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We proved that the modified implicit Mann iteration process can be applied to approximate the
fixed point of strictly hemicontractive mappings in smooth Banach spaces.

1. Introduction

Let K be a nonempty subset of an arbitrary Banach space X and let X∗ be its dual space. The
symbols D(T) and F(T) stand for the domain and the set of fixed points of T (for a single-
valued mapping T : X → X, x ∈ X is called a fixed point of T iff Tx = x). We denote by J the
normalized duality mapping from X to 2X

∗
defined by

J(x) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖2 = ∥∥f∗∥∥2

}
, x ∈ X, (1.1)

where 〈·, ·〉 denotes the duality pairing. In a smooth Banach space, J is singlevalued (we
denoted by j).

Remark 1.1. (1) X is called uniformly smooth if X∗ is uniformly convex.
(2) In a uniformly smooth Banach space, J is uniformly continuous on bounded

subsets of X.

Let T : D(T) ⊂ X → X be a mapping.
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Definition 1.2. The mapping T is called Lipshitz if there exists a constant L > 0 such that

∥∥Tx − Ty
∥∥ ≤ L

∥∥x − y
∥∥, (1.2)

for all x, y ∈ D(T). If L = 1, then T is called nonexpansive and if 0 ≤ L < 1, then T is called
contractive.

Definition 1.3 (see [1, 2]). (1) The mapping T is said to be pseudocontractive if

∥∥x − y
∥∥ ≤ ∥∥x − y + r

(
(I − T)x − (I − T)y

)∥∥, (1.3)

for all x, y ∈ D(T) and r > 0.
(2) The mapping T is said to be strongly pseudocontractive if there exists a constant t > 1

such that

∥∥x − y
∥∥ ≤ ∥∥(1 + r)

(
x − y

) − rt
(
Tx − Ty

)∥∥, (1.4)

for all x, y ∈ D(T) and r > 0.
(3) The mapping T is said to be local strongly pseudocontractive if for each x ∈ D(T)

there exists a constant t > 1 such that

∥∥x − y
∥∥ ≤ ∥∥(1 + r)

(
x − y

) − rt
(
Tx − Ty

)∥∥, (1.5)

for all y ∈ D(T) and r > 0.
(4) The mapping T is said to be strictly hemicontractive if F(T)/= ∅ and if there exists a

constant t > 1 such that

∥∥x − q
∥∥ ≤ ∥∥(1 + r)

(
x − q

) − rt
(
Tx − q

)∥∥, (1.6)

for all x ∈ D(T), q ∈ F(T) and r > 0.

Clearly, each strongly pseudocontractive mapping is local strongly pseudocontractive.
Chidume [1] established that the Mann iteration sequence converges strongly to

the unique fixed point of T in case T is a Lipschitz strongly pseudocontractive mapping
from a bounded closed convex subset of Lp (or lp) into itself. Schu [3] generalized the
result in [1] to both uniformly continuous strongly pseudocontractive mappings and real
smooth Banach spaces. Park [4] extended the result in [1] to both strongly pseudocontractive
mappings and certain smooth Banach spaces. Rhoades [5] proved that the Mann and
Ishikawa iteration methods may exhibit different behaviors for different classes of nonlinear
mappings. Afterwards, several generalizations have been made in various directions (see,
e.g., [6–13]).
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In 2001, Xu and Ori [14] introduced the following implicit iteration process for a finite
family of nonexpansive mappings {Ti : i ∈ I} (here I = {1, 2, . . . ,N}) with {αn} a real
sequence in (0, 1) and an initial point x0 ∈ K:

x1 = (1 − α1)x0 + α1T1x1,

x2 = (1 − α2)x1 + α2T2x2,

...

xN = (1 − αN)xN−1 + αNTNxN,

xN+1 = (1 − αN+1)xN + αN+1TN+1xN+1,

...

(1.7)

which can be written in the following compact form:

xn = (1 − αn)xn−1 + αnTnxn, n ≥ 1, (1.8)

where Tn = Tn( mod N) (here the modN function takes values in I). Xu and Ori [14] proved
the weak convergence of this process to a common fixed point of the finite family defined
in a Hilbert space. They further remarked that it is yet unclear what assumptions on the
mappings and/or the parameters {αn} are sufficient to guarantee the strong convergence of
the sequence {xn}.

In [11], Osilike proved the following results.

Theorem 1.4. Let X be a real Banach space and let K be a nonempty closed convex subset of X. Let
{Ti : i ∈ I} beN strictly pseudocontractive mappings fromK toK with F =

⋂N
i=1 F(Ti)/= ∅. Let {αn}

be a real sequence satisfying the following conditions:

(i) 0 < αn < 1,

(ii)
∑∞

n=1(1 − αn) = ∞,

(iii)
∑∞

n=1 (1 − αn)
2 < ∞.

From arbitrary x0 ∈ K, define the sequence {xn} by the implicit iteration process (1.8).
Then {xn} converges strongly to a common fixed point of the mappings {Ti : i ∈ I} if and only if
lim infn→∞d(xn,F) = 0.

Remark 1.5. One can easily see that for αn = 1 − 1/n1/2,
∑∞

n=1 (1 − αn)
2 = ∞. Hence the results

of Osilike [11] are needed to be improved.

Let K be a nonempty closed bounded convex subset of an arbitrary smooth Banach
space X and let T : K → K be a continuous strictly hemicontractive mapping. We proved
that the implicit Mann type iteration method converges strongly to a unique fixed point of T .

The results presented in this paper extend and improve the corresponding results
particularly in [1, 3, 4, 7, 8, 10, 11, 13, 15].

2. Preliminaries

We need the following results.
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Lemma 2.1 (see [4]). Let X be a smooth Banach space. Suppose that one of the following holds:

(a) J is uniformly continuous on any bounded subsets of X,

(b) 〈x − y, j(x) − j(y)〉 ≤ ‖x − y‖2 for all x, y in X,

(c) for any bounded subset D of X, there is a function c : [0,∞) → [0,∞) such that

Re
〈
x − y, j(x) − j

(
y
)〉 ≤ c

(∥∥x − y
∥∥), (2.1)

for all x, y ∈ D, where c satisfies limt→ 0+(c(t)/t) = 0.
Then for any ε > 0 and any bounded subset K, there exists δ > 0 such that

∥∥sx + (1 − s)y
∥∥2 ≤ (1 − 2s)

∥∥y∥∥2 + 2sRe
〈
x, j

(
y
)〉

+ 2sε, (2.2)

for all x, y ∈ K and s ∈ [0, δ].

Remark 2.2. (1) If X is uniformly smooth, then (a) in Lemma 2.1 holds.
(2) If X is a Hilbert space, then (b) in Lemma 2.1 holds.

Lemma 2.3 (see [8]). Let T : D(T) ⊂ X → X be a mapping with F(T)/= ∅. Then T is strictly
hemicontractive if and only if there exists a constant t > 1 such that for all x ∈ D(T) and q ∈ F(T),
there exists j(x − q) ∈ J(x − q) satisfying

Re
〈
x − Tx, j

(
x − q

)〉 ≥
(
1 − 1

t

)∥∥x − q
∥∥2
. (2.3)

Lemma 2.4 (see [10]). Let X be an arbitrary normed linear space and let T : D(T) ⊂ X → X be a
mapping.

(a) If T is a local strongly pseudocontractive mapping and F(T)/= ∅, then F(T) is a singleton
and T is strictly hemicontractive.

(b) If T is strictly hemicontractive, then F(T) is a singleton.

Lemma 2.5 (see [10]). Let {θn},{σn}, and {ωn} be nonnegative real sequences and let ε′ > 0 be a
constant satisfying

σn+1 ≤ (1 − θn)σn + ε′θn +ωn, n ≥ 1, (2.4)

where
∑∞

n=1 θn = ∞, θn ≤ 1 for all n ≥ 1 and
∑∞

n=1 ωn < ∞. Then lim supn→∞σn ≤ ε′.

3. Main Results

We now prove our main results.

Lemma 3.1. Let X be a smooth Banach space. Suppose that one of the following holds:

(a) J is uniformly continuous on any bounded subsets of X,
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(b) 〈x − y, j(x) − j(y)〉 ≤ ‖x − y‖2 for all x,y in X,

(c) for any bounded subset D of X, there is a function c : [0,∞) → [0,∞) such that

Re
〈
x − y, j(x) − j

(
y
)〉 ≤ c

(∥∥x − y
∥∥) (3.1)

for all x, y ∈ D, where c satisfies limt→ 0+c((t)/t) = 0.
Then for any ε > 0 and any bounded subset K, there exists δ > 0 such that

∥∥αx + βy + γz
∥∥2 ≤ (1 − 2α)‖x‖2 + 2

αβ

1 − α
Re

〈
y, j(x)

〉

+ 2
αγ

1 − α
Re

〈
z, j(x)

〉
+ 2εα

(3.2)

for all x, y, z ∈ K and α, β, γ ∈ [0, δ];α + β + γ = 1.

Proof. For α, β, γ ∈ [0, δ];α + β + γ = 1, by using (2.2), consider

∥∥αx + βy + γz
∥∥2 =

∥∥∥∥αx + (1 − α)
(

β

1 − α
y +

γ

1 − α
z

)∥∥∥∥
2

≤ (1 − 2α)‖x‖2 + 2εα + 2αRe
〈

β

1 − α
y +

γ

1 − α
z, j(x)

〉

= (1 − 2α)‖x‖2 + 2εα + 2
αβ

1 − α
Re

〈
y, j(x)

〉
+ 2

αγ

1 − α
Re

〈
z, j(x)

〉
.

(3.3)

This completes the proof.

Theorem 3.2. Let X be a smooth Banach space satisfying any one of the Axioms (a)–(c) of
Lemma 3.1. Let K be a nonempty closed bounded convex subset of X and let T : K → K be
a continuous strictly hemicontractive mapping. Let {αn},{βn} and {γn} be real sequences in [0, 1]
satisfying conditions

(iv) αn + βn + γn = 1, for all n ≥ 1,

(v)
∑∞

n=1 αn = ∞,

(vi)
∑∞

n=1 βn < ∞ and
∑∞

n=1 γn < ∞.

For a sequence {vn} in K, suppose that {xn} is the sequence generated from an arbitrary
x0 ∈ K by

xn = αnxn−1 + βnTxn + γnTvn, n ≥ 1, (3.4)

satisfying
∑∞

n=1 ‖vn − xn‖ < ∞.
Then the sequence {xn} converges strongly to a unique fixed point q of T .

Proof. By [2, Corollary 1], T has a unique fixed point q in K. It follows from Lemma 2.4 that
F(T) is a singleton. That is, F(T) = {q} for some q ∈ K.
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Set M = 1 + diam K. It is easy to verify that

M = sup
n≥1

∥∥xn − q
∥∥ + sup

n≥1

∥∥Txn − q
∥∥ + sup

n≥1

∥∥Tvn − q
∥∥. (3.5)

Also

∥∥vn − q
∥∥2 ≤ ‖vn − xn‖2 +

∥∥xn − q
∥∥2 + 2‖vn − xn‖

∥∥xn − q
∥∥

≤ ‖vn − xn‖2 +
∥∥xn − q

∥∥2 + 2M‖vn − xn‖.
(3.6)

Consider

∥∥xn − q
∥∥2 =

∥∥αnxn−1 + βnTxn + γnTvn − q
∥∥2

=
∥∥αn(xn−1 − q) + βn(Txn − q) + γn(Tvn − q)

∥∥2

≤ αn

∥∥xn−1 − q
∥∥2

+ βn
∥∥Txn − q

∥∥2 + γn
∥∥Tvn − q

∥∥2

≤ ∥∥xn−1 − q
∥∥2 +M2(βn + γn

)
,

(3.7)

where the first inequality holds by the convexity of ‖ · ‖2.
Now we put k = 1/t, where t satisfies (2.3). Using (3.4) and Lemma 3.1, we infer that

∥∥xn − q
∥∥2 =

∥∥αnxn−1 + βnTxn + γnTvn − q
∥∥2

=
∥∥αn(xn−1 − q) + βn(Txn − q) + γn(Tvn − q)

∥∥2

≤ (1 − 2αn)
∥∥xn−1 − q

∥∥2 + 2
αnβn
1 − αn

Re
〈
Txn − q, j

(
xn−1 − q

)〉

+ 2
αnγn
1 − αn

Re
〈
Tvn − q, j

(
xn−1 − q

)〉
+ 2εαn

= (1 − 2αn)
∥∥xn−1 − q

∥∥2 + 2
αnβn
1 − αn

Re
〈
Txn − q, j

(
xn − q

)〉

+ 2
αnβn
1 − αn

Re
〈
Txn − q, j

(
xn−1 − q

) − j
(
xn − q

)〉

+ 2
αnγn
1 − αn

Re
〈
Tvn − q, j

(
vn − q

)〉

+ 2
αnγn
1 − αn

Re
〈
Tvn − q, j

(
xn−1 − q

) − j
(
vn − q

)〉
+ 2εαn

≤ (1 − 2αn)
∥∥xn−1 − q

∥∥2 + 2
αnβn
1 − αn

k
∥∥xn − q

∥∥2

+ 2
αnβn
1 − αn

∥∥Txn − q
∥∥∥∥j(xn−1 − q

) − j
(
xn − q

)∥∥

+ 2
αnγn
1 − αn

k
∥∥vn − q

∥∥2

+ 2
αnγn
1 − αn

∥∥Tvn − q
∥∥∥∥j(xn−1 − q

) − j
(
vn − q

)∥∥ + 2εαn
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≤ (1 − 2αn)
∥∥xn−1 − q

∥∥2 + 2
αnβn
1 − αn

k
∥∥xn − q

∥∥2 + 2M
αnβn
1 − αn

δn

+ 2
αnγn
1 − αn

k
∥∥vn − q

∥∥2 + 2M
αnγn
1 − αn

ηn + 2εαn

≤ (1 − 2αn)
∥∥xn−1 − q

∥∥2 + 2
αnβn
1 − αn

k
∥∥xn − q

∥∥2

+ 2
αnγn
1 − αn

k
∥∥vn − q

∥∥2 + 2Mαn max
{
δn, ηn

}
+ 2εαn,

(3.8)

where

δn =
∥∥j(xn−1 − q

) − j
(
xn − q

)∥∥,
ηn =

∥∥j(xn−1 − q
) − j

(
vn − q

)∥∥. (3.9)

Also, we have

‖xn−1 − xn‖ =
∥∥xn−1 − αnxn−1 − βnTxn − γnTvn

∥∥
=
∥∥βn(xn−1 − Txn) + γn(xn−1 − Tvn)

∥∥
≤ βn‖xn−1 − Txn‖ + γn‖xn−1 − Tvn‖
≤ 2M

(
βn + γn

)

< ∞

(3.10)

implies

‖xn−1 − xn‖ −→ 0, (3.11)

as n → ∞, and consequently

‖xn−1 − vn‖ ≤ ‖xn−1 − xn‖ + ‖xn − vn‖ −→ 0 (3.12)

as n → ∞. Since J is uniformly continuous on any bounded subsets of X, we have

δn, ηn −→ 0 as n −→ ∞. (3.13)

For any given ε > 0 and the bounded subset K, there exists a δ > 0 satisfying (2.2). Note that
(3.13) and (vi) ensure that there exists an N such that

βn, γn < min
{
δ,

ε

8M2k

}
, δn, ηn ≤ ε

4M
, n ≥ N. (3.14)
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Now substituting (3.6) in (3.8) to obtain

∥∥xn − q
∥∥2 ≤ (1 − 2αn)

∥∥xn−1 − q
∥∥2 + 2kαn

∥∥xn − q
∥∥2

+ 2Mαn max
{
δn, ηn

}
+ 2εαn

+ 2
αnγn
1 − αn

k
(
‖vn − xn‖2 + 2M‖vn − xn‖

)
,

(3.15)

by using (3.7), implies

∥∥xn − q
∥∥2 ≤ (1 − 2(1 − k)αn)

∥∥xn−1 − q
∥∥2 + 2εαn

+ 2M2kαn

(
βn + γn

)
+ 2Mαn max

{
δn, ηn

}

+ 2
αnγn
1 − αn

k
(
‖vn − xn‖2 + 2M‖vn − xn‖

)

≤ (1 − 2(1 − k)αn)
∥∥xn−1 − q

∥∥2 + 3εαn

+ 2
αnγn
1 − αn

k
(
‖vn − xn‖2 + 2M‖vn − xn‖

)

(3.16)

for all n ≥ N.
Put

σn =
∥∥xn−1 − q

∥∥2
, θn = 2(1 − k)αn, ε′ =

3ε
2(1 − k)

,

ωn = 2
αnγn
1 − αn

k
(
‖vn − xn‖2 + 2M‖vn − xn‖

)
,

(3.17)

and we have from (3.16)

σn+1 ≤ (1 − θn)σn + ε′θn +ωn, n ≥ 1. (3.18)

For k < 1/2, set δ = 1/2(1 − k) < 1. Because αn ≤ δ, we imply 1 − αn ≥ 1 − δ and 2(1 − k)αn ≤
1. Now observe that

∑∞
n=1 θn = ∞,θn ≤ 1 for all n ≥ 1 and

∑∞
n=1 ωn < ∞. It follows from

Lemma 2.5 that

lim sup
n→∞

∥∥xn − q
∥∥2 ≤ ε′. (3.19)

Letting ε′ → 0+, we obtain that lim supn→∞‖xn − q‖2 = 0, which implies that xn → q as
n → ∞. This completes the proof.

Corollary 3.3. Let X be a smooth Banach space satisfying any one of the Axioms (a)–(c) of
Lemma 3.1. LetK be a nonempty closed bounded convex subset ofX and let T : K → K be a Lipschitz
strictly hemicontractive mapping. Let {αn},{βn} and {γn} be real sequences in [0, 1] satisfying the
conditions (iv)–(vi).

From arbitrary x0 ∈ K, define the sequence {xn} by the implicit iteration process (3.4). Then
the sequence {xn} converges strongly to a unique fixed point q of T .
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Corollary 3.4. Let X be a smooth Banach space satisfying any one of the Axioms (a)–(c) of
Lemma 3.1. Let K be a nonempty closed bounded convex subset of X and let T : K → K be a
continuous strictly hemicontractive mapping. Suppose that {αn} be a real sequence in [0, 1] satisfying
the conditions (v) and limn→∞αn = 0.

From arbitrary x0 ∈ K, define the sequence {xn} by the implicit iteration process (1.8). Then
the sequence {xn} converges strongly to a unique fixed point q of T .

Corollary 3.5. Let X be a smooth Banach space satisfying any one of the Axioms (a)–(c) of
Lemma 3.1. Let K be a nonempty closed bounded convex subset of X and let T : K → K be a
Lipschitz strictly hemicontractive mapping. Suppose that {αn} be a real sequence in [0, 1] satisfying
the conditions (v) and limn→∞αn = 0.

From arbitrary x0 ∈ K, define the sequence {xn} by the implicit iteration process (1.8). Then
the sequence {xn} converges strongly to a unique fixed point q of T .

Remark 3.6. Similar results can be found for the iteration processes involved error terms; we
omit the details.

Remark 3.7. Theorem 3.2 and Corollary 3.3 extend and improve Theorem 1.4 in the following
directions.

We do not need the assumption lim infn→∞d(xn,F) = 0 as in Theorem 1.4.

4. Applications for Multistep Implicit Iterations

LetK be a nonempty closed convex subset of a smooth Banach spaceX and let T, T1, T2, . . .,Tp :
K → K(p ≥ 2) be a family of p + 1 mappings.

Algorithm 4.1. For a given x0 ∈ K, compute the sequence {xn} by the implicit iteration process
of arbitrary fixed order p ≥ 2 :

xn = αnxn−1 + βnTxn + γnT1y
1
n,

yi
n = βinxn−1 +

(
1 − βin

)
Ti+1y

i+1
n , i = 1, 2, . . . , p − 2,

y
p−1
n = β

p−1
n xn−1 +

(
1 − β

p−1
n

)
Tpxn, n ≥ 1,

(4.1)

which is called the multistep implicit iteration process, where {αn}, {βn}, {γn}, and {βin},i =
1, 2, . . . , p − 1 are real sequences in [0, 1] and αn + βn + γn = 1, for all n ≥ 1.

For p = 3, we obtain the following three-step implicit iteration process.

Algorithm 4.2. For a given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + βnTxn + γnT1y
1
n,

y1
n = β1nxn−1 +

(
1 − β1n

)
T2y

2
n,

y2
n = β2nxn−1 +

(
1 − β2n

)
T3xn, n ≥ 1,

(4.2)
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where {αn}, {βn}, {γn}, {β1n} and {β2n} are real sequences in [0, 1] satisfying some certain
conditions.

For p = 2, we obtain the following two-step implicit iteration process.

Algorithm 4.3. For a given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + βnTxn + γnT1y
1
n,

y1
n = β1nxn−1 +

(
1 − β1n

)
T2xn, n ≥ 1,

(4.3)

where {αn}, {βn}, {γn} and {β1n} are real sequences in [0, 1] satisfying some certain conditions.
If T1 = T , T2 = I and β1n = 0 in (4.3), we obtain the following implicit Mann iteration

process.

Algorithm 4.4. For any given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + (1 − αn)Txn, n ≥ 1, (4.4)

where {αn} is a real sequence in [0, 1] satisfying some certain conditions.

Theorem 4.5. Let X be a smooth Banach space satisfying any one of the Axioms (a)–(c) of
Lemma 3.1. Let K be a nonempty closed bounded convex subset of X and let T, T1, T2, . . . , Tp : K →
K(p ≥ 2) be p + 1 mappings. Let T, T1 be continuous strictly hemicontractive mappings. Let {αn},
{βn}, {γn} and {βin},i = 1, 2, . . . , p − 1 be real sequences in [0, 1] satisfying the conditions (iv)–(vi)
and

∑∞
n=1(1−β1n) < ∞. For arbitrary x0 ∈ K, define the sequence {xn} by (4.1). Then {xn} converges

strongly to the common fixed point of
⋂p

i=1 F(Ti) ∩ F(T)/= ∅.

Proof. By applying Theorem 3.2 under assumption that T and T1 are continuous strictly
hemicontractive mappings, we obtain Theorem 4.5 which proves strong convergence of the
iteration process defined by (4.1). Consider by taking T1 = T and vn = y1

n,

‖vn − xn‖ =
∥∥∥y1

n − xn

∥∥∥
=
∥∥∥β1nxn−1 +

(
1 − β1n

)
T2y

2
n − xn

∥∥∥
=
∥∥∥β1n(xn−1 − xn) +

(
1 − β1n

)(
T2y

2
n − xn

)∥∥∥
≤ β1n‖xn−1 − xn‖ +

(
1 − β1n

)∥∥∥T2y2
n − xn

∥∥∥
≤ β1n‖xn−1 − xn‖ +M′

(
1 − β1n

)
.

(4.5)

From (4.5) and the condition
∑∞

n=1(1 − β1n) < ∞, we obtain

∞∑
n=1

‖vn − xn‖ < ∞. (4.6)

This completes the proof.
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Corollary 4.6. Let X be a smooth Banach space satisfying any one of the Axioms (a)–(c) of
Lemma 3.1. Let K be a nonempty closed bounded convex subset of X and let T, T1, T2, . . . , Tp : K →
K(p ≥ 2) be p+1mappings. Let T, T1 be Lipschitz strictly hemicontractive mappings. Let {αn}, {βn},
{γn} and {βin}, i = 1, 2, . . . , p − 1 be real sequences in [0, 1] satisfying the conditions (iv)-(vi) and∑∞

n=1(1 − β1n) < ∞. For arbitrary x0 ∈ K, define the sequence {xn} by (4.1). Then {xn} converges
strongly to the common fixed point of

⋂p

i=1 F(Ti) ∩ F(T)/= ∅.
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