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This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR) learning. The
concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF), which enhance the
capability of the 3DFLC to copewithmore kinds ofMFs.Thenonlinearmathematical expression of the reference function based 3D
FLC is derived, and spatial fuzzy basis functions are defined.Via relating spatial fuzzy basis functions of a 3DFLC to kernel functions
of an SVR, an equivalence relationship between a 3D FLC and an SVR is established.Therefore, a 3D FLC can be constructed using
the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven
in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation
results have verified its effectiveness.

1. Introduction

Many industrial processes and systems are “distributed” in
space [1] and are usually called spatially distributed systems.
Recently, a novel three-dimensional fuzzy logic controller
(3D FLC) [2] has been developed for the control of such
systems.The 3DFLC employs a three-dimensional (3D) fuzzy
set [2], which is composed of the traditional fuzzy set plus a
third dimension for the spatial information, and carries out a
3D rule inference engine; thus, it has the inherent capability
to process spatiotemporal dynamic systems. The control
strategy of the 3D FLC is similar to how human operators or
experts control the temperature in a space domain. Actually,
it is a kind of spatiotemporal fuzzy control system with the
traditional model-free advantage.

Currently, most 3D FLC designs are based on expert
knowledge [2–5], which requires that the human knowledge
to the control solution must exist and be structured [6].
However, in many real-world applications, experts may have
problems structuring the knowledge. Sometimes, although
experts have the structured knowledge, they may sway
between extreme cases: offering too much knowledge in the
field of expertise or tending to hide their knowledge [6]. On

the contrast, data sets hidden with effective control rules are
usually available. The motivation of this study is to design a
3D FLC using spatiotemporal data information.

To date, few literatures are found to be focused on data-
based 3D FLC designmethods. In [7], a table look-up scheme
was employed to design 3D FLC in terms of input-output
pairs. In [8], a fuzzy c-means algorithm (FCM) and gradient-
descent approach were used to design a data-based 3D FLC,
where FCM was used to learn the initial 3D fuzzy rule base
and then the gradient-descent approach was used to optimize
the parameters of MFs. In [9, 10], a clustering and linear
support vector regression based 3D FLC design method was
proposed, where the nearest neighborhood clustering was
used to construct the antecedent part of 3D fuzzy rules and
a linear support vector regression (SVR) was used to learn
the consequent parameters.Thesemethods either yield lots of
fuzzy control rules (e.g. in [7]) or require additional algorithm
to reduce redundant 3D fuzzy sets or 3D fuzzy rules [8–
10]. As a complementary, Zhang et al. proposed a data-based
3D FLC design method using SVR learning [11], where the
learned support vectors and associated learning parameters
are directly used to design antecedent part and consequent
part of 3D fuzzy rules. The best advantage of this method is
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that reasonable 3D fuzzy control rules are directly extracted
and constructed by SVR learning.The limitation of the design
is that Gaussian shape membership function (MF) is the only
choice for MF design.

In this study, we focus on a reference function based 3D
FLC design using SVR learning, which integrates the merits
of SVR learning and flexible MF choice. Utilizing the concept
of reference function, the 3D FLC can cope with more kinds
of MFs, for example, Symmetric triangle, Gaussian, Cauchy,
Laplace, Hyperbolic Secant, and Squared Sinc. A nonlinear
mathematical description of a reference function based 3D
FLC can be derived, and spatial fuzzy basis functions are
defined. Via relating spatial fuzzy basis functions of a 3D
FLC to kernel functions (KFs) of an SVR, an equivalence
relationship between a 3D FLC and an SVR is established.
Therefore, a 3D FLC can be constructed using the learned
results of an SVR. In addition, the universal approximation
capability of the proposed 3D fuzzy system is proven in terms
of the finite covering theorem.

The paper is organized as follows. Preliminaries about the
reference function, 3D MF generated by reference function,
and the nonlinear mapping of reference function based 3D
FLC are addressed in Section 2. In Section 3, themethodology
and design scheme of the reference function based 3D FLC
design using SVR learning are presented. Then, the finite
covering theorem is used to prove that the 3D FLC is a
universal approximator in Section 4. In Section 5, a catalytic
packed-bed reactor is presented as an example to illustrate the
proposed 3D FLC and validate its effectiveness. In Section 6,
conclusions are given.

2. Preliminaries

2.1. Reference Function

Definition of Reference Function (see [12, 13]). A function 𝜐 :

𝑅 → [0, 1] is a reference function if and only if the following
two conditions hold:

(1) 𝜐(𝑥) = 𝜐(−𝑥),
(2) 𝜐(0) = 1.

Many functions may be reference functions. For instance,
Symmetric triangle, Gaussian, Cauchy, Laplace, Hyperbolic
Secant, and Squared Sinc as listed in Table 1 are reference
functions.The reference functions can be used to generate 3D
MFs, which provide a way for 3D FLC to access more kinds
of 3D MFs.

2.2. Reference Function Based 3D FLC

2.2.1. 3D MF Generated by Reference Function. A 3D MF is
an extension of a traditional MF by adding a third coordinate
for the spatial information. In detail, the 3D MF has three
coordinates: one is for the universe of discourse of the
variable, another one is for the spatial information, and the
third one is for the membership degree. If finite sensors are
used, the 3D MF can be considered as the assembly of the
traditional 2D MFs at each sensing location. In this way,

Table 1: Reference functions.

Classification Mathematical expression
Symmetric triangle 𝜐(𝑥) = max (1 − 𝑑 |𝑥| , 0), 𝑑 > 0

Gaussian 𝜐(𝑥) = 𝑒
−𝑑𝑥

2

, 𝑑 > 0

Cauchy 𝜐(𝑥) =

1

1 + 𝑑𝑥
2

, 𝑑 > 0

Laplace 𝜐(𝑥) = 𝑒
−𝑑|𝑥|, 𝑑 > 0

Hyperbolic Secant 𝜐(𝑥) =

2

𝑒
𝑑𝑥

+ 𝑒
−𝑑𝑥

, 𝑑 > 0

Squared Sinc 𝜐(𝑥) =

sin2
(𝑑𝑥)

𝑑
2

𝑥
2

, 𝑑 > 0
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we can generate a 3D MF by location transformation of a
reference function at each sensing location.

For example, we have a spatial input variable 𝑥
1

(𝑧)

defined in a discrete spatial domain 𝑍 = {𝑧
1

, 𝑧
2

, . . . , 𝑧
𝑝

}. A
3D MF of 𝑥

1

(𝑧) can be an assembly of the traditional 2D
MFs at each sensing location 𝑧 = 𝑧

𝑗

(𝑗 = 1, 2, . . . , 𝑝). The
MF distribution of 𝑥

1

(𝑧) at sensing location 𝑧 = 𝑧
1
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be shown in Figure 1, where 𝛽
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2.2.2. Reference Function Based 3D FLC as a Nonlinear
Mapping. The basic structure of a 3D FLC is composed of
3D fuzzifier, 3D rule inference, and defuzzifier. Due to its
unique 3D nature, some detailed operations of a 3D FLC
are different from a traditional one for spatial information
expression, processing, and compression. For their detailed
operations, one can refer to [2]. Once each component of
a reference function based 3D FLC is set, the nonlinear
mathematical description of the 3D FLC can be derived (see
Appendix A for a brief derivation). Assuming that we employ
3D singleton fuzzifier, 3D fuzzy rules as shown in (A.4) of
Appendix A, “product” t-norm and “weighted aggregation”
dimension reduction [3] in the 3D rule inference, singleton
fuzzy sets for the output variable, and “linear” defuzzifier [14],
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the reference function based 3D FLC can be mathematically
expressed as

𝑢 (𝑥
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) = 𝑏
0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑙

𝑖

(𝑥
𝑖

(𝑧
𝑗

))

= 𝑏
0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖

(𝑥
𝑖

(𝑧
𝑗

) − 𝜏
𝑙

𝑖𝑗

) ,

(1)

where 𝑥
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then (1) can be rewritten as
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Ψ
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We define Ψ
𝑙

(𝑥
𝑧

) as a Spatial Fuzzy Basis Function (SFBF)
[11]. Each SFBF corresponds to a 3D fuzzy rule, and all the
SFBFs correspond to a 3D rule base. Mathematically, a 3D
FLC is a linear combination of all the SFBFs. Furthermore,
we rewrite (2) into (4)
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From (4), we can find that, at each sensing location,

there exists a traditional FBF [15] 𝜑
𝑙

(𝑥(𝑧
𝑗

)); in the whole
space domain, multiple traditional FBFs are assembled by the
spatial weights 𝑎

1

, . . . , 𝑎
𝑝

into a SFBF Ψ
𝑙

(𝑥
𝑧

). All the spatial
information expression and processing as well as the fuzzy
linguistic expression and rule inference are integrated into
SFBFs.

Equation (1) (or (3)) shows that the reference function
based 3D FLC is a nonlinear mapping from the input space
𝑥
𝑧

∈ Ω ⊂ 𝑅
𝑝×𝑠 to the output space 𝑢(𝑥

𝑧

) ∈ 𝑈 ⊂ 𝑅. In
particular, using (3) a reference function based 3D FLC can
be represented by a three-layer network structure as show in
Figure 2.

3. Reference Function Based 3D FLC Design
Using SVR Learning

3.1. Design Methodology. The design methodology can be
depicted by Figure 3. The SFBFs from a 3D FLC are input to
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Figure 2: Three-layer network structure of a 3D FLC.

an SVR as the KFs, and the learned spatial support vectors
as leading spatiotemporal data points from the SVR are
imported for the design of a 3D fuzzy rule base. The design
theory will involve two crucial issues.The first one is whether
SFBFs from a 3D FLC can be used as KFs in an SVR. The
second one is what the relationship between a 3D FLC and an
SVR would be like on the basis of the first issue.

3.1.1. Spatial Fuzzy Basis Function as Mercer KF. When
relating the SFBFs with the KFs in an SVR, for instance,
SFBFs are regarded as KFs, the SVR and the 3D FLCwill have
the same network structures and then have the same mathe-
matical expressions, which will be discussed in Section 3.1.2.
Generally speaking, a function satisfyingMercer theorem can
be used as a KF for an SVR [16]. In this study, we will prove
that an SFBF is a Mercer KF.
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where 𝑥
𝑧

∈ 𝑅
𝑝×𝑠 is a spatial input, 𝜏

𝑙

∈ 𝑅
𝑝×𝑠 is the location

transformation parameter of 3D MF in the 𝑙th rule, and
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) and 𝐾(𝑥
𝑧

, 𝜏
𝑙

) are translation invariant KFs [13].
In terms of [13], if the reference functions are positive

definite functions, then we do get a Mercer kernel. The
reference functions as listed in Table 1 are positive definite
functions. Using these reference functions to generate MF,
from [13], we can conclude that 𝐾

𝑗

(𝑥(𝑧
𝑗

), 𝜏
𝑙

𝑗

) is a Mercer
kernel. Since the linear combination of KFs is still a KF [16],
we can derive that 𝐾(𝑥

𝑧

, 𝜏
𝑙

) is still a Mercer KF. Therefore,
SFBFs are Mercer KFs, which can be used as KFs for SVR
learning.
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3.1.2. Mathematical Equivalence of a Spatial SVR and a 3D
FLC. Once the SFBFs from the 3D FLC are employed as
the KFs for an SVR, an inherent equivalence relationship
will be built between the SVR and the 3D FLC (comparing
Figure 2 and Figure 10). By combining (1) and (B.7), we have
the following mathematical expressions:
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From (6), we can find that each spatial support vector 𝑥

𝑙

𝑧

and its associated learning parameter (𝛼
∗

𝑙

− 𝛼
𝑙
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one 3D fuzzy rule, where 𝑥

𝑙

𝑧

is applied to set the center of the
3D MF of the 3D fuzzy set 𝐶

𝑙

𝑖

(𝑖 = 1, . . . , 𝑠) in the 𝑙th rule,
that is, the location transformation of the 3D fuzzy set with
respect to reference function 𝛽(𝑥

𝑧

, 𝜏
𝑙

), and (𝛼
∗

𝑙

− 𝛼
𝑙
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to set 𝑏
𝑙 (the constant for the consequent set of the 𝑙th rule in

3D FLC).

3.2. Design Scheme. The design of a reference function based
3D FLC consists of five parts: data collection, KF generation,
SVR learning, 3D fuzzy rule construction, and 3D fuzzy
controller integration, as shown in Figure 4.

(1) Data Collection. A set of spatiotemporal data will be
collected. The data should contain effective control laws.
Essentially, the reference function based 3D FLC design is a
fuzzy modeling [17] that extracts fuzzy control rules from the
spatiotemporal data.

(2) KF Generation. Before SVR learning, KFs should be prop-
erly designed. In this step, via properly selecting reference
function, SFBFs from a 3D FLC will be formulated (as in (4))
to set KFs for SVR learning.

(3) SVR Learning. With proper KFs, the SVM learning
algorithm directly executes the spatiotemporal data set and
yields spatial support vectors 𝑥

1

𝑧

, . . . , 𝑥
𝑁

𝑧

and their associated
learning parameters 𝛼

∗

1

− 𝛼
1

, . . . , 𝛼
∗

𝑁

− 𝛼
𝑁

.

(4) 3D Fuzzy Rule Construction. The spatial support vectors
and their associated learning parameters, as leading control
laws, are used to construct 3D fuzzy control rules. In detail,
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Figure 5: Sketch of a catalytic packed-bed reactor.

the spatial support vector 𝑥
𝑙

𝑧

is employed to construct the
antecedent part of the 𝑙th rule;𝛼∗

𝑙

−𝛼
𝑙

is employed to construct
the consequent part of the 𝑙th rule.The form of each 3D fuzzy
rule is shown as below

𝑅

𝑙

: if 𝑥
𝑧

is close to 𝑥
𝑙

𝑧

then 𝑢 is close to (𝛼
∗

𝑙

− 𝛼
𝑙

) . (7)

It is shown that the result of the SVM learning can be easily
interpreted using structured linguistic knowledge. Finally, a
3D rule base with 𝑁 rules is established.

(5) 3D Fuzzy Controller Integration. Once the 3D rule base is
established, a 3D FLC can be achieved by integrating other
components including 3D fuzzifier, 3D rule inference, and
defuzzifier. The detailed settings are given in Section 2.2.2.
Finally, we obtain a complete 3D FLC, which can be used as a
controller for a spatially distributed dynamic system.

4. Universal Approximation of
Reference Function Based 3D FLC

The reference function based 3D FLC design method is used
to construct a 3D FLC from spatiotemporal data hidden
with effective control laws. In other words, the 3D FLC aims
at approximating an unknown nonlinear control function.
In this study, we use the finite covering theorem to prove
that the 3D FLC is a universal approximator; that is, it
can approximate continuous control functions to arbitrary
accuracy.

The universal approximation capability of the reference
function based 3D FLC can be described byTheorem 1.

Theorem 1. Let 𝑔(𝑥
𝑧

) : 𝑅
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𝑁

∑

𝑙=1

𝑏
𝑙

𝐾 (𝑥
𝑧

, 𝜏
𝑙

) .

(9)
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Figure 6: Spatial-temporal data set: (a) spatial error 𝑒(𝑧); (b)
spatial error in change Δ𝑒(𝑧); (c) incremental output Δ𝑢 (𝑧: spatial
dimension; 𝑘: serial number of input-output data).

𝐹(𝑥
𝑧

) can be regarded as a 3D FLC generated by rule
base {𝑅

1

, 𝑅

2

, . . . , 𝑅

𝑁

}. Then, Theorem 1 can be restated as
Theorem 2 as follows.

Theorem 2. Under the condition of Theorem 1, let 𝑔(𝑥
𝑧

) :

𝑅
𝑝×𝑠

→ 𝑅 be a continuous function defined on a compact Ω.
For any constant 𝑏

0, one has 𝑔(𝑥
𝑧

) = 𝑔(𝑥
𝑧

)+𝑏
0. For each 𝜀 > 0,

there exists a reference function based 3D FLC 𝐹(𝑥
𝑧

) such that

sup
𝑥

𝑧
∈Ω

(
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥

𝑧

) − 𝑔 (𝑥
𝑧

)
󵄨
󵄨
󵄨
󵄨
) < 𝜀. (10)
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(b) Controlled by a reference function based 3D FLC with Gaussian reference function
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Figure 9: Continued.
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(f) Controlled by a reference function based 3D FLC with Squared Sinc reference function
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Figure 9: Control performance comparisons. From left to right in (a)–(g): catalyst temperature varying with time and space, manipulated
input, and catalyst temperature at steady state.

Before the proof of Theorem 2, we first present some
preparation work.

When 𝑥
𝑧

= 𝑥
𝑧

∈ Ω, the firing level of the fired rule𝑅

𝑙

(𝑙 =

1, . . . , 𝑁) is

𝜇
𝜑

𝑙 (𝑥
𝑧

) =

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖

(𝑥
𝑖

(𝑧
𝑗

) − 𝜏
𝑙

𝑖𝑗

) . (11)

The inference result of 𝑅

𝑙 is given by

𝐷
𝑙

(𝑢) = {

0 if 𝜇
𝜑

𝑙 (𝑥
𝑧

) = 0 or 𝑢 ̸= 𝑏
𝑙

,

𝑏
𝑙

𝜇
𝜑

𝑙 (𝑥
𝑧

) in other case,
(12)

where 𝑢 is the output variable of the 3D FLC, which is
corresponding to the “𝑢” of the consequent part of the fired
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rule. The composition result of all the fired rules is given as
follows:

𝐷 (𝑢) =

𝑁

⋃

𝑙=1

𝐷
𝑙

(𝑢) . (13)

Based on the above preparation, Lemma 3 is presented as
follows.

Lemma 3. Under the condition of Theorem 1 there exists a
reference function based 3D FLC 𝐹(𝑥

𝑧

) such that

𝐷 (𝑢)
󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑔 (𝑥

𝑧

)
󵄨
󵄨
󵄨
󵄨

≤ 𝐷 (𝑢) ∗ 𝜀 for each 𝑢 ∈ 𝑅. (14)

Proof. Let 𝑎
𝑧

∈ Ω. As 𝑔(⋅) is continuous at 𝑎
𝑧

, for each 𝑖 =

1, . . . , 𝑠 there exists a 𝛿
𝑖

𝑎

𝑧

> 0 such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

𝑧

− 𝑎
𝑖

𝑧

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛿
𝑖

𝑎

𝑧

𝑖 = (1, . . . , 𝑠) ⇐⇒
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥

𝑧

) − 𝑔 (𝑎
𝑧

)
󵄨
󵄨
󵄨
󵄨

≤ 𝜀.

(15)

For each 𝑎
𝑧

∈ Ω, set

𝑂
𝑎

𝑧

= {𝑥
𝑧

|

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

𝑧

− 𝑎
𝑖

𝑧

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛿
𝑖

𝑎

𝑧

(𝑖 = 1, . . . , 𝑠)} . (16)

Then, 𝑂
𝑎

𝑧

is open on 𝑅
𝑝×𝑠 and Ω ⊆ ⋃

𝑎

𝑧
∈Ω

𝑂
𝑎

𝑧

. As Ω is
compact, there exists a finite subfamily 𝑂

𝑎

1

𝑧

, 𝑂
𝑎

2

𝑧

, . . . , 𝑂
𝑎

𝑘

𝑧

such
that

Ω ⊆ 𝑂
𝑎

1

𝑧

⋃ 𝑂
𝑎

2

𝑧

⋃ ⋅ ⋅ ⋅ ⋃ 𝑂
𝑎

𝑘

𝑧

. (17)

We can construct a 3D FLC 𝐹(𝑥
𝑧

), defined by

𝜇
𝜑

𝑙 (𝑥
𝑧

) =

{
{

{
{

{

𝑝

∑

𝑗=1

𝑎
𝑙

𝑗

𝑠

∏

𝑖=1

𝛽
𝑖

(𝑥
𝑖

(𝑧
𝑗

) − 𝜏
𝑙

𝑖𝑗

) 𝑥
𝑧

∈ 𝑂
𝑎

𝑙

𝑧

0 𝑥
𝑧

∉ 𝑂
𝑎

𝑙

𝑧

(𝑙 = 1, . . . , 𝑁) ,

(18)

𝑏
𝑙

= {

𝑔 (𝑥
𝑧

) 𝑥
𝑧

∈ 𝑂
𝑎

𝑙

𝑧

0 𝑥
𝑧

∉ 𝑂
𝑎

𝑙

𝑧

(𝑙 = 1, . . . , 𝑁) . (19)

When 𝑥
𝑧

= 𝑥
𝑧

∈ Ω, we have the following.

(1) If 𝐷(𝑢) = 0, the lemma is trivial.
(2) If 𝐷(𝑢) > 0, then 𝐷(𝑢) = ⋃

𝑁

𝑙=1

𝐷
𝑙

(𝑢) > 0; hence, there
exists a 𝑘 ∈ [1, 𝑁] such that 𝐷

𝑘

(𝑢) > 0. Therefore, we
further have that the following.

(a) From 𝐷
𝑘

(𝑢) ̸= 0, it follows that 𝜇
𝜑

𝑘(𝑥
𝑧

) ̸= 0; that
is, 𝑥

𝑧

∈ 𝑂
𝑎

𝑘

𝑧

. In terms of the continuity of 𝑔(⋅),
we have |𝑔(𝑥

𝑧

) − 𝑔(𝑎
𝑘

𝑧

)| ≤ 𝜀.
(b) From 𝐷

𝑘

(𝑢) ̸= 0, it follows that 𝐷
𝑘

(𝑢) =

𝑏
𝑘

𝜇
𝜑

𝑘(𝑥
𝑧

) ̸= 0, and then 𝑏
𝑘

̸= 0.We have 𝑢 = 𝑏
𝑘

=

𝑔(𝑎
𝑘

𝑧

).

Hence, we have
󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑔 (𝑥

𝑧

)
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑔 (𝑎

𝑘

𝑧

)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑎

𝑘

𝑧

) − 𝑔 (𝑥
𝑧

)

󵄨
󵄨
󵄨
󵄨
󵄨

< 0 + 𝜀 = 𝜀.

(20)

In terms of Lemma 3, the proof ofTheorem 2 can be given
as follows.

Proof of Theorem 2. Consider

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥

𝑧

) − 𝑔 (𝑥
𝑧

)
󵄨
󵄨
󵄨
󵄨

≤

∑ 𝐷 (𝑢)
󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑔 (𝑥

𝑧

)
󵄨
󵄨
󵄨
󵄨

∑ 𝐷 (𝑢)

≤

𝜀 ∗ ∑ 𝐷 (𝑢)

∑ 𝐷 (𝑢)

≤ 𝜀.

(21)

5. Application

5.1. A Catalytic Packed-Bed Reactor. This designed 3D FLC is
applied to a catalytic packed-bed reactor [1, 4, 18] shown in
Figure 5, where a reaction of the form 𝐴 → 𝐵 takes place on
the catalyst. The reaction is endothermic and a jacket is used
to heat the reactor. A dimensionless model that describes this
nonlinear tubular chemical reactor is provided as follows:

𝜕𝑇
𝑟

𝜕𝑡

= −

𝜕𝑇
𝑟

𝜕𝑧

+

1

𝑃
𝑒𝑇

𝜕
2

𝑇
𝑟

𝜕𝑧
2

− 𝐵
𝑇

𝐵
𝐶

𝐶
𝐴

exp(

𝛾
𝑟

𝑇
𝑟

1 + 𝑇
𝑟

) + 𝛽
𝑇

(𝑢 − 𝑇
𝑟

) ,

𝜕𝐶
𝐴

𝜕𝑡

= −

𝜕𝐶
𝐴

𝜕𝑧

+

1

𝑃
𝑒𝐶

𝜕
2

𝐶
𝐴

𝜕𝑧
2

− 𝐵
𝐶

𝐶
𝐴

exp(

𝛾
𝑟

𝑇
𝑟

1 + 𝑇
𝑟

)

(22)

subject to the boundary conditions

𝑧 = 0, 𝑃
𝑒𝑇

𝑇
𝑟

=

𝜕𝑇
𝑟

𝜕𝑧

, 𝑃
𝑒𝐶

(𝐶
𝐴

− 1) =

𝜕𝐶
𝐴

𝜕𝑧

,

𝑧 = 1,

𝜕𝑇
𝑟

𝜕𝑧

= 0,

𝜕𝐶
𝐴

𝜕𝑧

= 0,

(23)

where 𝑇
𝑟

, 𝐶
𝐴

, and 𝑢 denote the dimensionless temperature,
the concentration of reactant 𝐴, and jacket temperature,
respectively; 𝑡 and 𝑧 denote the dimensionless time and
space; 𝑃

𝑒𝑇

and 𝑃
𝑒𝐶

are the heat and mass Peclet numbers,
𝐵
𝑇

is a dimensionless heat of reaction, 𝐵
𝐶

is a dimensionless
preexponential factor, 𝛾

𝑟

is a dimensionless activation energy,
and 𝛽

𝑇

is a dimensionless heat transfer coefficient.The values
of the process parameters are given as follows:

𝑃
𝑒𝑇

= 5.0, 𝑃
𝑒𝐶

= 5.0, 𝐵
𝐶

= 0.00001,

𝐵
𝑇

= 1.0, 𝛽
𝑇

= 15.62, 𝛾
𝑟

= 22.14.

(24)

The control problem is to maintain a desired reaction rate via
tuning the jacket temperature to control catalyst temperature.
In this application, the reactor began to work at one steady
state; because of the requirement of operation conditions, the
reference value of temperature is increased by 8%. Thus, the
control objective is to make the temperature of reactor well
track the new reference value along the space domain.

5.2. Design of Reference Function Based 3D FLC

(1) Data Collection. The spatiotemporal data is collected from
the catalytic packed-bed reactor, which is controlled by
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an expert based 3D FLC [4]. Five point sensors are located
along the length of the reactor with 𝑍 = [00.40.60.81] for
collecting the spatial distribution of the temperature 𝑇

𝑟

. Two
spatial inputs are error and error in change; that is, 𝑒∗(𝑍, 𝑘) =

𝑇
𝑠𝑑

(𝑍) − 𝑇
𝑠

(𝑍, 𝑘) and Δ𝑒
∗

(𝑍) = 𝑒
∗

(𝑍, 𝑘) − 𝑒
∗

(𝑍, 𝑘 − 1).
The detailed design of the expert based 3D FLC, including
3D fuzzifier, 3D rule inference, and defuzzifier, can refer
to [4]. The scaling factors for the spatial error, the spatial
error in change, and the incremental output are set as 0.5,
0.1, and 0.3, respectively. The sample period is 0.1 s, and the
sampling duration is 6 s. Thus, we have 60 input-output data
pairs (shown in Figure 6), each of which is represented by
([𝑒(𝑧)

𝑘

, Δ𝑒(𝑧)
𝑘

], Δ𝑢
𝑘

), 𝑘 = 1, . . . , 60.

(2)KF Generation. The reference functions (Symmetric tri-
angle, Gaussian, Cauchy, Laplace, Hyperbolic Secant, and
Squared Sinc) as listed inTable 1 are employed, respectively, to
generate 3D MFs and then formulate SFBFs. SFBFs are used
for KFs in an SVR learning.

(3) SVR Learning. With the spatiotemporal data set as above,
the SVM learning algorithm is used for the support vector
learning. It should be noted that the SFBFs in (3) are taken
as the KFs. As a result, spatial support vectors are extracted
and their associated learning parameters are obtained. For
instance, when the Gaussian type reference function is used
forKF generation, eight support vectors were learned from60
spatiotemporal data pairs when 𝐶 = 1000, 𝜀 = 0.00005, and
𝑑 = 0.1, as shown in Figure 7, where the spatiotemporal input
data is decomposed into multiple two-dimensional graphical
representations over the space domain.

(4) 3DFuzzy Rule Construction. In terms of the learned results
of the SVR in the previous step, we establish 3D fuzzy rules.
For instance, with the Gaussian type reference function, eight
3D fuzzy rules are constructed. The first four 3D fuzzy rules
are presented as follows.

𝑅
1

: if 𝑒(𝑧) is close to [−0.0580 −0.0963

−0.0988 − 0.1000 − 0.1005]
󸀠 and Δ𝑒 (𝑧) is close

to [−0.0580 −0.0963 −0.0988 − 0.1000 − 0.1005]
󸀠,

then Δ𝑢 is close to −9.5172.

𝑅
2

: if 𝑒(𝑧) is close to [−0.0479 −0.0817

−0.0839 − 0.0848 − 0.0851]
󸀠 and Δ𝑒(𝑧) is close

to [0.0101 0.0146 0.0149 0.0152 0.0154]
󸀠, then

Δ𝑢 is close to −298.9862.

𝑅
3

: if 𝑒(𝑧) is close to [−0.0414 −0.0714

−0.0731 − 0.0735 − 0.0737]
󸀠 and Δ𝑒(𝑧) is close

to [0.0065 0.0104 0.0109 0.0113 0.0114]
󸀠, then

Δ𝑢 is close to 249.2288.

𝑅
4

: if 𝑒(𝑧) is close to [−0.0359 −0.0626

−0.0638 − 0.0639 − 0.0639]
󸀠 and Δ𝑒(𝑧) is close

to [0.0055 0.0087 0.0092 0.0096 0.0098]
󸀠, then

Δ𝑢 is close to 148.1335.

The first four 3D fuzzy rules and their associated 3D MF
distributions can be depicted in Figure 8, which show the
inherent spatial nature of the 3D fuzzy control system.

(5) 3D Fuzzy Controller Integration. Based on the 3D fuzzy
rules established in step (4), we obtain a complete 3D FLC
by combining 3D fuzzifier, 3D rule inference, and defuzzifier.
The resultant 3D FLC will be used as a controller for the
catalytic packed-bed reactor.

5.3. Control Performance Validation. The designed reference
function based 3D FLC using SVR learning is validated on
the nonlinear catalytic packed-bed reactor. We employed
six kinds of reference functions, that is, Symmetric triangle,
Gaussian, Cauchy, Laplace, Hyperbolic Secant, and Squared
Sinc, and finally produced six 3D FLCs. With the reference
function based 3D FLC as the controller, the catalyst tem-
perature varying with time and space, manipulated input,
and the catalyst temperature at steady state are presented in
Figures 9(a)–9(f). The control performance is given in
Table 2, where steady-state error (SSE), integral of the abso-
lute error (IAE), and integral of time multiplied by absolute
error (ITAE) [2] are used as the performance criteria. In terms
of Figures 9(a)–9(f) and Table 2, we can find that different
reference functions will yield different control performance.
In this application, Gaussian, Cauchy, Hyperbolic Secant,
and Squared Sinc reference functions result in good control
performance, while Symmetric triangle andLaplace reference
functions lead to poor control performance. The results
illustrate thatKFwill influence the control performance; thus,
in the actual application, we should choose proper KF to
design a 3D FLC.

As a comparison, we do another control experiment; that
is, the expert knowledge-based 3D FLC from [4] is taken as
the controller. As for its detailed design including 3DMF, 3D
rule base, 3D inference, fuzzification, and defuzzification, one
can refer to [4]. The scaling factors for the spatial error, the
spatial error in change, and the incremental output are set
as 0.5, 0.1, and 0.3, respectively. The controlled profiles and
control performance are given in Figure 9(g) and Table 2,
respectively.

From Figure 9 and Table 2, we can find that with a
proper reference function, the reference function based 3D
FLC has nearly the same control performance as the expert
knowledge-based 3D FLC. It means that the proposed spatial
SVR learningmethod canwell extract the control laws hidden
in a spatiotemporal input–output dataset and formulate them
in the form of 3D fuzzy rules.

6. Conclusions

A reference function based 3D FLC design methodology
using SVR learning is proposed for spatially distributed
dynamic systems. Utilizing the concept of reference func-
tion, the 3D FLC can access more kinds of 3D MFs, such
as Symmetric triangle, Gaussian, Cauchy, Laplace, Hyper-
bolic Secant, and Squared Sinc. Based on the mathematical
expressions of reference function based 3D FLC, we define
spatial fuzzy basis functions and then find an equivalence
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Table 2: Performance comparisons.

Reference function based 3D FLC 3D fuzzy rules ISS (×10−3) IAE (×10−1) ITAE (×10−1)
Symmetric triangle reference function 7 103.4 16.163 65.457
Gaussian reference function 8 4.7 1.864 3.526
Cauchy reference function 8 4.7 1.881 3.537
Laplace reference function 7 108 16.525 67.408
Hyperbolic Secant reference function 28 4.8 1.918 3.567
Squared Sinc reference function 5 4.7 1.859 3.515
Expert-based 3D FLC 25 4.8 1.931 3.676

relationship between a 3D FLC and an SVR by connecting
spatial fuzzy basis functions in the 3D FLC to KFs in the
SVR. On the basis of the equivalence relationship, a 3D FLC
can be designed using the SVR learning; that is, the learned
spatial support vectors as the optimal leading data points can
be directly used for 3D fuzzy control rule generation. The
proposed reference function based 3D FLC design can be
carried out in five steps: data collection, KF generation, SVR
learning, 3D fuzzy rule construction, and 3D fuzzy controller
integration. Besides, the universal approximation capability
of the proposed 3D fuzzy system is discussed. Finally,
effectiveness of the proposed 3D FLC design methodology is
validated on a catalytic packed-bed reactor.

Appendices

A. Nonlinear Mapping Derivation of
a Reference Function Based 3D FLC

Let 𝑥
𝑧

= (𝑥
1

(𝑧), . . . , 𝑥
𝑠

(𝑧)) be a spatial input vector.Then, the
3D MF of the 𝑖th spatial input 𝑥

𝑖

(𝑧) is given as

𝜇
𝑖

= 𝛽
𝑙

𝑖

(𝑥
𝑖

(𝑧)) = 𝛽
𝑖

(𝑥
𝑖

(𝑧) − 𝜏
𝑙

𝑖

) (A.1)

and the Gaussian type 2D MF of the 𝑖th spatial input 𝑥
𝑖

(𝑧) at
the sensing location 𝑧 = 𝑧

𝑗

is given as

𝜇
𝑖𝑗

= 𝛽
𝑙

𝑖

(𝑥
𝑖

(𝑧
𝑗

)) = 𝛽
𝑖

(𝑥
𝑖

(𝑧
𝑗

) − 𝜏
𝑙

𝑖𝑗

) . (A.2)

Via a 3D fuzzifier, the spatial input vector 𝑥
𝑧

in the universe
of discourse 𝑋 can be transformed into a spatial fuzzy input
𝐴
𝑋

as below:

𝐴
𝑋

= ∑

𝑧∈𝑍

∑

𝑥

1(
𝑧)∈𝑋1

⋅ ⋅ ⋅ ∑

𝑥

𝑠(
𝑧)∈𝑋𝑠

𝜇
𝐴

𝑋

(𝑥
1

(𝑧) , . . . , 𝑥
𝑠

(𝑧) , 𝑧)

/ (𝑥
1

(𝑧) , . . . , 𝑥
𝑠

(𝑧) , 𝑧)

= ∑

𝑧∈𝑍

∑

𝑥

1(
𝑧)∈𝑋1

⋅ ⋅ ⋅ ∑

𝑥

𝑠(
𝑧)∈𝑋𝑠

𝜇
𝑋

1

(𝑥
1

(𝑧) , 𝑧) ∗ ⋅ ⋅ ⋅ ∗ 𝜇
𝑋

𝑠

(𝑥
𝑠

(𝑧) , 𝑧)

/ (𝑥
1

(𝑧) , . . . , 𝑥
𝑠

(𝑧) , 𝑧) ,

(A.3)

where ∗ denotes the t-norm operation.

Assume that 3D fuzzy rules are designed with the follow-
ing form:

𝑅

0

: if 𝑥
1

(𝑧) is 𝐶

0

1

and ⋅ ⋅ ⋅ and 𝑥
𝑠

(𝑧) is 𝐶

0

𝑠

then 𝑢 is 𝑏
0

,

𝑅

𝑙

: if 𝑥
1

(𝑧) is 𝐶

𝑙

1

and ⋅ ⋅ ⋅ and 𝑥
𝑠

(𝑧) is 𝐶

𝑙

𝑠

then 𝑢 is 𝑏
𝑙

,

(A.4)

where 𝐶

0

𝑖

is a universal 3D fuzzy set, whose MF at sensing
location 𝑧 = 𝑧

𝑗

is 𝛽
0

𝑖

(𝑥
𝑖

(𝑧
𝑗

)) ≡ 1; 𝐶

𝑙

𝑖

is a 3D fuzzy set, whose
MF at sensing location 𝑧 = 𝑧

𝑗

is 𝛽
𝑙

𝑖

(𝑥
𝑖

(𝑧
𝑗

)) : 𝑅 → [0, 1], 𝑖 =

1, . . . , 𝑠; 𝑏
0 and 𝑏

𝑙 are constants.
Then, for each fired rule, a fuzzy relation is obtained as

below:

𝑅

𝑙

: 𝐶

𝑙

1

× ⋅ ⋅ ⋅ × 𝐶

𝑙

𝑠

󳨀→ 𝑏
𝑙

, 𝑙 = 0, 1, 2, . . . , 𝑁. (A.5)

A 3D rule inference integrates the spatial information pro-
cessing and the traditional inference and contains three main
operations: spatial information fusion, dimension reduction,
and traditional inference. Firstly, using the spatial informa-
tion fusion operation, we have a spatially distributed set 𝑊

𝑙

over the space domain with the grade of the MF derived as

𝜇
𝑊

𝑙 (𝑧)

= 𝜇
𝐴

𝑋
∘(𝐶

𝑙

1
×⋅⋅⋅×𝐶

𝑙

𝑠
)

(𝑥
𝑧

, 𝑧)

= sup
𝑥

1
(𝑧)∈𝑋

1
,...,𝑥

𝑠
(𝑧)∈𝑋

𝑠

[𝜇
𝐴

𝑋

(𝑥
𝑧

, 𝑧) ∗ 𝜇
𝐶

𝑙

1
×⋅⋅⋅×𝐶

𝑙

𝑠

(𝑥
𝑧

, 𝑧)]

= {sup
𝑥

1
(𝑧)∈𝑋

1

[𝜇
𝑋

1

(𝑥
1

(𝑧) , 𝑧) ∗ 𝜇
𝐶

𝑙

1

(𝑥
1

(𝑧) , 𝑧)]}

∗ ⋅ ⋅ ⋅ ∗ {sup
𝑥

𝑠
(𝑧)∈𝑋

𝑠

[𝜇
𝑋

𝑠

(𝑥
𝑠

(𝑧) , 𝑧) ∗ 𝜇
𝐶

𝑙

𝑠

(𝑥
𝑠

(𝑧) , 𝑧)]}

=

𝑠

∏

𝑖=1

𝛽
𝑖

(𝑥
𝑖

(𝑧) − 𝜏
𝑙

𝑖

) ,

(A.6)

where “product” is used for t-norm (∗) and singleton fuzzifier
is used.
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Then, utilizing a weighted aggregation [3] dimension
reduction operation, a 2D set 𝜒

𝑙 is obtained. Consider the
following:

𝜇
𝜒

𝑙 = 𝑎
1

𝜇
𝑊

𝑙 (𝑧
1

) + 𝑎
2

𝜇
𝑊

𝑙 (𝑧
2

) + ⋅ ⋅ ⋅ + 𝑎
𝑝

𝜇
𝑊

𝑙 (𝑧
𝑝

)

=

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖

(𝑥
𝑖

(𝑧
𝑗

) − 𝜏
𝑙

𝑖𝑗

) .

(A.7)

Finally, traditional inference operation (Mamdani impli-
cation operation) and linear defuzzifier [14] are carried out
successively. We have the nonlinear mathematical expression
as follows:

𝑢 (𝑥
𝑧

) = 𝑏
0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝜇
𝐶

𝑙

𝑖

(𝑥
𝑖

(𝑧
𝑗

))

= 𝑏
0

+

𝑁

∑

𝑙=1

𝑏
𝑙

𝑝

∑

𝑗=1

𝑎
𝑗

𝑠

∏

𝑖=1

𝛽
𝑖

(𝑥
𝑖

(𝑧
𝑗

) − 𝜏
𝑙

𝑖𝑗

) .

(A.8)

B. Mathematical Preliminaries of 𝜀-Support
Vector Regression

In this study, we focus on 𝜀-support vector regression (𝜀-
SVR). Suppose that we have a training set 𝐷 = {[𝑥

𝑖

, 𝑦
𝑖

] ∈

𝑅
𝑠

× 𝑅, 𝑖 = 1, . . . , 𝑞} consisting of 𝑞 pairs (𝑥
1

, 𝑦
1

), (𝑥
2

, 𝑦
2

),
. . ., (𝑥

𝑞

, 𝑦
𝑞

), where the inputs are 𝑠-dimensional vectors and
the labels are continuous values. In 𝜀-SVR, the goal is to find
a function 𝑓(𝑥, 𝑤) so that for all training patterns 𝑥 has a
maximum deviation 𝜀 from the target values 𝑦

𝑖

and has a
maximum margin. The 𝜀-insensitive loss function is defined
as follows:

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑓 (𝑥, 𝑤)

󵄨
󵄨
󵄨
󵄨𝜀

= {

0 if 󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑓 (𝑥, 𝑤)

󵄨
󵄨
󵄨
󵄨

≤ 𝜀

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑓 (𝑥, 𝑤)

󵄨
󵄨
󵄨
󵄨
− 𝜀 otherwise.

(B.1)

Tomake the SVR nonlinear, wemaymap the input vector
𝑥 ∈ 𝑅

𝑠 into the vector V of a high-dimensional feature
space, V = Θ(𝑥), where Θ represents a mapping 𝑅

𝑠

→ 𝑅
𝑓,

and formulate a linear regression problem in this feature
space, and then an optimization problem will be solved. The
optimization problem can also be solved in a dual space. By
introducing the Lagrange multipliers 𝛼

𝑖

and 𝛼
∗

𝑖

, the primal
optimization problem can be formulated in its dual form as
follows:

max
𝛼

𝑖
,𝛼

∗

𝑖

{

{

{

−

1

2

𝑞

∑

𝑖=1

𝑞

∑

𝑗=1

(𝛼
∗

𝑖

− 𝛼
𝑖

) (𝛼
∗

𝑗

− 𝛼
𝑗

) ⟨Θ (𝑥
𝑖

) ⋅ Θ (𝑥
𝑗

)⟩

− 𝜀

𝑞

∑

𝑖=1

(𝛼
∗

𝑖

+ 𝛼
𝑖

) +

𝑞

∑

𝑖=1

(𝛼
∗

𝑖

− 𝛼
𝑖

) 𝑦
𝑖

}

}

}

(B.2)

...

Layer 1 Layer 2 Layer 3

...

x1

x2

xs

(𝛼∗1 − 𝛼1)

(𝛼∗2 − 𝛼2)

(𝛼∗N − 𝛼N)

b

u
∑

Layer 1: input  

Layer 3: output u = ∑N

l=1(𝛼∗i − 𝛼i)

Layer 2: support vectors

K(x, x1)

K(x, x2)

K(x, xN)

K(x, xi) + b

x = (x1, . . . , xs)

x1, . . . , xN and KFs K(x, x1), . . . , K(x, xN)

Figure 10: Three-layer network structure of an SVR.

subject to

𝑞

∑

𝑗=1

𝛼
∗

𝑖

=

𝑞

∑

𝑖=1

𝛼
𝑖

, 0 ≤ 𝛼
∗

𝑖

≤ 𝐶, 0 ≤ 𝛼
𝑖

≤ 𝐶, 𝑖 = 1, . . . , 𝑞,

(B.3)

where the constant 𝐶 is a design parameter chosen by the
user, which determines the tradeoff between the complexity
of 𝑓(𝑥, 𝑤) and the approximate error.

Solving the dual quadratic programming problem,we can
find an optimal weight vector 𝑤 and an optimal bias 𝑏 of the
regression hypersurface given in (B.4):

𝑤 =

𝑞

∑

𝑖=1

(𝛼
∗

𝑖

− 𝛼
𝑖

) Θ (𝑥
𝑖

) ,

𝑏 =

1

𝑞

(

𝑞

∑

𝑖=1

(𝑦
𝑖

− ⟨𝑤 ⋅ Θ (𝑥
𝑖

)⟩)) .

(B.4)

Then, the best regression hypersurface is given by

𝑓 (𝑥, 𝑤) =

𝑞

∑

𝑖=1

(𝛼
∗

𝑖

− 𝛼
𝑖

) ⟨Θ (𝑥) ⋅ Θ (𝑥
𝑖

)⟩ + 𝑏

= ∑

𝑖∈SV
(𝛼

∗

𝑖

− 𝛼
𝑖

) ⟨Θ (𝑥) ⋅ Θ (𝑥
𝑖

)⟩ + 𝑏.

(B.5)

The training pattern 𝑥
𝑖

with nonzero (𝛼
∗

𝑖

− 𝛼
𝑖

) is called
support vector (SV).

To avoid a direct mapping Υ(𝑥), the kernel trick is
used. AKF 𝐾(𝑥

𝑖

, 𝑥
𝑗

), which satisfies the Mercer’s theorem, is
introduced as below:

𝐾 (𝑥
𝑖

, 𝑥
𝑗

) = ⟨Θ (𝑥
𝑖

) ⋅ Θ (𝑥
𝑗

)⟩ . (B.6)
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Using 𝐾(𝑥
𝑖

, 𝑥
𝑗

), the SVR can be constructed which
operates in an infinite dimensional space. Then, the solution
of the SVR has the form

𝑓 (𝑥, 𝑤) = ∑

𝑖∈SV
(𝛼

∗

𝑖

− 𝛼
𝑖

) 𝐾 (𝑥, 𝑥
𝑖

) + 𝑏. (B.7)

Let 𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑁 represent support vectors.The solution

of the SVR can be described by a three-layer network
structure as shown in Figure 10.
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