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To obtain efficient estimation of parameters is a major objective in population pharmacokinetic
study. In this paper, we propose an empirical likelihood-based method to analyze the population
pharmacokinetic data based on the generalized linear model. A nonparametric version of the
Wilk’s theorem for the limiting distributions of the empirical likelihood ratio is derived. Simu-
lations are conducted to demonstrate the accuracy and efficiency of empirical likelihood method.
An application illustrating our methods and supporting the simulation study results is presented.
The results suggest that the proposed method is feasible for population pharmacokinetic data.

1. Introduction

The parameter estimation in population pharmacokinetics (PPK) is a significant problem in
clinical research. It is a novel problem in pharmacokinetic (PK) study that combines classic
PK models with group statistical models. The PPK parameters, including group typical
values, fixed effect parameter, interindividual variation, and intraindividual variation, which
are the determinant factors of drug concentration in patients, are taken into consideration.
PPK is capable of quantitatively describing the effects of different factors in drug metabolism,
such as pathology, physiology, and combined medication, then providing guidance on the
adjustment of therapeutic regimen, thus increasing the efficacy and safety in a new drug
evaluation.

Many statistical models have been proposed to fit PPK parameters. The most popular
analytic statistical model for PPK data is the random effects model proposed by Larid
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and Ware [1]. Besides, the classic compartmental model and nonlinear mixed effect model
proposed by Sheiner et al. in 1977 [2] are the most commonly used statistical models for PPK.
And recently, generalized linear model proposed by Salway and Wakefield in 2008 [3] has
received wide attention.

In fact nonlinear models are used to estimate parameters of a chosen compartmental
model. This model can provide generally good results. However, a disadvantage of the
nonlinear models is that it is generally more difficult to fit. From a computational point
of view, one also faces the usual challenges associated with nonlinear regression such as
choosing starting values, problemwith convergence, nonlinear regression diagnostics, and so
forth. Other nonlinear models for the analysis of PPK data see [4–6]. Salway and Wakefield
[3] proposed a generalized linear model with gamma distribution to deal with PPK data. The
GLM is one of the most widely used regression models for statistical analysis. The relevant
theoretical investigations are rather complete and the results of parameter estimation have
been the standard results in the literature and textbooks. Many methods could solve the
generalized linear models, including general least square (GLS) method, quasi-likelihood
method, normal theory maximum likelihood, quadratic estimating equations, extended
quasi-likelihood, and general estimation equation (GEE). McCulloch [7] proposed three
kinds of effective algorithm which can estimate the parameter in generalized linear model
accurately. They are Monte Carlo EM (MCEM) algorithm, Monte Carlo Newton-Raphson
(MCNR) algorithm, and SimulatedMaximum likelihood (SML) separately. In the progress of
maximum, Newton-Raphson algorithms, Fisher algorithms, EM algorithms and other basic
algorithms can also be used to get the approximate solution through iteration. However,
referring to multidimensional integral, it is difficult to solve a likelihood equation, and
sometimes the algorithm is not convergent.

In all these methods the covariance structure is an especially crucial problem. In
general, we divided variance into four models following in normal distribution: (1) the
constant error model, (2) the proportional error model, (3) a combined error model, (4) an
alternative combined error model. Therefore, how to choose variance structure appropriately
is really confusing. Wakefield et al. [8] suggested the use of integrated nested Laplace
approximations for GLMs in this context. In this case, the empirical likelihood is an
alternative good choice. Empirical likelihood as a nonparametric data-driven technique
was first proposed by Owen [9]. It employs the likelihood function without specifically
assuming a distribution for the data and incorporates side information through constraints
or a prior distribution, which maximizes the efficiency of the method. What’s more, if the
calculation procedure of the algorithm involves iteration, the problem of convergence may
exist. Sometimes we cannot obtain convergent solution. But in principle, empirical likelihood
can give estimates and confidence regions with almost any method that yields a “reasonable”
set of estimating function. By “reasonable” we mean that the estimating functions have zero
mean, finite variance, and either based on independent and identically distributed sampling
or have higher order moments which allow use of a triangular array argument. Empirical
likelihood only requires that the estimating functions have expectation zero. Hence empirical
likelihood will be robust to mis-specification of the variance function, as long as the equation
for the mean is correct.

In the past two decades, unique and desirable properties of the empirical likelihood
method have been studied by a number of researchers. These properties include, but
are not limited to, range-respecting, transformation-preserving, asymmetric confidence
intervals, Bartlett correctability, and better coverage probability or shorter confidence
interval. Empirical likelihood has both the easy implementation of nonparametric inference
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method and the effectiveness of likelihood inference method. Compared with parametric
reference method, it just needs a mild assumption of the existence of the matrix. When
the sample size is small, the confidence interval we get by this method is superior to
that by the asymptotic normal method. The shape and direction of the confidence interval
confidence depend completely on the data itself. The estimation of variance is generally not
required. Besides, empirical likelihood has unique superiority in parameter estimation and
test of goodness of fit. An updated comprehensive overview of the empirical likelihood is
available in Owen [10]. In a large range of situations, empirical likelihood has been shown
to have properties analogous to a real likelihood, see Qin and Lawless [11, 12], Li [13], Jing
[14], and others. A general framework of empirical likelihood based on estimation function
is discussed in Qin and Lawless [12]. Wang et al. [15] incorporated the within-subject
correlation structure of the repeated measurements into the empirical likelihood method.
They also performed empirical likelihood inference on individual components of regression
function.

To the best of our knowledge, there is little literature on the empirical likelihood
inference for PPK study with longitudinal data. In this paper, we develop an empirical
likelihood method for inference of the parametric component in generalized linear models
with population pharmacokinetic data through constructing auxiliary random vectors. The
model is as follows:

E
(
yij

(
tij
))

= μij = Di exp

(

βi0 + βi1tij +
βi2
tij

)

,

βij = βi + ηij ,

i = 1 . . . n, j = 0, 1, 2, (1.1)

where yij is the response variable. A few conditions needed to be assumed for the transferred
additive error model to be valid to use. Assumptions are listed as follows:

yij > 0, βi0 > 0, βi1 < 0, βi2 < 0. (1.2)

These assumptions are used to insure a ascending absorption phase and a descending
elimination phase. The model is first proposed by Salway and Wakefield [3].

The rest of the paper is organized as follows. In Section 2, the empirical likelihood
method for PPK models is proposed. The asymptotic normality of the proposed empirical
estimator and asymptotic chi-square distribution of the proposed empirical likelihood ratio
are derived under some regularity assumptions. In Section 3, the simulation is presented and
the results also support the theory. A real data analysis is reported in Section 4. Finally, the
paper concludes with some discussions in Section 5. Proofs are given in the appendix.

2. Methods

In recent years, numerous scholars have conducted a detailed study on PPK parameter
estimation and a variety of methods appeared, for example GEE (Liang and Zeger [16]).
Here, we use the method of quasi-likelihood to derive estimating functions for empirical
likelihood. In the application part, we will compare the effectiveness of GEE and empirical
likelihoodmethod. Note that, since maximum likelihood and quasi-likelihood coincide for all
linear exponential families, the class of estimating functions derived using the former method
automatically falls within that of the latter. See Morris [17] and Nelder and Pregibon [18]
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Standard empirical likelihood for generalized linear models has been considered by Kolaczyk
[19], based on constraints derived from the score function of the quasi-likelihood. We employ
empirical likelihood and deduce as follows.

Assume there are n subjects withm observations per subject in a study. From (1.1), the
generalized error model can be rewritten as

Yi = Ui + εi, (2.1)

where Yi = [logyi1(ti1), logyi2(ti2), . . . , logyim(tim)] and Ui = [logμi1(ti1), logμi2(ti2), . . .,
logμim(tim)]with var(εi) =

∑
.

Therefore, change both side of (1.1) to logarithmic, and following Xue and Zhu [20],
we can define an empirical log-likelihood ratio function as follows. Suppose that β is a 3∗1
dimensional parameters vector to be estimated. Frommodel (1.1), an auxiliary random vector
can be defined as

Zi

(
β
)
= XT

i V
−1
i

(
β̂
)
(Yi −Ui), (2.2)

where Xi = (11×m, ti, 1/ti), ti = (ti1,ti2, . . . , tim), and Vi(β) is an invertible covariance matrix
dependent on the parameter vector β, and will be equal to cov(Yi). Vi(β) can be estimated by
using the method of moments [16]. Note that E(Zi(β)) = 0 if β is the true parameters. Using
this, an empirical log-likelihood-ratio function is defined as

l̃n
(
β
)
= −2 sup

{
n∑

i=1

log
(
npi
) |

n∑

i=1

piZi

(
β
)
= 0,

n∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . , n

}

. (2.3)

By the Lagrange multiplier method, the optimal value for pi is given by

pi =
1
n

1
1 + tTZi

(
β
) , (2.4)

where t is Lagrange multiplier
By combining (2.3) and (2.4), l̃n(β) can be represented as

l̃n
(
β
)
= −2

n∑

i=1

log
(
1 + tTZi

(
β
))

, (2.5)

where t is determined by

1
n

n∑

i=1

Zi

(
β
)

1 + tTZi

(
β
) = 0. (2.6)

Define β̃ as the unique maximizer of l̃n(β). We state the asymptotic properties of the empirical
likelihood ratio. The following theorems indicate that β̃ is asymptotically normal and
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the empirical log-likelihood ratio for β is a standard chi-square distribution. Some
assumptions and proofs of our results are given in the appendix.

Theorem 2.1. In addition to Lemma A.1 mentioned in the appendix, one assumes that ∂2Zi(β)/
∂β∂βT is continuous in a neighborhood of the true value β0. Then if ||∂2 Zi (β)/∂β∂βT || can bounded
by some integrals function Z(x) in the neighborhood, then one has

√
n
(
β̃ − β0

)
−→ N(0, V ), (2.7)

where V = [E(∂Z/∂β)T (EZZT )−1E(∂Z/∂β)]−1.

Theorem 2.2. Using the assumptions of Theorem 2.1, if β is the true value of the parameter and the
last component of β is a positive number, then one has

ln
(
β
) −→ χ2

p, (2.8)

where → stands for convergence in distribution, and χ2
p is a chi-squared distribution with p degrees

of freedom.

As a consequence of Theorem 2.1, confidence regions for the parameter β can be
constructed by (2.3). More precisely, for any 0 ≤ α < 1, let cα be the fraction quintile such
that P(χ2

p ≤ α) = 1 − α. Then lα(β̃) = {β̃ : lα(β̃) ≤ cα} constitutes a confidence region for β with
asymptotically correct coverage probability 1 − α.

3. Simulation

In this section some simulation results are reported to show the performance of the proposed
empirical likelihood method. A two-stage generalized linear random effect model that
incorporates a finite mixture model is considered in the simulation.

At the first stage

Yi = D exp
(
T ∗βi

)
+ εi, (3.1)

where βi = (βi0, βi1, βi2)
′.

At the second stage

βi = β + ηi, (3.2)

where β = (β0, β1, β2)
′ is the associated fixed effect.

To perform the simulations, 500 datasets are generated, each consisting of n = 10, 50,
100 subjects. The time schedule {tij} is set as [1 2 4 8 10 12 16 32]/h. Dosage is set to 5mg.
The fixed effect β is set as [0.8 − 0.04 − 0.2]. The random effect is generated from a normal
distribution as follows: εi∼i.i.d N(0,Σ), and ηi∼i.i.d N(0,Ω). For the variance matrix Σ and Ω,
we choose a diagonal matrix with elements of 0.052 and 0.0052, respectively, for the reason
that neither within-individual nor between-individual variation has been considered here.
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Table 1: Means of parameter estimates for β with its standard derivation (SD) and mean length (ML) of
the confidence region, when the estimation method are empirical likelihood (EL) and general estimation
equation (GEE), respectively.

n
EL GEE

Mean CI (95% level) Mean CI (95% level)

10
0.8001 (0.7851, 0.8151) 0.8001 (0.7834, 0.8177)
−0.0398 (−0.0414, −0.0382) −0.0398 (−0.0420, −0.0378)
−0.2003 (−0.2049, −0.1956) −0.2003 (−0.2059, −0.1946)

50
0.8001 (0.7951, 0.8051) 0.8001 (0.7841, 0.8160)
−0.0401 (−0.0405, −0.0395) −0.0401 (−0.0410, −0.0389)
−0.2000 (−0.2016, −0.1984) −0.2000 (−0.2029, −0.1973)

100
0.8001 (0.7966, 0.8036) 0.8001 (0.7908, 0.8094)
−0.0400 (−0.0403, −0.0397) −0.0400 (−0.0404, −0.0395)
−0.2000 (−0.2011, −0.1989) −0.2000 (−0.2023, −0.1984)

The conjugate gradient method used to search for the optimal empirical likelihood
parameter estimates by modifying a routing is given in Press et al. [21]. For each dataset, we
compute the MELE beta for fixed effects, and the 95% intervals. To illustration the efficacy of
empirical likelihood, we also analysis each dataset by GEE method. The simulation results
for different sample size are summarized in Table 1, based on 500 simulations.

The results are listed in Table 1. The “Mean” is constructed according to the 500
simulated point estimators, which was computed as the mean value of 500 simulated results
of β̃. The confidence intervals are listed in the columns “CI”. The lower and upper bounds
of “CI” are the average of 500 simulated lower bounds, and upper bounds, respectively.
From Table 1, it is fairly that, as the sample size increases, the confidence intervals become
smaller, and the length of EL confidence interval shows advantage over GEE method. For
the estimator β̃, these show that the empirical likelihood method for the model can obtain
accurate estimator and can construct the effective confidence intervals of β.

4. Application

We apply the empirical likelihood in the proposed generalized linear models to the
theophylline data from bronchial asthma study. They were originally analyzed in Upton et al.
[22] and are available from the Resource Facility for Population Kinetics. Initially this data
set was used for Bayesian analysis of linear and nonlinear population models by using the
Gibbs sampler. Details about the related design, methods, and medical implications of the
asthma study have been described by Upton et al. [22]. Although all the individuals were
scheduled to have clinical visits followed the time schedule, due to the various reasons, some
individuals missed scheduled visits, which resulted in unequal number of measurements
and different measurement times across individuals. It has been also used in Bayesian
analysis of linear and nonlinear population models employing Gibbs sampler with normal
errors. Wakefield et al. [8] suggested the generalized linear mixed model with the gamma
error utilize for it. Based on this model, he had obtained a Bayesian result better than the
compartment model result [8]. A Bayesian analysis of the dataset was completed by Salway
and Wakefied [3] and Yan et al. [23].
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Table 2: Comparing parameter estimates for theophylline data in terms of accuracy and efficiency. EL:
empirical likelihood; GEE: general estimation equation; CP: compartment model.

EL 95% CI GEE 95% CI CP 95% CI
tmax 2.1676 (2.03, 2.30) 2.1676 (2.02, 2.38) 2.26 (1.73, 2.96)
cmax 8.3182 (7.53, 9.24) 8.3182 (7.52, 9.28) 9.06 (8.15, 10.1)
t1/2 7.3862 (7.29, 7.97) 7.3862 (7.00, 7.96) 7.75 (7.06, 8.51)
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Figure 1: The estimated value of β and its confidence region.

Here we applied our method to the data of 12 subjects who were administered an oral
dose of the antiasthmatic agent theophylline, with 10 concentration measurements obtained
from each individual over the subsequent 25 hours. Confidence regions for each parameters
are shown in Figure 1, respectively. The ranges of the confidence regions are small, which
suggests a good fit for the parameters.

A comparable representation with the GEE methods completed for the derived
parameters can be seen in Table 2. We compared the proposed empirical likelihood method
with GEE method and the typically compartment model results. It concludes that these
methods are comparable in terms of accuracy and efficiency. Table 2 indicates that EL-based
confidence region is smaller than the GEE-based region and compartment results. Moreover,
these findings are similar to the ones of Salway and Wakefield [3] and Yan et al. [23].

5. Conclusions

This paper shows that empirical likelihood is an effective method for analyzing the PPK
model. The empirical log-likelihood ratios are proven to be asymptotically chi-squared, and
then the corresponding confidence regions for the parameters of interest are constructed. A
simulation study is used to investigate the performance of the empirical likelihood method.
The results show that the empirical likelihood could obtain accurate estimator and construct
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the effective confidence regions. We also analyze the theophylline data from the Upton et al.
[22], and the results are similar and comparable to the ones of Wakefield et al. [8] and Yan
et al. [23].

At last, we have to mention the two disadvantages of this method. For one, the
likelihood function in the empirical likelihood method is completely determined by the
data, while avoiding the estimation of the variance, so the estimation of individual effect
may not be obtained. But actually, it is an important parameter in PPK study and directly
impacts doctor’s recommendation of individual administration. The following two steps are
advised to solve this problem. First, estimate the parameters in the model through empirical
likelihood function and then calculate the random effect with the estimators.

For another, in this paper, we did not consider the correlation structure of within-
subject observation. However, in the current literature on empirical likelihood methods, the
potential correlation structure of within-subject observation was first taken into consideration
by Wang et al. [15]. They also demonstrated that it was easy to incorporate the correlation
structure. It offered a promising direction to study this problem. Furthermore, we have only
accomplished the complete data set at present and incomplete data will be further studied in
future. From the application point of view, missing data and censoring data are worth being
studied.

Appendix

Lemma A.1. Assume that E[(Zi(β)ZT
i (β))] is positive definite, (∂Zi(β))/∂β is continuous in a

neighborhood if the true value β0, ||∂Zi(β)/∂β||和||Zi(β)||3 are bounded by some integrable function
Z(x) in this neighborhood, and the rank of E[∂Z(β)/∂β] is p. Then, as n → ∞, with probability 1
l(β) attains its minimum value at some point β̃ in the interior of the ball ‖β − β0‖ ≤ n−1/3, and θ̃ and
t̃(β̃) satisfy

Q1n

(
β̃, t̃
)
= 0, Q2n

(
β̃, t̃
)
= 0, (A.1)

where

Q1n
(
β, t
)
=

1
n

n∑

i=1

Zi

(
β
)

1 + t
(
β
)T
Zi

(
β
) , (A.2)

Q2n
(
β, t
)
=

1
n

n∑

i=1

1

1 + t
(
β
)T
Zi

(
β
)

(
∂Zi

(
β
)

∂β

)T

t. (A.3)

Proof of Lemma A.1. Denote β = β0 + un−1/3, for β ∈ {‖β − β0‖} = n−1/3, where ||u|| = 1. First,
we give a lower bound for l(β) on the surface of the ball. Similar to the proof of Owen (1990)
[24], when E‖Z(β)‖3 < ∞ and ‖β − β0‖ < n−1/3, we have

t
(
β
)
=

[
1
n

n∑

i=1

Zi

(
β
)
ZT

i

(
β
)
]−1[

1
n

n∑

i=1

Zi

(
β
)
]

+ o
(
n−1/3

)
(a.s.)

= O
(
n−1/3

)
(a.s.)

(A.4)

uniformly about β ∈ {β | ‖β − β0‖ ≤ n−1/3}.
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By this and Taylor expansion, we have (uniformly for u)

l
(
β
)
=

n∑

i=1

tT
(
β
)
Zi

(
β
) − 1

2

n∑

i=1

[
tT
(
β
)
Zi

(
β
)]2

+ o
(
n−1/3

)
(a.s.)

=
n

2

[
1
n

n∑

i=1

Zi

(
β
)
]T[

1
n

n∑

i=1

Zi

(
β
)
ZT

i

(
β
)
]−1[

1
n

n∑

i=1

Zi

(
β
)
]

+ o
(
n−1/3

)
(a.s.)

=
n

2

[
1
n

n∑

i=1

Zi

(
β
)
+
1
n

n∑

i=1

∂Zi

(
β0
)

∂
βun−1/3

]T[
1
n

n∑

i=1

Zi

(
β
)
ZT

i

(
β
)
]−1

× n

2

[
1
n

n∑

i=1

Zi

(
β
)
+
1
n

n∑

i=1

∂Zi

(
β0
)

∂β
un−1/3

]

+ o
(
n−1/3

)
(a.s.)

=
n

2

[

O
(
n−1/2(log logn

)1/2) + E

(
∂Zi

(
β0
)

∂β

)

un−1/3
]T[

E
(
Zi

(
β0
)
Zi

T(β0
))]−1

×
[

O
(
n−1/2(log logn

)1/2) + E

(
∂Zi

(
β0
)

∂β
un−1/3

)]

+ o
(
n−1/3

)
(a.s.)

≥ (c − ε)n1/3, (a.s.),

(A.5)

where, c − ε > 0, and c is the smallest eigenvalue of

E

(
∂Zi

(
β0
)

∂β

)T[
E
(
Zi

(
β0
)
Zi

T(β0
))]−1

E

(
∂Zi

(
β0
)

∂β

)

. (A.6)

Similarly,

l
(
β0
)
=

n

2

[
1
n

n∑

i=1

Zi

(
β0
)
]T[

1
n

n∑

i=1

Zi

(
β0
)
ZT

i

(
β0
)
]−1

×
[
1
n

n∑

i=1

Zi

(
β0
)
]

+ o(1)(a.s.)

= O
(
log logn

)
, (a.s.).

(A.7)

Since l(β) is a continuous function about β as β belongs to the ball ||β − β0|| < n−1/3, l(β) has
minimum value in the interior if this ball, and β̃ satisfies

∂l
(
β
)

∂
(
β
)

∣∣∣∣∣
θ=θ̃

=
n∑

i=1

(
∂tT
(
β
)
/∂β
)
Zi

(
β
)
+
(
∂Zi

(
β
)
/∂β
)T
t
(
β
)

1 + tT
(
β
)
Zi

(
β
)

∣∣∣∣∣∣∣
β=β̃

=
n∑

i=1

1
1 + tT

(
β
)
Zi

(
β
)

(
∂Zi

(
β
)

∂β

)T

t(θ)

∣∣∣∣∣∣
β=β̃

= 0.

(A.8)
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Theorem A.2. In addition to Lemma A.1. one assumes that ∂2 Zi (β)/∂β∂βT is continuous in β
in a neighborhood of the true value β0. Then if ||∂2 Zi (β)/∂β∂βT || can bounded by some integrable
function Z(x) in the neighborhood, then

√
n
(
β̃ − β0

)
−→ N(0, V ), (A.9)

where V = [E(∂Z/∂β)T (EZZT )−1E(∂Z/∂β)]−1.

Proof of Theorem A.2. Taking derivatives about β, tT , we have

∂Q1n
(
β, 0
)

∂β
=

∂Zi

(
β
)

∂β
,

∂Q1n
(
β, 0
)

∂tT
= − 1

n

n∑

i=1

Zi

(
β
)
Zi

T(β
)
,

∂Q2n
(
β, 0
)

∂β
= 0,

∂Q2n
(
β, 0
)

∂tT
=

1
n

n∑

i=1

(
∂Zi

(
β
)

∂β

)T

.

(A.10)

Expanding Q1n(β̃, t̃), Q2n(β̃, t̃) at (β0, 0), by the condition of the Theorem 2.1 and Lemma A.1,
we have

0 = Q1n

(
β̃, t̃
)

= Q1n
(
β0, 0

)
+
∂Q1n

(
β0, 0

)

∂β

(
β̃ − β0

)
+
∂Q1n

(
β0, 0

)

∂tT

(
t̃ − 0

)
+ op(δn),

0 = Q2n

(
β̃, t̃
)

= Q2n
(
β0, 0

)
+
∂Q2n

(
β0, 0

)

∂β

(
β̃ − β0

)
+
∂Q2n

(
β0, 0

)

∂tT

(
t̃ − 0

)
+ op(δn),

(A.11)

where δn = ‖β̃ − β0‖ + ‖t̃‖.
We have

(
t̃

β̃ − β0

)

= S−1
n

(−Q1n
(
β0, 0

)
+ op(δn)

op(δn)

)
, (A.12)

where

Sn =

⎛

⎜⎜
⎝

∂Q1n

∂tT
∂Q1n

∂β
∂Q2n

∂tT
0

⎞

⎟⎟
⎠

(β0,0)

−→
(
S11 S12

S21 0

)
=

⎛

⎜⎜
⎝

−E(ZZT
)

E

(
∂Z

∂β

)

E

(
∂Z

∂β

)T

0

⎞

⎟⎟
⎠. (A.13)
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From this andQ1n(β0, 0) =
1
n

∑n
n=1 Zi(β) = Op(n−1/2), we know that δn = Op(n−1/2). Easily we

have

√
n
(
β̃ − β0

)
= S−1

22.1S21S
−1
11

√
nQ1n

(
β0, 0

)
+ op(1) −→ N(0, V ), (A.14)

where, V = S−1
22.1 = {E(∂Z/∂β)TE(ZZT )−1E(∂Z/∂β)}−1.

Theorem A.3. If β is the true value of the parameter and the last component of β is a positive number,
similar to Qin and Lawless [11], then one has

ln
(
β
) −→ χ2

p, (A.15)

where → stands for convergence in distribution, and χ2
p is a chi-squared distribution with p degrees

of freedom.

Proof of Theorem A.3. The log-empirical likelihood ratio test statistics is

W
(
β0
)
= 2

{
n∑

i=1

log
[
1 + tTZi

(
β0
)] −

n∑

i=1

log
[
1 + t̃TZi

(
β̃
)]}

. (A.16)

Note that

l
(
β̃, t̃
)
=

n∑

i=1

log
[
1 + t̃TZi

(
β̃
)]

= −n
2
QT

1n

(
β0, 0

)
AQ1n

(
β0, 0

)
+ op(1), (A.17)

where A = S−1
11
{I + S12S

−1
22.1S21S

−1
11}.

Also under H0:

1
n

n∑

i=1

1
1 + tT0Zi

(
β0
)Zi

(
β0
)
= 0 −→ t0 = −S−1

11Q1n
(
β0, 0

)
+ op(1), (A.18)

and

1
n

n∑

i=1

log
[
1 + tT0Zi

(
β0
)]

= −n
2
QT

1n

(
β0, 0

)
S−1
11Q1n

(
β0, 0

)
+ op(1). (A.19)
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Thus

W
(
β0
)
= nQT

1n
(
β0, 0

)(
A − S−1

11

)
Q1n
(
β0, 0

)
+ op(1)

= nQT
1n
(
β0, 0

)
S−1
11S12S

−1
22.1S21S

−1
11Q1n

(
β0, 0

)
+ op(1)

=
[(

−S−1
11

)−1/2√
nQ1n

(
β0, 0

)
]T[(

−S−1
11

)−1/2
S12S

−1
22.1S21

(
−S−1

11

)−1/2]

×
[(

−S−1
11

)−1/2√
nQ1n

(
β0, 0

)
]
+ op(1).

(A.20)

Note that (−S−1
11 )

−1/2√
nQ1n(β0, 0) converges to a standard multivariate normal distribution

and that (−S−1
11 )

−1/2
S12S

−1
22.1S21(−S−1

11 )
−1/2

is symmetric and idempotent, with trace equal to p.
Hence the empirical likelihood ratio statistic W(β0) converges to χ2

(p).
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