
1,1
=

[
[
[

[

0.4472 0 0 −0.2982

0 0.1491 −0.0994 −0.1988

0 0 0.1491 0

0 0 0 0.1491

]
]
]

]

,
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Cs
̇x̃ds(t) = Asx̃ds(t) +

N1

∑

i=1

Âd,ix̃ds(t − 𝜏s,i) +

N2

∑

j=1

Bd,j�d(t − 𝜏i,j)

T T

Z
−1 Ld

−K̂(kT)

X̂d(kT)

X̂d(kT) = ĜoX̂d(kT − T) + Ĥo�d(kT − T) + Ldyd(kT)

�d(kT) yd(kT)

Z.O.H.

Figure 2: Observer-based suboptimal tracker for the digitally redesigned time-delay singular system.
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Figure 3: Output responses of time-delay singular system with states available by the new digital redesign approach.

Λ
2,1
= [
−0.4472 0

0 −0.4472
] ,

𝐵
𝑠𝑘,1

=

[
[
[

[

0.3333 0.6667

−0.3333 −0.1111

0.3333 0.3333

0.3333 −0.3333

]
]
]

]

,

𝑉 = 𝐼
6
, 𝐾

𝑓,1
= [
0 1 0

0 −1 0
] .

(82)

Following the proposed method in Section 3, the schemes
of Figures 1 and 2 are implemented. For simplification, the
numerical analysis is not presented and Figures 3 and 4 show
the results of the simulation.

Comparing with the offline observer/Kalman filter iden-
tification (OKID) method, the advantages of the proposed
approach can be shown in [33, 34]. Following [33, 34], let the
unknown system (80a) and (80b) be excited by the white-
noise control force 𝑢(𝑡) = [𝑢

1
(𝑡) 𝑢

2
(𝑡)]

𝑇 with a zero mean
and covariance diag[cov(𝑢

1
(𝑡)), cov(𝑢

2
(𝑡))] = diag [0.2 0.2].

The input-output sampled data is given in Figure 5.
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Figure 4: Output responses of time-delay singular system with states unavailable by new observer-based suboptimal approach.
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Figure 5: System I/O data for identification.

The identified system (𝐺, �̂�, 𝐶) and observer gain (𝐹)
matrices for the unknown system (80a) and (80b) are given
as

𝐺 =

[
[
[

[

8.7538 −4.3746 8.9478 −0.5128 0

10.2956 5.5361 1.4682 −3.6730 0

−19.5769 9.2613 −19.7421 9.5377 0

−0.0821 0.6656 −1.0711 −359.3919 0

0 0 0 0 −112.9831

]
]
]

]

,

�̂� =

[
[
[
[
[

[

−0.2470 −0.2116

−0.8808 −0.8879

−0.5713 −0.5007

22.2478 21.6048

0 0

]
]
]
]
]

]

,

𝐶 = [
−1.0867 −0.5871 0.7911 −0.0579 0

0.5676 −0.5710 −0.4333 −0.0488 0
] ,
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Figure 6: (a) The comparison between the system output 𝑦
𝑠1
(𝑘𝑇) and its observer-based output 𝑦okid1(𝑘𝑇) by OKID. (b) The comparison

between the system output 𝑦
𝑠2
(𝑘𝑇) and its observer-based output 𝑦okid2(𝑘𝑇) by OKID.
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Figure 7: (a) The comparison between the system output 𝑦
𝑠1
(𝑘𝑇) and its observer-based output 𝑦id1(𝑘𝑇) by the proposed method. (b) The

comparison between the system output 𝑦
𝑠2
(𝑘𝑇) and its observer-based output 𝑦id2(𝑘𝑇) by the proposed method.
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𝐹 =

[
[
[
[
[

[

1.4216 −2.0615

0.7740 1.0579

0.5564 −0.8225

−0.0043 −0.0041

0 0

]
]
]
]
]

]

.

(83)

Then, the observer-based outputs by OKID compared with
the actual system outputs for the unknown system (80a) and
(80b) are shown in Figure 6.

To overcome the effect of modeling error, an improved
observer (69) with the high-gain property has been proposed
in this paper, where the observer gain matrices are given as

𝐿
𝑑
= [

−0.3231 −0.5708 0.3103 −0.1051 0 −0.0628

0.4008 −1.0446 −0.4013 −0.1646 0 0.1289

−0.0833 −0.1119 6.4407 0 1.1006 0.1373

−0.1585 −0.4047 10.2422 0 1.6436 0.3760

−16.6049 228.3244 0.0003 0.0124 0.0119 0 0

−25.8086 363.6177 0.0001 0.0191 0.0184 0 0
]

𝑇

.

(84)

Then, the comparisons between the actual outputs and the
proposed method outputs for the unknown system (80a) and
(80b) are shown in Figure 7.

Obviously, the proposed method is better than OKID
method on the tracking error performance from Figures 6
and 7.

5. Conclusion

This paper presents a systematic methodology for developing
novel observer-based suboptimal digital trackers for a class
of time-delay singular systems. The time-delay property and
singular system have been attracting more attention in recent
years. The proposed controller and observer depend on
the concepts of optimal control and the digital redesign
with high-gain property to ensure effective tracking and
favorable state matching performance. In future works, we
will paymore attention to the online application and the real-
time implementation of fault tolerant control system with
performance optimization by using the proposed methods.

Appendices

A. Transformation of the Time-Delay
Singular Systems

The following steps yield the preliminary feedback gain 𝐾
𝑓,𝑗

and prove that𝐾
𝑓,𝑗

can eliminate impulsive modes.
Let

𝑥
𝑐
(𝑡) = 𝑉𝑥

𝑐
(𝑡) , (A.1)

where 𝑥
𝑐
(𝑡) = [𝑥

𝑇

𝑐,𝑠
(𝑡), 𝑥

𝑇

𝑐,𝑓
(𝑡)]

𝑇

= [𝑥
𝑇

𝑐,𝑠
(𝑡), (𝑈

−1

𝑥
𝑐,𝑓
(𝑡))

𝑇

]

𝑇

and 𝑉 = [ 𝐼
𝑘

𝑂

𝑂 𝑈
]. 𝑈 is a modal matrix of 𝐸

𝑓
with dimension

(𝑛 − 𝑘) × (𝑛 − 𝑘) such that 𝑈−1

𝐸
𝑓
𝑈 is in the Jordan block

form. Substituting (A.1) into (9) andmultiplying by𝑉−1 yield
the following equation:

[
𝐼
𝑘
𝑂

𝑂 𝐸
𝑓

] ̇̂𝑥
𝑐
(𝑡)

= [
𝐴
𝑠
𝑂

𝑂 𝐼
𝑛−𝑘

] 𝑥
𝑐
(𝑡)

+

𝑁
1

∑

𝑖=1

[
𝐴
1,𝑖

𝑂

𝑂 𝐴
2,𝑖

]𝑥
𝑐
(𝑡 − 𝜏

𝑠,𝑖
)

+

𝑁
2

∑

𝑗=1

[
𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(A.2)

where 𝐸
𝑓
= 𝑈

−1

𝐸
𝑓
𝑈, 𝐴

𝑠
= 𝐴

𝑠
, 𝐴

1,𝑖
= 𝐴

1,𝑖
, 𝐴

2,𝑖
= 𝑈

−1

𝐴
2,𝑖
𝑈,

𝐵
𝑠,𝑗

= 𝐵
𝑠,𝑗
, and 𝐵

𝑓,𝑗
= 𝑈

−1

𝐵
𝑓,𝑗
. Notably, 𝐸

𝑓
is in the

Jordan block form with 𝑑 blocks of sizes 𝜇
1
, 𝜇

2
, . . . , 𝜇

𝑑
, where

∑
𝑑

𝑖=1
𝜇
𝑖
= column (row) number of 𝐸

𝑓
. In (A.2), the state-

delay 𝑥
𝑐
(𝑡−𝜏

𝑠,𝑖
) can be equal to𝑊

𝑠,𝑖
𝑥
𝑐
(𝑡), where𝑊

𝑠,𝑖
is a block

diagonal {𝜓
1,𝑖
, 𝜓

2,𝑖
}. Therefore, (A.2) can be rewritten as

[
𝐼
𝑘
𝑂

O 𝐸
𝑓

] ̇̂𝑥
𝑐
(𝑡)

=

[
[
[
[
[

[

𝐴
𝑠
+

𝑁
1

∑

𝑖=1

⌣

𝐴
1,𝑖
𝜓
1,𝑖

𝑂

𝑂 𝐼 +

𝑁
1

∑

𝑖=1

⌣

𝐴
2,𝑖
𝜓
2,𝑖

]
]
]
]
]

]

𝑥
𝑐
(𝑡)

+

𝑁
2

∑

𝑗=1

[
𝐵
𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

≜ [
𝐴
𝑠1

𝑂

𝑂 𝐴
𝑠2

] 𝑥
𝑐
(𝑡) +

𝑁
2

∑

𝑗=1

[
𝐵

𝑠,𝑗

𝐵
𝑓,𝑗

] 𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(A.3)

From (A.3), the fast subsystem is

𝐸
𝑓

̇̂𝑥
𝑐,𝑓
(𝑡) = 𝐴

𝑠2
𝑥
𝑐,𝑓
(𝑡) +

𝑁
2

∑

𝑗=1

𝐵
𝑓,𝑗
𝑢
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (A.4)

so

𝐸
∗

𝑓

̇̂𝑥
𝑐,𝑓
(𝑡) = 𝑥

𝑐,𝑓
(𝑡) +

𝑁
2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
𝑈
𝑐,𝑗
(𝑡) , (A.5)

where 𝐸∗
𝑓
= 𝐴

−1

𝑠2
𝐸
𝑓
, 𝐵∗

𝑓,𝑗
= 𝐴

−1

𝑠2
𝐵
𝑓,𝑗
, and 𝑈

𝑐,𝑗
(𝑡) = 𝑢

𝑐
(𝑡 − 𝜏

𝑖,𝑗
).

Taking the Laplace transformation of the fast subsystem
(A.5), one obtains

𝑋
𝑐,𝑓
(𝑠) = (𝑠𝐸

∗

𝑓
− 𝐼

𝑛−𝑘
)
−1

(𝐸
∗

𝑓
𝑥
𝑐,𝑓
(0) +

𝑁
2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
𝑈
𝑐,𝑗
(𝑠))

= −

𝑙−1

∑

𝑖=0

𝑠
𝑖

(𝐸
∗

𝑓
)
𝑖

(𝐸
∗

𝑓
𝑥
𝑐,𝑓
(0) +

𝑁
2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
𝑈
𝑐,𝑗
(𝑠)) .

(A.6)
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Taking the inverse Laplace transformation of the above
equation, one has

𝑥
𝑐,𝑓
(𝑡) = −

𝑙−1

∑

𝑖=1

(𝐸
∗

𝑓
)
𝑖

𝑥
𝑐,𝑓
(0) 𝛿

(𝑖−1)

(𝑡)

−

𝑙−1

∑

𝑖=0

𝑁
2

∑

𝑗=1

(𝐸
∗

𝑓
)
𝑖

𝐵
∗

𝑓,𝑗
𝑈
(𝑖)

𝑐,𝑗
(𝑡) ,

(A.7)

where 𝛿(𝑡) and 𝛿(𝑖)(𝑡) denote the delta function and the
𝑖th derivative of the delta function, respectively. From the
above equation, the impulsive modes of the fast state are
induced from inconsistent initial conditions of the fast state
or discontinuous control input (or its derivatives). By [12],
determination of the preliminary feedback gain 𝐾

𝑓,𝑗
=

[𝑘
1,𝑗
, 𝑘

2,𝑗
, . . . , 𝑘

𝑛−𝑘,𝑗
]
𝑚×(𝑛−𝑘)

, where 𝑘
𝜉,𝑗

is of dimension 𝑚 × 1
for 𝜉 = 1, 2, . . . , (𝑛 − 𝑘), is summarized as follows.

(1) If 𝜇
𝑖
≥ 1, where 1 ≤ 𝑖 ≤ 𝑑, and its corresponding

Jordan block is a null matrix, then

𝑘
𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖−1
+1,𝑗

= 𝑂
𝑚×1
,

𝑘
𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖−1
+2,𝑗

= 𝑂
𝑚×1
,

...
𝑘
𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖−1
+𝜇
𝑖
,𝑗
= 𝑂

𝑚×1
.

(A.8)

(2) If 𝜇
𝑖
> 1, where 1 ≤ 𝑖 ≤ 𝑑, and its corresponding

Jordan block is not a null matrix, then

𝑘
𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖−1
+1,𝑗

=

[
[
[
[
[

[

𝛿 (�̂�
(𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖
)1,𝑗
)

𝛿 (�̂�
(𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖
)2,𝑗
)

...
𝛿 (�̂�

(𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖
)𝑚,𝑗
)

]
]
]
]
]

]

,

𝑘
𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖−1
+2,𝑗

= 𝑂
𝑚×1
,

...

𝑘
𝜇
1
+𝜇
2
+⋅⋅⋅+𝜇

𝑖−1
+𝜇
𝑖
,𝑗
= 𝑂

𝑚×1
,

(A.9)

where

𝐵
∗

𝑓,𝑗
≜

[
[
[
[
[

[

�̂�
(𝑘+1),𝑗

�̂�
(𝑘+2),𝑗

...
�̂�
𝑛,𝑗

]
]
]
]
]

](𝑛−𝑘)×𝑚

,

�̂�
𝑖,𝑗
≜ [�̂�

𝑖1,𝑗
, �̂�
𝑖2,𝑗
, . . . , �̂�

𝑖𝑚,𝑗
]
1×𝑚

,

𝛿 (�̂�
𝑖𝜉,𝑗
) ≜

{{

{{

{

0, if �̂�
𝑖𝜉,𝑗
= 0,

1, if �̂�
𝑖𝜉,𝑗
> 0,

−1, if �̂�
𝑖𝜉,𝑗
< 0,

𝜉 = 1, 2, . . . , 𝑚.

(A.10)

Let

𝑈
𝑐,𝑗
(𝑡) = 𝑢

𝑐
(𝑡 − 𝜏

𝑖,𝑗
) = − 𝐾

𝑓,𝑗
𝑥
𝑐,𝑓
(𝑡) + 𝑉

𝑐,𝑗
(𝑡)

= − 𝐾
𝑓,𝑗
𝑥
𝑐,𝑓
(𝑡) + V (𝑡 − 𝜏

𝑖,𝑗
)

= − [𝑂
𝑚×𝑘
, 𝐾

𝑓,𝑗
] 𝑥

𝑐
(𝑡) + V

𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(A.11)

Substituting (A.11) into (A.2) yields (13).

B. Output Transformation of the Time-Delay
Singular Systems

Equation (20b) can be decomposed as follows:

0 = 𝑥
𝑓,𝑠
(𝑡) +

𝑁
1

∑

𝑖=1

Δ
1,𝑖
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁
2

∑

𝑗=1

𝐵
∗

𝑠,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(B.1a)

0 = 𝑥
𝑓,𝑓
(𝑡) +

𝑁
1

∑

𝑖=1

Δ
2,𝑖
𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑠,𝑖
) +

𝑁
2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(B.1b)

where 𝑥
𝑓
(𝑡) = [

𝑥
𝑓,𝑠
(𝑡)

𝑥
𝑓,𝑓
(𝑡)
], 𝐵

𝑓𝑘,𝑗
= [

𝐵

∗

𝑠,𝑗

𝐵

∗

𝑓,𝑗

], and 𝜂Λ
2,𝑖

=

block diagonal {Δ
1,𝑖
, Δ

2,𝑖
} is assumed. Based on (B.1a) and

(B.1b), the following equations hold:
𝑁
1
+1

∑

𝑖=1

Δ
1,𝑖
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑠,𝑖
) = −

𝑁
2

∑

𝑗=1

𝐵
∗

𝑠,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (B.2a)

𝑁
1
+1

∑

𝑖=1

Δ
2,𝑖
𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑠,𝑖
) = −

𝑁
2

∑

𝑗=1

𝐵
∗

𝑓,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) , (B.2b)

where 𝑖 = 𝑘 and Δ
1,𝑘
= Δ

1,𝑘
= 𝐼, 𝜏

𝑠,𝑘
= 0. Similarly, from

(21a),
𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

2
𝑥
𝑓
(𝑡 − 𝜏

𝑜
)

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + [𝐶

1
𝐶
2
] [
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑜
)

𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑜
)
]

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

1
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑜
) + 𝐶

2
𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑜
) ,

(B.3)

where 𝐶
2
= [𝐶

1
𝐶
2
]. From (B.3) denotes the following

equation is satisfied:
𝑁
1
+1

∑

𝑖=1

𝑦
𝑐
(𝑡 − 𝜏

∗

𝑖
) =

𝑁
1
+1

∑

𝑖=1

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
− 𝜏

∗

𝑖
)

+

𝑁
1
+1

∑

𝑖=1

𝐶
1
𝑥
𝑓,𝑠
(𝑡 − 𝜏

𝑜
− 𝜏

∗

𝑖
)

+

𝑁
1
+1

∑

𝑖=1

𝐶
2
𝑥
𝑓,𝑓
(𝑡 − 𝜏

𝑜
− 𝜏

∗

𝑖
)
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=

𝑁
1
+1

∑

𝑖=1

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
)

− 𝐶
1

𝑁
1
+1

∑

𝑖=1

𝑁
2

∑

𝑗=1

Δ
−1

1,𝑖
𝐵
∗

𝑠,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

− 𝐶
2

𝑁
1
+1

∑

𝑖=1

𝑁
2

∑

𝑗=1

Δ
−1

2,𝑖
𝐵
∗

𝑓,𝑗
V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

=

𝑁
1
+1

∑

𝑖=1

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
) − [𝐶

1
𝐶
2
]

×

𝑁
1
+1

∑

𝑖=1

𝑁
2

∑

𝑗=1

[
Δ
−1

1,𝑖
𝑂

𝑂 Δ
−1

2,𝑖

][
𝐵
∗

𝑠,𝑗

𝐵
∗

𝑓,𝑗

] V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

=

𝑁
1
+1

∑

𝑖=1

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
)

− 𝐶
2

𝑁
1
+1

∑

𝑖=1

𝑁
2

∑

𝑗=1

(𝜂Λ
2,𝑖
)
−1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) ,

(B.4)

where 𝜏∗
𝑖
= 𝜏

𝑠,𝑖
− 𝜏

𝑜
. One of the terms 𝜏∗

𝑖
in (B.4) is set to

𝜏
∗

𝑖
= 0 and (B.4) can be represented as

𝑦
𝑐
(𝑡) +

𝑁
1

∑

𝑖=1

𝑦
𝑐
(𝑡 − 𝜏

∗

𝑖
)

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) − 𝐶

2
(𝜂Λ

2,𝑘
)
−1

×

𝑁
2

∑

𝑗=1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) +

𝑁
1

∑

𝑖=1

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
)

− 𝐶
2

𝑁
1

∑

𝑖=1

𝑁
2

∑

𝑗=1

(𝜂Λ
2,𝑖
)
−1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

= 𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) − 𝐶

2
(𝐼)

−1

𝑁
2

∑

𝑗=1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
)

+

𝑁
1

∑

𝑖=1

𝐶
1
𝑥
𝑠
(𝑡 − 𝜏

𝑠,𝑖
)

− 𝐶
2

𝑁
1

∑

𝑖=1

𝑁
2

∑

𝑗=1

(𝜂Λ
2,𝑖
)
−1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) .

(B.5)

From (B.5),

𝑦
𝑐
(𝑡) = 𝐶

1
𝑥
𝑠
(𝑡 − 𝜏

𝑜
) − 𝐶

2

𝑁
2

∑

𝑗=1

𝐵
𝑓𝑘,𝑗

V
𝑐
(𝑡 − 𝜏

𝑖,𝑗
) . (B.6)
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