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A delayed predator-preymodel with disease in the prey is investigated. The conditions for the local
stability and the existence of Hopf bifurcation at the positive equilibrium of the system are derived.
The effect of the two different time delays on the dynamical behavior has been given. Numerical
simulations are performed to illustrate the theoretical analysis. Finally, the main conclusions are
drawn.

1. Introduction

During the past decades, epidemiological models have received considerate attention
since the seminal SIR model of Kermack and McKendrich [1]. Great attention has been
paid to the dynamics properties of the predator-prey models which have significant
biological background. Numerous excellent and interesting results have been reported. For
example, Bhattacharyya and Mukhopadhyay [2] studied the spatial dynamics of nonlinear
prey-predator models with prey migration and predator switching, Bhattacharyya and
Mukhopadhyay [3] analyzed the local and global dynamical behavior of an ecoepidemiologi-
cal model, Kar andGhorai [4]made a detailed discussion on the local stability, global stability,
influence of harvesting and bifurcation of a delayed predator-prey model with harvesting,
Chakraborty et al. [5] focused on the bifurcation and control of a bio-economic model of a
delayed prey-predator model. For more related research, one can see [6–19].
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In 2005, Song et al. [20] investigated the stability and Hopf bifurcation of a delayed
ecoepidemiological model as follows:

Ṡ(t) = rS

(
1 − S + I

K

)
− βSI,

İ(t) = βSI − cI − pIY (t − τ1),

Ẏ (t) = −dY + kpYI(t − τ2),

(1.1)

where S(t), I(t), Y (t) represent the susceptible prey, infected prey and predator population,
respectively. K (K > 0) can be interpreted as the prey carrying capacity with an intrinsic
birth rate constant r (r > 0). β (β > 0) is called the transmission coefficient. The predator
has a death rate constant d (d > 0) and the predation coefficient p (p > 0). The death rate
of infected prey is positive constant c. The coefficient in conversing prey into predator is
k (0 < k ≤ 1). τ1 and τ2 are the time required for mature of predator and the time required for
the gestation of predator, respectively. The more detail biological meaning of the coefficients
of system (1.1), one can see [20].

For the sake of simplicity, Song et al. [20] rescales time t → βkt, then system (1.1) can
be transformed into the following form:

ṡ(t) = as[1 − (s + i)] − si,

i̇(t) = −b2i + si − liy(t − τ1),

ẏ(t) = −b1y + klyi(t − τ2),

(1.2)

where s = S/K, i = I/K, y = Y/K, a = r/Kβ, b2 = c/Kβ, b1 = d/Kβ, l = p/β, τ1 = βKτ1,
τ2 = βKτ2.

We would like to point out that although Song et al. [20] investigated the local stability
and Hopf bifurcation of system (1.2) under the assumption τ1 + τ2 = τ and obtained some
good results, but they did not discuss what the different time delay τ1 and τ2 have effect on
the stability and Hopf bifurcation behavior of system (1.2). Thus it is important for us to deal
with the effect of time delay on the dynamics of system (1.2). There are someworkwhich deal
with this topic [21–24]. In this paper, we will further investigate the stability and bifurcation
of model (1.2) as a complementarity. We will show that the two different time delay τ1 and τ2
have different effect on the stability and Hopf bifurcation behavior of system (1.2).

The remainder of the paper is organized as follows. In Section 2, we investigate
the stability of the positive equilibrium and the occurrence of local Hopf bifurcations. In
Section 3, numerical simulations are carried out to illustrate the validity of the main results.
Some main conclusions are drawn in Section 4.

2. Stability and Local Hopf Bifurcations

In this section, we will study the stability of the positive equilibrium and the existence of local
Hopf bifurcations.
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If the following condition:

(H1) akl > b1(k + l), akl(1 − b2) > b1(1 + a), (2.1)

holds, then system (1.2) has a unique equilibrium point E0(s∗, i∗, y∗), where

s∗ =
akl − b1(k + l)

akl
, i∗ =

b1
kl

, y∗ =
akl(1 − b2) − b1(1 + a)

akl2
. (2.2)

Let s(t) = s(t) − s∗, i(t) = i(t) − i∗, y(t) = y(t) − y∗ and still denote s(t), i(t), y(t) by s(t),
i(t), y(t), respectively, then (1.2) reads as

ṡ(t) = −as∗s − s∗(a + 1)i,

i̇(t) = i∗s − li∗y(t − τ1),

ẏ(t) = −(b1 − kli∗)y + kly∗i(t − τ2).

(2.3)

The characteristic equation of (2.3) is given by

det

⎛
⎜⎜⎝

a − 2as∗ − (a + 1)i∗ − λ −(a + 1)s∗ 0
i∗ s∗ − b2 − ly∗ − λ −li∗e−λτ1
0 kly∗e−λτ2 −b1 + kli∗ − λ

⎞
⎟⎟⎠ = 0. (2.4)

That is

λ3 + θ2λ
2 + θ1λ + θ0 +

(
γ1λ + γ0

)
e−λ(τ1+τ2) = 0, (2.5)

where

θ0 = m1m2m3 +m5, θ1 = −(m1m2 +m1m3 +m2m3 +m6),

θ2 = −(m1 +m2 +m3), γ0 = m1m4, γ1 = m4,
(2.6)

where

m1 = a − 2as∗ − (a + 1)i∗, m2 = b2 + ly∗ − s∗, m3 = b1 − kli∗,

m4 = kl2i∗y∗, m5 = −(a + 1)s∗i∗(b1 − kli∗), m6 = −i∗(a + 1)s∗.
(2.7)

The following lemma is important for us to analyze the distribution of roots of the
transcendental equation (2.5).
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Lemma 2.1 (see [13]). For the transcendental equation

P
(
λ, e−λτ1 , . . . , e−λτm

)
= λn + p

(0)
1 λn−1 + · · · + p

(0)
n−1λ + p

(0)
n

+
[
p
(1)
1 λn−1 + · · · + p

(1)
n−1λ + p

(1)
n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p

(m)
n−1λ + p

(m)
n

]
e−λτm = 0,

(2.8)

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P(λ, e−λτ1 , . . . , e−λτm) in the open right
half plane can change, and only a zero appears on or crosses the imaginary axis.

In the sequel, we consider four cases.

Case 1. τ1 = τ2 = 0, (2.5) becomes

λ3 + θ2λ
2 +

(
θ1 + γ1

)
λ + θ0 + γ0 = 0. (2.9)

All roots of (2.9) have a negative real part if the following condition holds:

(H2) θ0 + γ0 > 0, θ2
(
θ1 + γ1

)
> θ0 + γ0. (2.10)

Then the equilibrium point E0(s∗, i∗, y∗) is locally asymptotically stable when the conditions
(H1) and (H2) are satisfied.

Case 2. τ1 = 0, τ2 > 0, (2.5) becomes

λ3 + θ2λ
2 + θ1λ + θ0 +

(
γ1λ + γ0

)
e−λτ2 = 0. (2.11)

For ω > 0, iω be a root of (2.11), then it follows that

γ1ω sinωτ2 + γ0 cosωτ2 = θ2ω
2 − θ0,

γ1ω cosωτ2 − γ0 sinωτ2 = ω3 − θ1ω
(2.12)

which is equivalent to

ω6 +
(
θ2
2 − 2θ0θ2 − 2θ1

)
ω4 +

(
θ2
1 − γ21

)
ω2 − γ20 = 0. (2.13)

Let z = ω2, then (2.13) takes the form

z3 + r1z
2 + r2z + r3 = 0, (2.14)

where r1 = θ2
2 − 2θ0θ2 − 2θ1, r2 = θ2

1 − γ21 , r3 = −γ20 . Denote

h(z) = z3 + r1z
2 + r2z + r3. (2.15)
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LetM = (q/2)2 + (r/3)3, where r = r2 − (1/3)r21 , q = (2/27)r31 − (1/3)r1r2 + r3. There are three
cases for the solutions of (2.15).

(i) If M > 0, (2.15) has a real root and a pair of conjugate complex roots. The real root
is positive and is given by

μ1 =
3

√
−q
2
+
√
M + 3

√
−q
2
−
√
M − 1

3
r1. (2.16)

(ii) If M = 0, (2.15) has three real roots, of which two are equal. In particular, if r1 > 0,
there exists only one positive root, μ1 = 2 3

√−q/2−r1/3; If r1 < 0, there exists only one
positive root, μ1 = 2 3

√−q/2− r1/3 for 3
√−q/2 > −r1/3, and there exist three positive

roots for r1/6 < 3
√−q/2 < −r1/3, μ1 = 2 3

√−q/2 − r1/3, μ2 = μ3 = − 3
√−q/2 − r1/3.

(iii) If M < 0, there are three distinct real roots, μ1 = 2
√
(|r|/3) cos(ϕ/3) − r1/3, μ2 =

2
√
(|r|/3) cos(ϕ/3 + 2π/3) − r1/3, μ3 = 2

√
(|r|/3) cos(ϕ/3 + 4π/3) − r1/3, where

cosϕ = −q/2
√
(|r|/3)3. Furthermore, if r1 > 0, there exists only one positive root.

Otherwise, if r1 < 0, there may exist either one or three positive real roots. If there
is only one positive real root, it is equal to max(μ1, μ2, μ3).

Obviously, the number of positive real roots of (2.15) depends on the sign of r1. If
r1 ≥ 0, (2.15) has only one positive real root. Otherwise, there may exist three positive roots.

Without loss of generality, we assume that (2.14) has three positive roots, defined by
z1, z2, z3, respectively. Then (2.13) has three positive roots,

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3. (2.17)

By (2.12), we have

cosωkτ2 =

(
θ2ω

2
k − θ0

)
γ0 +

(
ω3

k − θ1ωk

)
γ1ωk

γ20 + γ21ω
2
k

. (2.18)

Thus, if we denote

τ
(j)
2k

=
1
ωk

{
arccos

[(
θ2ω

2
k − θ0

)
γ0 +

(
ω3

k − θ1ωk

)
γ1ωk

γ20 + γ21ω
2
k

]
+ 2jπ

}
, (2.19)

where k = 1, 2, 3; j = 0, 1, . . ., then ±iωk are a pair of purely imaginary roots of (2.11)with τ
(j)
2k
.

Define

τ20 = τ
(0)
k0

= min
k∈{1,2,3}

{
τ
(0)
2k

}
, ω0 = ωk0 . (2.20)



6 Journal of Applied Mathematics

Based on above analysis, we have the following result.

Lemma 2.2. If (H1) and (H2) hold, then all roots of (1.2) have a negative real part when τ2 ∈ [0, τ20)
and (1.2) admits a pair of purely imaginary roots ±ωki when τ2 = τ

(j)
2k

(k = 1, 2, 3; j = 0, 1, 2, . . .).

Let λ(τ2) = α(τ2)+ iω(τ2) be a root of (2.11) near τ2 = τ
(j)
2k
, and α(τ (j)2k

) = 0, andω(τ (j)2k
) =

ω0. Due to functional differential equation theory, for every τ
(j)
2k
, k = 1, 2, 3; j = 0, 1, 2, . . ., there

exists ε > 0 such that λ(τ2) is continuously differentiable in τ2 for |τ2 − τ
(j)
2k
| < ε. Substituting

λ(τ2) into the left hand side of (2.11) and taking derivative with respect to τ2, we have

(
dλ

dτ2

)−1
= −

(
3λ2 + 2θ2λ + θ1

)
eλτ2

λ
(
γ1λ + γ0

) +
γ1

λ
(
γ1λ + γ0

) − τ2
λ
. (2.21)

We can easily obtain

[
d(Reλ(τ2))

dτ2

]−1
τ2=τ

(j)
2k

= Re

{
−
(
3λ2 + 2θ2λ + θ1

)
eλτ2

λ
(
γ1λ + γ0

)
}
+ Re

{
γ1

λ
(
γ1λ + γ0

)
}

=
1
Λ

{
γ1ω

2
k

[(
θ1 − 3ω2

k

)
cosωkτ

(j)
2k

− 2θ2ωk sinωkτ
(j)
2k

]

+
(−γ0ωk

)[
2θ2ωk cosωkτ

(j)
2k

+
(
θ1 − 3ω2

k

)
sinωkτ

(j)
2k

]
+ γ21ω

2
k

}

=
1
Λ

{(
θ1 − 3ω2

k

)
ωk

[
γ0 sinωkτ

(j)
2k

+ γ1ωk cosωkτ
(j)
2k

]

+2θ2ω2
k

[
−γ0 cosωkτ

(j)
2k

− γ1ωk sinωkτ
(j)
2k

]
+ γ21ω

2
k

}

=
1
Λ

[(
3ω6

k +
(
2θ2

2 − 4θ1
)
ω4

k +
(
θ2
1 − 2θ0θ2 + γ21

)
ω2

k

)]

=
1
Λ

(
3ω6

k + 2r1ω4
k + r2ω

2
k

)
=

1
Λ

[
zk

(
3z2k + 2r1zk + r2

)]
=

zk
Λ
h′(zk),

(2.22)

where Λ = (γ1ω2
k
)2 + (γ0ωk)

2 > 0. Thus, we have

sign
{
d(Reλ(τ2))

dτ2

}
τ2=τ

(j)
2k

= sign
{
d(Reλ(τ2))

dτ2

}−1

τ2=τ
(j)
2k

= sign
{zk
Λ
h′(zk)

}
/= 0. (2.23)

Since Λ, zk > 0, we can conclude that the sign of [d(Reλ(τ2))/dτ2]τ2=τ (j)2k

is determined by that

of h′(zk).
The analysis above leads to the following result.
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Theorem 2.3. Suppose that zk = ω2
k and h′(zk)/= 0, where h(z) is defined by (2.15). Then

[
d(Reλ(τ2))

dτ

]
τ2=τ

(j)
2k

/= 0 (2.24)

and the sign of [d(Reλ(τ2))/dτ2]τ2=τ (j)2k

is consistent with that of h′(zk).

In the sequel, we assume that

(H3) h′(zk)/= 0. (2.25)

According to above analysis and the results of Kuang [25] and Hale [26], we have the
following.

Theorem 2.4. For τ1 = 0, if (H1) and (H2) hold, then the positive equilibrium E0(s∗, i∗, y∗) of
system (1.2) is asymptotically stable for τ2 ∈ [0, τ20). In addition to the conditions (H1) and (H2),
we further assume that (H3) holds, then system (1.2) undergoes a Hopf bifurcation at the positive
equilibrium E0(s∗, i∗, y∗) when τ2 = τ

(j)
2k
, k = 1, 2, 3; j = 0, 1, 2, . . ..

Case 3. τ1 > 0, τ2 = 0, (2.5) takes the form

λ3 + θ2λ
2 + θ1λ + θ0 +

(
γ1λ + γ0

)
e−λτ1 = 0. (2.26)

For ω∗ > 0, iω∗ be a root of (2.26), then it follows that

γ1ω∗ sinω∗τ1 + γ0 cosω∗τ1 = θ2ω
2
∗ − θ0,

γ1ω∗ cosω∗τ1 − γ0 sinω∗τ1 = ω3
∗ − θ1ω∗

(2.27)

which is equivalent to

ω6
∗ +

(
θ2
2 − 2θ0θ2 − 2θ1

)
ω4

∗ +
(
θ2
1 − γ21

)
ω2

∗ − γ20 = 0. (2.28)

Let z∗ = ω2
∗ , then (2.13) takes the form

z3∗ + p2z
2
∗ + p1z∗ + p0 = 0, (2.29)

where p0 = −γ20 , p1 = θ2
1 − γ21 , p2 = θ2

2 − 2θ0θ2 − 2θ1. Denote

h∗(z∗) = z3∗ + r1z
2
∗ + r2z∗ + r3. (2.30)

Let M = (q/2)2 + (r/3)3, where r = r2 − (1/3)r21 , q = (2/27)r31 − (1/3)r1r2 + r3. For (2.15),
Similar analysis on the solutions of system (2.30) as that in Case 2. Here we omit it.
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Without loss of generality, we assume that (2.30) has three positive roots, defined by
z∗1, z∗2, z∗3, respectively. Then (2.29) has three positive roots

ω∗1 =
√
z∗1, ω∗2 =

√
z∗2, ω∗3 =

√
z∗3. (2.31)

By (2.27), we have

cosω∗kτ1 =

(
θ2ω

2
∗k − θ0

)
γ0 +

(
ω3

∗k − θ1ω∗k
)
γ1ω∗k

γ20 + γ21ω
2
∗k

. (2.32)

Thus, if we denote

τ
(j)
1k

=
1

ω∗k

{
arccos

[(
θ2ω

2
∗k − θ0

)
γ0 +

(
ω3

∗k − θ1ω∗k
)
γ1ω∗k

γ20 + γ21ω
2
∗k

]
+ 2jπ

}
, (2.33)

where k = 1, 2, 3; j = 0, 1, . . ., then ±iω∗k are a pair of purely imaginary roots of (2.26) with
τ
(j)
1k
. Define

τ10 = τ
(0)
k0

= min
k∈{1,2,3}

{
τ
(0)
1k

}
, ω∗0 = ω∗k0 . (2.34)

The above analysis leads to the following result.

Lemma 2.5. If (H1) and (H2) hold, then all roots of (1.2) have a negative real part when τ1 ∈ [0, τ10)
and (1.2) admits a pair of purely imaginary roots ±ωki when τ1 = τ

(j)
1k
(k = 1, 2, 3; j = 0, 1, 2, . . .).

Let λ(τ1) = α(τ1)+ iω(τ1) be a root of (2.26) near τ1 = τ
(j)
1k
, and α(τ (j)1k

) = 0, andω(τ (j)1k
) =

ω∗0. Due to functional differential equation theory, for every τ
(j)
1k
, k = 1, 2, 3; j = 0, 1, 2, . . ., there

exists ε∗ > 0 such that λ(τ1) is continuously differentiable in τ1 for |τ1 − τ
(j)
1k
| < ε. Substituting

λ(τ1) into the left hand side of (2.26) and taking derivative with respect to τ1, we have

(
dλ

dτ1

)−1
= −

(
3λ2 + 2θ2λ + θ1

)
eλτ2

λ
(
γ1λ + γ0

) +
γ1

λ
(
γ1λ + γ0

) − τ

λ
. (2.35)
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Figure 1: Trajectory portrait and phase portrait of system (3.1) with τ1 = 0, τ2 = 0.2 < τ20 ≈ 0.32. The
positive equilibrium E0(0.82, 0.06, 0.1033) is asymptotically stable. The initial value is (0.8, 0.1, 0.05).

We can easily obtain

[
d(Reλ(τ1))

dτ1

]−1
τ1=τ

(j)
1k

= Re

{
−
(
3λ2 + 2θ2λ + θ1

)
eλτ1

λ
(
γ1λ + γ0

)
}
+ Re

{
γ1

λ
(
γ1λ + γ0

)
}

=
1
Λ∗

{
γ1ω

2
∗k
[(

θ1 − 3ω2
∗k
)
cosω∗kτ

(j)
1k

− 2θ2ω∗k sinω∗kτ
(j)
1k

]

+
(−γ0ω∗k

)[
2θ2ω∗k cosω∗kτ

(j)
1k

+
(
θ1 − 3ω2

∗k
)
sinω∗kτ

(j)
1k

]
+ γ21ω

2
∗k
}

=
1
Λ∗

{(
θ1 − 3ω2

∗k
)
ω∗k

[
γ0 sinω∗kτ

(j)
1k

+ γ1ω∗k cosω∗kτ
(j)
1k

]

+2θ2ω2
∗k
[
−γ0 cosω∗kτ

(j)
1k

− γ1ω∗k sinω∗kτ
(j)
1k

]
+ γ21ω

2
∗k
}

=
1
Λ∗

[(
3ω6

∗k +
(
2θ2

2 − 4θ1
)
ω4

∗k +
(
θ2
1 − 2θ0θ2 + γ21

)
ω2

∗k
)]

=
1
Λ∗

(
3ω6

∗k + 2r1ω4
∗k + r2ω

2
∗k
)
=

1
Λ

[
z∗k

(
3z2∗k + 2r1z∗k + r2

)]
=

z∗k
Λ

h′(z∗k),

(2.36)
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Figure 2: Trajectory portrait and phase portrait of system (3.1) with τ1 = 0, τ2 = 0.415 > τ20 ≈ 0.32. Hopf
bifurcation occurs from the positive equilibrium E0(0.82, 0.06, 0.1033). The initial value is (0.8, 0.1, 0.05).

where Λ∗ = (γ1ω2
∗k)

2 + (γ0ω∗k)
2 > 0. Thus, we have

sign
{
d(Reλ(τ1))

dτ1

}
τ1=τ

(j)
1k

= sign
{
d(Reλ(τ1))

dτ1

}−1

τ1=τ
(j)
1k

= sign
{z∗k

Λ
h′
∗(z∗k)

}
/= 0. (2.37)

Since Λ∗, z∗k > 0, we can conclude that the sign of [d(Reλ(τ1))/dτ1]τ=τ (j)1k

is determined by

that of h′
∗(z∗k).

From the analysis above, we obtain the following result.

Theorem 2.6. Suppose that z∗k = ω2
∗k and h′

∗(z∗k)/= 0, where h∗(z∗) is defined by (2.30). Then

[
d(Reλ(τ1))

dτ1

]
τ1=τ

(j)
1k

/= 0 (2.38)

and the sign of [d(Reλ(τ1))/dτ1]τ=τ (j)1k

is consistent with that of h′
∗(z∗k).
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Figure 3: Trajectory portrait and phase portrait of system (3.1) with τ2 = 0.25, τ1 = 0.13 < τ10 ≈ 0.16. The
positive equilibrium E0(0.82, 0.06, 0.1033) is asymptotically stable. The initial value is (0.8, 0.1, 0.05).

In the sequel, we assume that

(H4) h′
∗(z∗k)/= 0. (2.39)

Based on above analysis and in view of Kuang [25] andHale [26], we get the following result.

Theorem 2.7. For τ2 = 0, if (H1) and (H2) hold, then the positive equilibrium E0(s∗, i∗, y∗) of
system (1.2) is asymptotically stable for τ1 ∈ [0, τ10). In addition to the condition (H1) and (H2),
one further assumes that (H4) holds, then system (1.2) undergoes a Hopf bifurcation at the positive
equilibrium E0(s∗, i∗, y∗) when τ1 = τ

(j)
1k
, k = 1, 2, 3; j = 0, 1, 2, . . ..

Case 4. τ1 > 0, τ2 > 0. We consider (2.5) with τ2 in its stable interval. Regarding τ1 as a
parameter. Without loss of generality, we consider system (1.2) under the assumptions (H1)
and (H2). Let iω (ω > 0) be a root of (2.5), then we can obtain

k1ω
6 + k1ω

4 + k2ω
2 + k3 = 0, (2.40)
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Figure 4: Trajectory portrait and phase portrait of system (3.1) with τ2 = 0.25, τ1 = 0.21 > τ10 ≈ 0.16. Hopf
bifurcation occurs from the positive equilibrium E0(0.82, 0.06, 0.1033). The initial value is (0.8, 0.1, 0.05).

where

k1 = 3γ20 ,

k2 = γ1
(
2γ0θ2 − γ1θ1

)
+ 3γ1

(
γ0θ2 − θ1γ1

)
+
(
2θ2γ1 − 3γ0

)(
θ2γ1 − γ0

)
,

k3 =
(
2γ0θ2 − γ1θ1

)(
γ0θ2 − θ1γ1

) − 3γ0γ1θ1 + γ0θ1
(
θ2γ1 − γ0

)
+
(
2θ2γ1 − 3γ0

)(
θ1γ0 − θ1γ1

)
,

k4 = γ0θ1
(
θ1γ0 − θ1γ1

)
.

(2.41)

Denote

H(ω) = 3γ20ω
4 + k1ω

3 + k2ω
2 + k3ω + k4. (2.42)

Assume that

(H5) θ1γ0 < θ1γ1. (2.43)
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Figure 5: Trajectory portrait and phase portrait of system (3.1) with τ2 = 0, τ1 = 0.28 < τ10 ≈ 0.33. The
positive equilibrium E0(0.82, 0.06, 0.1033) is asymptotically stable. The initial value is (0.8, 0.1, 0.05).

It is easy to check that H(0) < 0 if (H5) holds and limω→+∞H(ω) = +∞. We can obtain that
(2.42) has finite positive roots ω1, ω2, . . . , ωn. For every fixed ωi, i = 1, 2, 3, . . . , k, there exists
a sequence {τj1i | j = 1, 2, 3, . . .}, such that (2.42) holds. Let

τ10 = min
{
τ
j

1i
| i = 1, 2, . . . , k; j = 1, 2, . . .

}
. (2.44)

When τ1 = τ10 , (2.5) has a pair of purely imaginary roots ±iω̃∗ for τ2 ∈ [0, τ20).
In the following, we assume that

(H6)
[
d(Reλ)
dτ1

]
λ=iω̃∗

/= 0. (2.45)

Thus, by the general Hopf bifurcation theorem for FDEs in Hale [26], we have the following
result on the stability and Hopf bifurcation in system (1.2).

Theorem 2.8. For system (1.2), suppose (H1), (H2), (H3), (H5), and (H6) are satisfied, and
τ2 ∈ [0, τ20), then the positive equilibrium E0(s∗, i∗, y∗) is asymptotically stable when τ1 ∈ [0, τ10),
and system (1.2) undergoes a Hopf bifurcation at the positive equilibrium E0(s∗, i∗, y∗) when τ1 = τ10 .
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Figure 6: Trajectory portrait and phase portrait of system (3.1) with τ2 = 0, τ1 = 0.42 > τ10 ≈ 0.33. Hopf
bifurcation occurs from the positive equilibrium E0(0.82, 0.06, 0.1033). The initial value is (0.8, 0.1, 0.05).

Case 5. τ1 > 0, τ2 > 0. We consider (2.5) with τ1 in its stable interval. Regarding τ2 as a
parameter. Without loss of generality, we consider system (1.2) under the assumptions (H1)
and (H2). Let iω∗ (ω∗ > 0) be a root of (2.5), then we can obtain

k1ω
∗6 + k1ω

∗4 + k2ω
∗2 + k3 = 0, (2.46)

where k1, k2, k3, and k4 are defined by (2.41). Denote

H∗(ω∗) = 3γ20ω
∗4 + k1ω

∗3 + k2ω
∗2 + k3ω

∗ + k4. (2.47)

Obviously, H(0) < 0 if (H5) holds and limω→+∞H∗(ω∗) = +∞. We can obtain that (2.47) has
finite positive roots ω∗

1, ω
∗
2, . . . , ω

∗
n. For every fixed ω∗

i , i = 1, 2, 3, . . . , k, there exists a sequence
{τj2i | j = 1, 2, 3, . . .}, such that (2.47) holds. Let

τ20 = min
{
τ
j

2i
| i = 1, 2, . . . , k; j = 1, 2, . . .

}
. (2.48)

When τ2 = τ20 , (2.5) has a pair of purely imaginary roots ±iω∗ for τ1 ∈ [0, τ10).
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Figure 7: Trajectory portrait and phase portrait of system (3.1) with τ1 = 0.12, τ2 = 1.8 < τ20 ≈ 2.1. The
positive equilibrium E0(0.82, 0.06, 0.1033) is asymptotically stable. The initial value is (0.8, 0.1, 0.05).

In the following, we assume that

(H7)
[
d(Reλ)
dτ2

]
λ=iω∗

/= 0. (2.49)

In view of the general Hopf bifurcation theorem for FDEs in Hale [26], we have the following
result on the stability and Hopf bifurcation in system (1.2).

Theorem 2.9. For system (1.2), assume that (H1), (H2), (H3), (H4), and (H7) are satisfied and
τ1 ∈ [0, τ10), then the positive equilibrium E0(s∗, i∗, y∗) is asymptotically stable when τ2 ∈ [0, τ20),
and system (1.2) undergoes a Hopf bifurcation at the positive equilibrium E0(s∗, i∗, y∗) when τ2 = τ20 .
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Figure 8: Trajectory portrait and phase portrait of system (3.1) with τ1 = 0.12, τ2 = 2.5 > τ20 ≈ 2.1. Hopf
bifurcation occurs from the positive equilibrium E0(0.82, 0.06, 0.1033). The initial value is (0.8, 0.1, 0.05).

3. Computer Simulations

In this section, we present some numerical results of system (1.2) to verify the analytical
predictions obtained in the previous section. Let us consider the following system:

ṡ(t) = 0.5s[1 − (s + i)] − si,

i̇(t) = −0.2i + si − 6iy(t − τ1),

ẏ(t) = −0.3y + 5yi(t − τ1),

(3.1)

which has a positive equilibrium E0(0.82, 0.06, 0.1033). We can easily obtain that (H1)–(H7)
are satisfied. When τ1 = 0, using Matlab 7.0, we obtain ω0 ≈ 0.4742, τ20 ≈ 0.32. The positive
equilibrium E0(0.82, 0.06, 0.1033) is asymptotically stable for τ2 < τ20 ≈ 0.32 and unstable
for τ2 > τ20 ≈ 0.32 which is shown in Figure 1. When τ2 = τ20 ≈ 0.32, (3.1) undergoes a
Hopf bifurcation at the positive equilibrium E0(0.82, 0.06, 0.1033), that is, a small amplitude
periodic solution occurs around E0(0.82, 0.06, 0.1033) when τ1 = 0 and τ2 is close to τ20 = 0.32
which is shown in Figure 2.
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Let τ2 = 0.25 ∈ (0, 0.32) and choose τ1 as a parameter. We have τ10 ≈ 0.16, Then the
positive equilibrium is asymptotically when τ1 ∈ [0, τ10). The Hopf bifurcation value of (3.1)
is τ10 ≈ 0.16 (see Figures 3 and 4).

When τ2 = 0, using Matlab 7.0, we obtain ω∗0 ≈ 0.7745, τ10 ≈ 0.16. The positive
equilibrium E0(0.82, 0.06, 0.1033) is asymptotically stable for τ1 < τ10 ≈ 0.16 and unstable
for τ1 > τ10 ≈ 0.16 which is shown in Figure 5. When τ1 = τ10 ≈ 0.16, (3.1) undergoes a
Hopf bifurcation at the positive equilibrium E0(0.82, 0.06, 0.1033), that is, a small amplitude
periodic solution occurs around E0(0.82, 0.06, 0.1033) when τ2 = 0 and τ1 is close to τ10 = 0.16
which is illustrated in Figure 6.

Let τ1 = 0.25 ∈ (0, 0.32) and choose τ2 as a parameter. We have τ20 ≈ 0.33. Then the
positive equilibrium is asymptotically stable when τ2 ∈ [0, τ20). The Hopf bifurcation value
of (3.1) is τ20 ≈ 0.33 (see Figures 7 and 8).

4. Conclusions

In this paper, we have investigated local stability of the positive equilibrium E0(s∗, i∗, y∗) and
local Hopf bifurcation of an ecoepidemiological model with two delays. It is shown that if
some conditions hold true, and τ2 ∈ [0, τ20), then the positive equilibrium E0(s∗, i∗, y∗) is
asymptotically stable when τ1 ∈ (0, τ10), when the delay τ1 increases, the positive equilibrium
E0(s∗, i∗, y∗) loses its stability and a sequence of Hopf bifurcations occur at the positive
equilibrium E0(s∗, i∗, y∗), that is, a family of periodic orbits bifurcates from the the positive
equilibrium E0(s∗, i∗, y∗). We also showed if a certain condition is satisfied and τ1 ∈ [0, τ10),
then the positive equilibriumE0(s∗, i∗, y∗) is asymptotically stable when τ2 ∈ (0, τ20), when the
delay τ2 increases, the positive equilibrium E0(s∗, i∗, y∗) loses its stability and a sequence of
Hopf bifurcations occur at the positive equilibrium E0(s∗, i∗, y∗). Some numerical simulations
verifying our theoretical results is performed. In addition, we must point out that although
Song et al. [20] have also investigated the the existence of Hopf bifurcation for system (1.2)
with respect to positive equilibrium E0(s∗, i∗, y∗), it is assumed that τ1+τ2 = τ . But what effect
different time delay has on the dynamical behavior of system (1.2)? Song et al. [20] did not
consider this issue. Thus we think that our work generalizes the known results of Song et al.
[20]. In addition, we can investigate the Hopf bifurcation nature of system (1.2) by choosing
the delay τ1 or τ2 as bifurcation parameter. We will further investigate the topic elsewhere in
the near future.
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