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The authors study the existence and uniqueness of a set with 2kT-periodic solutions for a class of
second-order differential equations by using Mawhin’s continuation theorem and some analysis
methods, and then a unique homoclinic orbit is obtained as a limit point of the above set of 2kT-
periodic solutions.

1. Introduction

In this paper, we study the existence and uniqueness of homoclinic solutions for the following
nonlinear second-order differential equations:

u′′(t) + g
(
u′(t)

)
+ h(u(t)) = f(t), (1.1)

where u(t) ∈ R, g, h and f are all in C(R,R).
As usual we say that a nonzero solution u(t) of (1.1) is homoclinic (to 0) if u(t) → 0

and u′(t) → 0 as |t| → +∞.
Equation (1.1) is important in the applied sciences such as nonlinear vibration of

masses, see [1–3] and the references therein. But most of the authors in those papers are
interested in the study of problems of periodic solutions. Recently, the existence of homoclinic
solutions for some second-order ordinary differential equation (system) has been extensively
studied by using critical point theory, see [4–13] and the references therein. For example,
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in [9], by using the Mountain Pass theorem, Lv et al. discussed the existence of homoclinic
solutions for the following second-order Hamiltonian systems:

u′′(t) − L(t)u(t) +∇w(t, u(t)) = 0, (1.2)

and in [13], the authors by means of variational method studied the problem of homoclinic
solutions for the forced pendulum equation without the first derivative term. But, as far as we
know, there were few papers studying the existence of homoclinic solution for the equation
such as (1.1). This is due to the fact that (1.1) contains the first derivative term g(u′(t)). This
implies that the differential equation is not the Euler Lagrange equation associated with some
functional I : W1,p

2kT → R. So the method of critical point theory (or variational method) in
[4–13] cannot be applied directly. Although paper [13] discussed the existence of homoclinic
solutions for the following equation containing the first derivative term:

x′′(t) + f(t)x′(t) + β(t)x(t) + g(t, x(t)) = 0, (1.3)

the term containing the first derivative is only linear with respect to x′(t).
In order to investigate the homoclinic solutions to (1.1), firstly, we study the existence

of 2kT -periodic solutions to the following equation for each k ∈ N:

u′′(t) + g
(
u′(t)

)
+ h(u(t)) = fk(t), (1.4)

where fk : R → R is a 2kT -periodic function such that

fk(t) =

⎧
⎨

⎩

f(t), t ∈ [−kT, kT − ε0]

f(kT − ε0) +
f(−kT) − f(kT − ε0)

ε0
(t − kT + ε0), t ∈ [kT − ε0, kT],

(1.5)

T > 0 is a given constant, and ε0 ∈ (0, T) is a constant independent of k. Then a homoclinic
solution to (1.1) is obtained as a limit point of the set {uk(t)}, where uk(t) is an arbitrary
2kT -periodic solution to (1.4) for each k ∈ N.

The significance of present paper is that we not only investigate the existence of homo-
clinic solution to (1.1), but also study the uniqueness of the homoclinic solution and, the
existence of 2kT -periodic solutions to (1.4) is obtained by using Mawhin’s continuation
theorem [14], not by using the methods of critical point theory, which is quite different from
the approaches of [4–13, 15]. Furthermore, the method to obtain the homoclinic solution to
(1.1) is also different from the corresponding ones of [15].

2. Main Lemmas

For each k ∈ N, let C2kT = {x | x ∈ C(R,R), x(t + 2kT) ≡ x(t)}, C1
2kT = {x | x ∈ C1(R,R),

x(t + 2kT) ≡ x(t)}, the norms of C2kT and C1
2kT are defined by ‖ · ‖∞ = maxt∈[−kT,kT]|x(t)|

and ‖x‖C1
2kT

= max{‖x‖∞, ‖x′‖∞}, respectively, then C2kT and C1
2kT are all Banach spaces.

Furthermore for x ∈ C2kT , ‖x‖r = (
∫kT
−kT |x(t)|rdt)

1/r
, where r ∈ (1,+∞).
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Lemma 2.1 (see [12]). Let a > 0 and q ∈ W1,p(R,R), then for every t ∈ R, the following inequality
holds:

∣
∣q(t)

∣
∣ ≤ (2a)−1/μ

(∫ t+a

t−a

∣
∣q(s)

∣
∣μds

)1/μ

+ a(2a)−1/p
(∫ t+a

t−a

∣
∣q′(s)

∣
∣pds

)1/p

, (2.1)

where μ, p ∈ (1,+∞) are constants.

Lemma 2.2 (see [12]). Let q ∈ W
1,p
2kT (R,R

n), then the following inequality holds:

∥
∥q
∥
∥
∞ ≤ T−1/ν

(∫kT

−kT

∣
∣q(s)

∣
∣νds

)1/ν

+ T (p−1)/p
(∫kT

−kT

∣
∣q′(s)

∣
∣pds

)1/p

, (2.2)

where ν and p are constants with ν > 1 and p > 1.

In order to use Mawhin’s continuation theorem for investigating the existence of 2kT -
periodic solutions to (1.4), we give some definitions associated with Mawhin’s continuation
theorem.

Definition 2.3 (see [14]). Let X and Y be two Banach spaces with norms ‖x‖X and ‖x‖Y ,
respectively. A linear operator

L : D(L) ⊂ X −→ Y (2.3)

is said to be a Fredholm opeartor with index zero provided that

(1) Im L is a closed subset of Y ;

(2) dimKer L = codim Im L < ∞.

If L : D(L) ⊂ X → Y is a Fredholm operator with index zero, then X = ker L ⊕X1 and
Y = Im L ⊕ Y1. Let P : X → ker L and Q : Y → Y1 be the continuous projectors. Clearly, ker
L ∩ (D(L) ∩ X1) = {0}, thus the restriction LP := L|D(L)∩X1 is invertible. Denote by KP the
inverse of LP .

Definition 2.4 (see [14]). Let X and Y be two Banach spaces with norms ‖x‖X and ‖x‖Y ,
respectively, and the operator

L : D(L) ⊂ X −→ Y (2.4)

is a Fredholm operator with index zero, Ω ⊂ X is an open bounded set with D(L) ∩Ω/=φ. A
continuous operator N : Ω ⊂ X → Y is said to be L-compact in Ω, provided that

(1) KP (I −Q)N(Ω) is a relative compact set of X;

(2) QN(Ω) is a bounded set of Y .
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Lemma 2.5 (see [14]). Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y is a
Fredholm operator with index zero. Furthermore, Ω ⊂ X is an open bounded subset and N : Ω → Y

is L-compact on Ω. If all the following conditions hold:

(1) Lx/=λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2) Nx /∈ Im L, for all x ∈ ∂Ω ∩ Ker L;

(3) deg{JQN,Ω ∩ Ker L, 0}/= 0,

where J : Im Q → Ker L is an isomorphism. Then equation Lx = Nx has a solution on
Ω ∩D(L).

Lemma 2.6. Assume that there are positive constants m, m1, n, l0, and l1 with l0 ≥ l1, such that the
following conditions hold.

(A1) supt∈R|f(t)| < +∞,
∫
R |f(t)|(l0+1)/l0dt < +∞,

∫
R |f(t)|(l1+1)/l1dt < +∞ and

∫
R |f(t)|2dt <

+∞.

(A2)

−m1|x|l0+1 ≤ xg(x) ≤ −m|x|l0+1, ∀x ∈ R,

xh(x) ≤ −n|x|l1+1, ∀x ∈ R.
(2.5)

(A3) h ∈ C1(R,R) with h′(x) ≤ 0 for all x ∈ R.

Then for every k ∈ N, (1.4) possesses a 2kT -periodic solution.

Remark 2.7. From (1.5), we see

∥∥fk
∥∥
∞ ≤ sup

t∈R

∣∣f(t)
∣∣ < +∞, ∀k ∈ N,

∥∥fk
∥∥
(l0+1)/l0

=

(∫kT

−kT

∣∣fk(s)
∣∣(l0+1)/l0ds

)l0/(l0+1)

≤
(∫kT−ε0

−kT

∣∣fk(s)
∣∣(l0+1)/l0ds

)l0/(l0+1)

+

(∫kT

kT−ε0

∣∣fk(s)
∣∣(l0+1)/l0ds

)l0/(l0+1)

≤
(∫

R

∣∣f(s)
∣∣(l0+1)/l0ds

)l0/(l0+1)

+ ε
l0/(l0+1)
0 sup

t∈R

∣∣f(t)
∣∣, ∀k ∈ N,

(2.6)

which together with assumption (A1) yields that ‖fk‖∞ and ‖fk‖(l0+1)/l0 are two constants
independent of k ∈ N.

Similarly, we have that ‖fk‖(l1+1)/l1 < +∞ and ‖fk‖2 < +∞ are two constants indepen-
dent of k ∈ N.
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Proof. Set X = C1
2kT , Y = C2kT , L : D(L) ⊂ X → Y , Lu = u′′, where D(L) = {u | u ∈ C2

2kT},
and

N : C1
2kT −→ C2kT , [Nu](t) = −g(u′(t)

) − h(u(t)) + fk(t). (2.7)

Clearly, Ker L = R, Im L = {y ∈ Y :
∫kT
−kT y(s)ds = 0}, which implies that Im L is a closed

subset of X, and dimKer L = codim Im L = 1 < +∞. So L is a Fredholm operator with index
zero. Let

P : X −→ Ker L, Q : Y → Y/ Im L (2.8)

be defined respectively by Px = (1/2kT)
∫2kT
0 x(s)ds,Qx = (1/2kT)

∫2kT
0 x(s)ds and let

LP = L|X∩Ker P : X ∩ Ker P −→ Im L. (2.9)

Then LP has a unique continuous pseudo-inverse L−1
P on Im L defined by (L−1

P y)(t) = [Fy](t),
where

[
Fy
]
(t) =

∫2kT

0
G(t, s)y(s)ds,

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

s(2kT − t)
2kT

, 0 ≤ s < t,

t(2kT − s)
2kT

, t ≤ s ≤ 2kT.

(2.10)

For each open bounded setΩ ⊂ C2kT , from the above formula, it is easy to see that the mapper
N is L-compact on Ω.

Step 1. For each k ∈ N, let Ω1 = {x ∈ C1
2kT : Lx = λNx, λ ∈ (0, 1)}, that is,

Ω1 =
{
x ∈ C1

2kT : x′′(t) + λg
(
x′(t)

)
+ λh(x(t)) = λfk(t), λ ∈ (0, 1)

}
. (2.11)

We will show that Ω1 is bounded in C1
2kT . Suppose that u ∈ Ω1, then

u′′(t) + λg
(
u′(t)

)
+ λh(u(t)) = λfk(t), λ ∈ (0, 1). (2.12)

Multiplying both sides of (2.12) by u′(t) and integrating on the interval [−kT, kT], we have
from assumption (A2) that

m

∫kT

−kT

∣∣u′(t)
∣∣l0+1dt ≤ −

∫kT

−kT
u′(t)g

(
u′(t)

)
dt = −

∫kT

−kT
fk(t)u′(t)dt. (2.13)
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By using hólder inequality, we get

∥
∥u′∥∥l0+1

l0+1
≤ 1

m

∥
∥fk
∥
∥
(l0+1)/l0

· ∥∥u′∥∥
l0+1

, (2.14)

which together with the conclusion of Remark 2.7 shows

∥
∥u′∥∥

l0+1
≤
(

1
m

∥
∥fk
∥
∥
(l0+1)/l0

)1/l0
:= β1. (2.15)

Clearly, β1 is a constant independent of k and λ.
Multiplying both sides of (2.12) by u′′(t) and integrating on the interval [−kT, kT], we

have

∥∥u′′∥∥2
2 − λ

∫kT

−kT

(
u′(t)

)2
h′(u(t))dt = λ

∫kT

−kT
fk(t)u′′(t)dt. (2.16)

It follows from (2.16) and assumption (A3) that

∥∥u′′∥∥2
2 ≤
∫kT

−kT

∣∣fk(t)u′′(t)
∣∣dt ≤ ∥∥fk

∥∥
2 ·
∥∥u′′∥∥

2, (2.17)

which implies

∥∥u′′∥∥
2 ≤
∥∥fk
∥∥
2 := β2. (2.18)

By using Lemma 2.2, we have

∥∥u′∥∥
∞ ≤ T−1/(l0+1)∥∥u′∥∥

l0+1
+ T1/2∥∥u′′∥∥

2

≤ T−1/(l0+1)β1 + T1/2β2

:= β.

(2.19)

Clearly, β is a constant independent of k and λ.
On the other hand, multiplying both sides of (2.12) by u(t) and integrating on the

interval [−kT, kT], we have

−
∫kT

−kT

∣∣u′(t)
∣∣2dt + λ

∫kT

−kT
h(u(t))u(t)dt = −λ

∫kT

−kT
g
(
u′(t)

)
u(t)dt + λ

∫kT

−kT
fk(t)u(t)dt. (2.20)

It follows from assumption (A2) that

λn

∫kT

−kT
(u(t))l1+1dt +

∫kT

−kT

(
u′(t)

)2
dt ≤ λm1

∫kT

−kT

∣∣u′(t)
∣∣l0 |u(t)|dt + λ

∫kT

−kT

∣∣fk(t)
∣∣|u(t)|dt,

(2.21)
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which together with (2.19) and l0 ≥ l1 results in

n

∫kT

−kT
|u(t)|l1+1dt ≤ m1

∫kT

−kT

∣
∣u′(t)

∣
∣l0 · |u(t)|dt +

∫kT

−kT

∣
∣fk(t)u(t)

∣
∣dt

≤ m1

(∫kT

−kT

∣
∣u′(t)

∣
∣l0(l1+1)/l1dt

)l1/(l1+1)

·
(∫kT

−kT
|u(t)|l1+1dt

)1/(l1+1)

+

(∫kT

−kT

∣
∣fk(t)

∣
∣(l1+1)/l1dt

)l1/(l1+1)

·
(∫kT

−kT
|u(t)|l1+1dt

)1/(l1+1)

= m1

(∫kT

−kT

∣
∣u′(t)

∣
∣l0+1∣∣u′(t)

∣
∣(l0−l1)/l1dt

)l1/(l1+1)

· ‖u‖l1+1 +
∥
∥fk
∥
∥
(l1+1)/l1

‖u‖l1+1

≤ m1β
(l0−1)/(l1+1)

(∫kT

−kT

∣∣u′(t)
∣∣l0+1dt

)l1/(l1+1)

‖u‖l1+1 +
∥∥fk
∥∥
(l1+1)/l1

‖u‖l1+1

= m1β
(l0−l1)/(l1+1)

(∥∥u′∥∥
l0+1

)l1(l0+1)/(l1+1)‖u‖l1+1 +
∥∥fk
∥∥
(l1+1)/l1

‖u‖l1+1

≤ m1β
(l0−1)/(l1+1)βl1(l0+1)/(l1+1)1 ‖u‖l1+1 +

∥∥fk
∥∥
(l1+1)/l1

‖u‖l1+1
(2.22)

that is,

‖u‖l1+1l1+1
≤ 1

n

[
m1β

(l0−l1)/(l1+1)βl1(l0+1)/(l1+1)1 +
∥∥fk
∥∥
(l1+1)/l1

]
‖u‖l1+1. (2.23)

Therefore

‖u‖l1+1 ≤
(
1
n

)1/l1[
m1β

(l0−l1)/(l1+1)βl1(l0+1)/(l1+1)1 +
∥∥fk
∥∥
(l1+1)/l1

]1/l1
:= α1, (2.24)

where α1 is a constant independent of k and λ. By using Lemma 2.2 again, we get

‖u‖∞ ≤ T−1/(l1+1)‖u‖l1+1 + Tl0/(l0+1)
∥∥u′∥∥

l0+1

≤ T−1/(l1+1)α1 + Tl0/(l0+1)β1 := α.
(2.25)

Obviously, α is a constant independent of k and λ. Therefore, if u ∈ Ω1, then by (2.19) we see
that

‖u‖C1
2kT

= max
{‖u‖∞,

∥∥u′∥∥
∞
} ≤ max

{
α, β
}
+ sup

t∈R

∣∣f(t)
∣∣ := M̃. (2.26)

Clearly, M̃ > 0 is a constant independent of k and λ; that is, Ω1 is uniformly bounded for all
k ∈ N and λ ∈ (0, 1).
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Step 2. From assumptions (A2) and (A3), we see that there must be a constant M1 > 0 such
that −h(M1) + fk > 0 and −h(−M1) + fk < 0. SetΩ2 = {u(t) ∈ C1

2kT : ‖u‖C1
2kT

< M}, whereM =

max{M1, M̃}. We will show that Nu /∈ Im L, for all u ∈ ∂Ω2 ∩ Ker L.
In fact, by assumption (A2), we see that g(0) = 0, and if u ∈ ∂Ω2∩Ker L, then u(t) ≡ M

or u ≡ −M. So

QN(u) = − 1
2kT

∫kT

−kT

[
h(M) − fk(t)

]
dt = −h(M) + fk ≥ −h(M1) + fk > 0, ∀u(t) ≡ M,

QN(u)=− 1
2kT

∫kT

−kT

[
h(−M) − fk(t)

]
dt=−h(−M) + fk ≤ −h(−M1) + fk < 0, ∀u(t) ≡ −M,

(2.27)

where fk = (1/2kT)
∫kT
−kT fk(t)dt. This implies that Nu /∈ Im L, for all u ∈ ∂Ω2 ∩ Ker L.

Step 3. Set J : Im Q → Ker L, Jx = x, we will show deg{JQN,Ω2 ∩ Ker L, 0}/= 0.
Let H(x, μ) = μx + (1 − μ)JQNx, for all x ∈ Ω2 ∩ Ker L, when x ∈ ∂(Ω2 ∩ Ker L), we

have x = ±M and

H
(
M,μ

)
= μM +

(
1 − μ

)
JQN(M) = μM +

(
1 − μ

)
QN(M) > 0,

H
(−M,μ

)
= −μM +

(
1 − μ

)
JQN(−M) = −μM +

(
1 − μ

)
QN(−M) < 0.

(2.28)

So for all μ ∈ [0, 1], H(∂(Ω2 ∩ Ker L), μ)/= 0, and then

deg{JQN,Ω2 ∩ Ker L, 0} = deg{H(·, 0),Ω2 ∩ Ker L, 0}
= deg{H(·, 1),Ω2 ∩ Ker L, 0} = deg{I,Ω2 ∩ Ker L, 0}
= 1.

(2.29)

Therefore, by Lemma 2.5, (1.4) has a 2kT -periodic solution uk ∈ Ω2.

Remark 2.8. Suppose that all the conditions in Lemma 2.6 hold. We see that for each k ∈ N,
(1.4) has a 2kT -periodic solution uk ∈ Ω2. This implies that

‖uk‖∞ ≤ M,
∥∥u′

k

∥∥
∞ ≤ M. (2.30)

Furthermore, as same as the proof of step 1 in Lemma 2.6 with replacing u(t) by uk(t), we
have

‖uk‖l1+1 ≤ α1,
∥∥u′

k

∥∥
l0+1

≤ β1, (2.31)

where α1 and β1 are two positive constants independent of k ∈ N.
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Lemma 2.9 (see [12]). Let uk ∈ C1
2kT be the 2kT -periodic solution for (1.4) and satisfies (2.30) and

(2.31) for all k ∈ N. Then there exists a function u0 ∈ C1(R,R) such that for each interval [c, d] ⊂ R,
there is a subsequence {ukj} of {uk}k∈N with u′

kj
(t) → u′

0(t) uniformly on [c, d].

3. Main Results

Theorem 3.1. Suppose that assumptions (A1), (A2), and (A3) in Lemma 2.6 hold. Then (1.1) has a
unique homoclinic solution.

Proof. Since assumptions (A1), (A2), onsisting of Kuratowski operations we used following
principles and (A3) in Lemma 2.6 hold, by using Lemma 2.6, we see that (1.4) has a 2kT -
periodic solution uk(t) satisfying (2.30) and (2.31) for each k ∈ N. It follows from Lemma 2.9
that there exists a u0 ∈ C1(R,R) such that for each interval [c, d] ⊂ R, there is a subsequence
{ukj} of {uk}k∈N satisfying u′

kj
(t) → u′

0(t) uniformly on [c, d]. Below, we will show that u0(t)
is just a unique homoclinic solution to (1.1).

Step 1. We show that u0 is a solution of (1.1).
In view of ukj (t) being a 2kjT -periodic solution to (1.4), we have

u′′
kj
(t) + g

(
u′
kj
(t)
)
+ h
(
ukj (t)

)
= fkj (t), for t ∈ [−kjT, kjT

]
, j ∈ N. (3.1)

Take a, b ∈ R such that a < b, there exists j0 ∈ N such that for all j > j0

u′′
kj
(t) + g

(
u′
kj
(t)
)
+ h
(
ukj (t)

)
= f(t), for t ∈ [a, b]. (3.2)

Integrating (3.2) from a to t ∈ [a, b], we have

u′
kj
(t) − u′

kj
(a) =

∫ t

a

[
−g
(
u′
kj
(s)
)
− h
(
ukj (s)

)
+ f(s)

]
ds, for t ∈ [a, b]. (3.3)

Since Lemma 2.9 shows that ukj → u0 uniformly on [a, b] and u′
kj

→ u′
0 uniformly on [a, b]

as j → ∞, let j → ∞ in (3.3), we get

u′
0(t) − u′

0(a) =
∫ t

a

[−g(u′
0(s)
) − h(u0(s)) + f(s)

]
ds, for t ∈ [a, b]. (3.4)

In view of a and b are arbitrary, (3.4) shows that u0(t) is a solution of (1.1).

Step 2. We prove that u0(t) → 0, as t → ±∞.
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Obviously, for every i ∈ N, there exists ji ∈ N such that for all j > ji, we have

∫ iT

−iT

[∣
∣
∣ukj (t)

∣
∣
∣
l1+1

+
∣
∣
∣u′

kj
(t)
∣
∣
∣
l0+1
]
dt ≤

∫kjT

−kjT

[∣
∣
∣ukj (t)

∣
∣
∣
l1+1

+
∣
∣
∣u′

kj
(t)
∣
∣
∣
l0+1
]
dt

≤ αl1+1
1 + βl0+11

:= M2.

(3.5)

It follows that

∫+∞

−∞

[
|u0(t)|l1+1 +

∣
∣u′

0(t)
∣
∣l0+1
]
dt

= lim
i→+∞

∫ iT

−iT

[
|u0(t)|l1+1 +

∣∣u′
0(t)
∣∣l0+1
]
dt

= lim
i→+∞

lim
j→+∞

∫ iT

−iT

[∣∣∣ukj (t)
∣∣∣
l1+1

+
∣∣∣u′

kj
(t)
∣∣∣
l0+1
]
dt

≤ M2,

(3.6)

and then

∫

|t|≥r

[
|u0(t)|l1+1 +

∣∣u′
0(t)
∣∣l0+1
]
dt −→ 0, as r −→ +∞, (3.7)

which yields

∫

|t|≥r
|u0(t)|l1+1dt −→ 0,

∫

|t|≥r

∣∣u′
0(t)
∣∣l0+1dt −→ 0, as r −→ +∞. (3.8)

By using Lemma 2.1, as t → ±∞,

|u0(t)| ≤ (2a)−1/(l1+1)
(∫ t+a

t−a
|u0(s)|l1+1ds

)1/(l1+1)

+ a · (2a)−1/(l0+1)
(∫ t+a

t−a

∣∣u′
0(s)
∣∣l0+1ds

)1/(l0+1)

−→ 0.

(3.9)

So we have u0(t) → 0, as t → ±∞.

Step 3. We will show that

u′
0(t) −→ 0, as t −→ ±∞. (3.10)
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From the Remark 2.8 and Lemma 2.9, we have

|u0(t)| ≤ M,
∣
∣u′

0(t)
∣
∣ ≤ M, for all t ∈ R, (3.11)

which together with (1.1) implies that

∥
∥u′′

0

∥
∥
∞ ≤ gM + hM + sup

t∈R

∣
∣f(t)

∣
∣, (3.12)

where gM = max|x|≤M|g(x)| and hM = max|x|≤M|h(x)|. If u′
0(t) � 0, as t → ±∞, then there

exist a ε0 ∈ (0, 1/2) and a sequence {tk} such that

|t1| < |t2| < |t3| < · · · , |tk| + 1 < |tk+1|, k ∈ N,
∣∣u′

0(tk)
∣∣ ≥ 2ε0, k ∈ N.

(3.13)

From this, we have for t ∈ [tk, tk + ε0/(1 +M1)]

∣∣u′
0(t)
∣∣ =

∣∣∣∣∣
u′
0(tk) +

∫ t

tk

u′′
0(s)ds

∣∣∣∣∣
≥ ∣∣u′

0(tk)
∣∣ −
∫ t

tk

∣∣u′′
0(s)
∣∣ds ≥ ε0. (3.14)

It follows that

∫+∞

−∞

∣∣u′
0(t)
∣∣l0+1dt ≥

∞∑

k=1

∫ tk+ε0/(1+M1)

tk

∣∣u′
0(t)
∣∣l0+1dt = ∞, (3.15)

which contradicts (3.6), and so (3.10) holds.

Step 4. Finally, we will prove that (1.1) possesses a unique homoclinic solution. In order to do
it, let u(t) = u1(t)−u2(t), where u1(t) and u2(t) are two arbitrary homoclinic solutions of (1.1).
Then

u(t) −→ 0 as t −→ ±∞. (3.16)

We will show that

u(t) ≡ 0. (3.17)

If (3.17) does not hold, then there must be a t∗ ∈ R such that

u(t∗) > 0 (3.18)

or

u(t∗) < 0. (3.19)
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If u(t∗) > 0, then from (3.16), we see that there is a constant X > 0 such that t∗ ∈
(−X,X) and u(t) < u(t∗)/2 for t ∈ (−∞, X) ∪ (X,+∞). Let t∗∗ ∈ [−X,X] such that u(t∗∗) =
maxt∈[−X,X]u(t), then

u(t∗∗) ≥ u(t∗) > 0, (3.20)

u(t∗∗) ≥ u(t∗) > sup
t∈(−∞,X)∪(X,+∞)

u(t), (3.21)

that is,

u(t∗∗) = max
t∈R

u(t). (3.22)

So u′(t∗∗) = 0 and u′′(t∗∗) ≤ 0, and then from (1.1), we see

−[h(u1(t∗∗)) − h(u2(t∗∗))] = u′′
1(t

∗∗) − u′′
2(t

∗∗) = u′′(t∗∗) ≤ 0. (3.23)

By using the condition (A3), we have that

u(t∗∗) = u1(t∗∗) − u2(t∗∗) ≤ 0, (3.24)

which contradicts to (3.20). This contradiction implies that (3.18) does not hold. Similarly, we
can prove that (3.19) does not hold, either. So u(t) ≡ 0.

As an application, we consider the following example:

u′′(t) −m
(
u′(t)

)3 − n(u(t)) =
et/2

e−t + et
, (3.25)

wherem,n > 0 are constants and, f(t) = et/2/(e−t + et). Corresponding to (1.1), we can chose
l0 = 3 and l1 = 1 such that assumptions (A2) and (A3) hold. Furthermore, by the direct
calculation, we can easily obtain that

∫

R

∣∣f(t)
∣∣(l1+1)/l1dt =

∫+∞

−∞

∣∣f(t)
∣∣2dt =

π

4
< ∞,

∫

R

∣∣f(t)
∣∣(l0+1)/l0dt =

∫+∞

−∞

∣∣f(t)
∣∣4/3dt =

3
2
< ∞.

(3.26)

This implies that assumption (A1) also holds. So by applying Theorem 3.1, we know that
(3.25) possesses a unique homoclinic solution.
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