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We unify all known iterative methods by introducing a new explicit iterative scheme for approxi-
mation of common fixed points of finite families of total asymptotically I-nonexpansive mappings.
Note that such a scheme contains a particular case of the method introduced by (C. E. Chidume
and E. U. Ofoedu, 2009). We construct examples of total asymptotically nonexpansive mappings
which are not asymptotically nonexpansive. Note that no such kind of examples were known in
the literature. We prove the strong convergence theorems for such iterative process to a common
fixed point of the finite family of total asymptotically I-nonexpansive and total asymptotically
nonexpansive mappings, defined on a nonempty closed-convex subset of uniformly convex
Banach spaces. Moreover, our results extend and unify all known results.

1. Introduction

LetK be a nonempty subset of a real normed linear spaceX, and let T : K → K be amapping.
Denote by F(T) the set of fixed points of T , that is, F(T) = {x ∈ K : Tx = x}. Throughout this
paper, we always assume that X is a real Banach space and F(T)/= ∅. Now let us recall some
known definitions.

Definition 1.1. A mapping T : K → K is said to be

(i) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K,

(ii) asymptotically nonexpansive if there exists a sequence {λn} ⊂ [1,∞) with
limn→∞λn = 1 such that ‖Tnx − Tny‖ ≤ λn‖x − y‖ for all x, y ∈ K and n ∈ N,
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(iii) asymptotically nonexpansive in the intermediate sense, if it is continuous and the
following inequality holds:

lim sup
n→∞

sup
x,y∈K

(∥∥Tnx − Tny
∥
∥ − ∥

∥x − y
∥
∥) ≤ 0. (1.1)

Remark 1.2. Observe that if we define

an := sup
x,y∈K

(∥∥Tnx − Tny
∥
∥ − ∥

∥x − y
∥
∥), σn := max{0, an}, (1.2)

then σn → 0 as n → ∞, and (1.1) reduces to

∥∥Tnx − Tny
∥∥ ≤ ∥∥x − y

∥∥ + σn, ∀x, y ∈ K, n ≥ 1. (1.3)

In [1, 2], Browder studied the iterative construction for fixed points of nonexpansive
mappings on closed and convex subsets of a Hilbert space. Note that for the past 30 years or
so, the study of the iterative processes for the approximation of fixed points of nonexpansive
mappings and fixed points of some of their generalizations have been flourishing areas of
research for many mathematicians (see for more details [3, 4]).

The class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [5] as a generalization of the class of nonexpansive mappings. They proved that if K is
a nonempty closed-convex bounded subset of a uniformly convex real Banach space and T is
an asymptotically nonexpansive self-mapping of K, then T has a fixed point.

The class of mappings which are asymptotically nonexpansive in the intermediate
sense was introduced by Bruck et al. [6]. It is known [7] that if K is a nonempty closed-
convex bounded subset of a uniformly convex Banach space X and T : K → K is an
asymptotically nonexpansive mapping in the intermediate sense, then T has a fixed point.
It is worth mentioning that the class of mappings which are asymptotically nonexpansive in
the intermediate sense contains properly the class of asymptotically nonexpansive mappings
(see, e.g., [8]).

The iterative approximation problems for nonexpansive mapping, asymptotically
nonexpansive mapping, and asymptotically nonexpansive mapping in the intermediate
sense were studied extensively in [5–20].

There are many different types of concepts which generalize a notion of nonexpansive
mapping. One of such concepts is a total asymptotically nonexpansive mapping [21], and
second one is an asymptotically I-nonexpansive mapping [22]. Let us recall some notions.

Definition 1.3. LetK be a nonempty closed subset of a real normed linear space X.T : K → K
is called a total asymptotically nonexpansive mapping if there exist nonnegative real seq-
uence {μn} and {λn} with μn, λn → 0 as n → ∞ and strictly increasing continuous function
φ : R

+ → R
+ with φ(0) = 0 such that for all x, y ∈ K,

∥∥Tnx − Tny
∥∥ ≤ ∥∥x − y

∥∥ + μnφ
(∥∥x − y

∥∥) + λn, n ≥ 1. (1.4)
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Remark 1.4. If φ(ξ) = ξ, then (1.4) reduces to

∥
∥Tnx − Tny

∥
∥ ≤ (

1 + μn

)∥∥x − y
∥
∥ + λn, n ≥ 1. (1.5)

In addition, if λn = 0 for all n ≥ 1, then total asymptotical nonexpansive mappings coincide
with asymptotically nonexpansive mappings. If μn = 0 and λn = 0 for all n ≥ 1, we obtain
from (1.5) the class of mappings that includes the class of nonexpansive mappings. If μn = 0
and λn = σn = max{0, an}, where an := supx,y∈K(‖Tnx − Tny‖ − ‖x − y‖) for all n ≥ 1, then
(1.5) reduces to (1.3) which has been studied as mappings asymptotically nonexpansive in
the intermediate sense.

The idea of the definition of a total asymptotically nonexpansive mappings is to
unify various definitions of classes of mappings associated with the class of asymptotically
nonexpansive mappings and to prove a general convergence theorems applicable to all these
classes of nonlinear mappings.

Alber et al. [21] studied methods of approximation of fixed points of total asymptoti-
cally nonexpansive mappings. C. E. Chidume and E. U. Ofoedu [23] introduced an iterative
scheme for approximation of a common fixed point of a finite family of total asymptotically
nonexpansive mappings in Banach spaces. Recently, C. E. Chidume and E. U. Ofoedu [24]
constructed a new iterative sequence much simpler than other types of approximation of
common fixed points of finite families of total asymptotically nonexpansive mappings.

On the other hand, in [22] an asymptotically I-nonexpansive mapping was intro-
duced.

Definition 1.5. Let T : K → K, I : K → K be two mappings of a nonempty subsetK of a real
normed linear space X, then T is said to be

(i) I-nonexpansive if ‖Tx − Ty‖ ≤ ‖Ix − Iy‖ for all x, y ∈ K,

(ii) asymptotically I-nonexpansive, if there exists a sequence {λn} ⊂ [1,∞) with
limn→∞λn = 1 such that ‖Tnx − Tny‖ ≤ λn‖Inx − Iny‖ for all x, y ∈ K and n ≥ 1.

Best approximation properties of I-nonexpansive mappings were investigated in
[22, 25]. In [26], strong convergence of Mann iterations of I-nonexpansive mapping has
been proved. In [27], the weak convergence of three-step Noor iterative scheme for an
I-nonexpansive mapping in a Banach space has been established. In [28], the weakly
convergence theorem for asymptotically I-nonexpansive mapping defined in Hilbert space
was proved. Recently, in [29–31], the weak and strong convergence of explicit and implicit
iteration process to a common fixed point of a finite family of asymptotically I-nonexpansive
mappings have been studied.

In this paper, we introduce a new type of concept of a generalization of nonexpansive
mapping’s nation, which is a combination of Definitions 1.3 and 1.5.

Definition 1.6. Let T : K → K, I : K → K be two mappings of a nonempty subsetK of a real
normed linear space X, then T is said to be a total asymptotically I-nonexpansive mapping
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if there exist nonnegative real sequences {μn} and {λn} with μn, λn → 0 as n → ∞ and the
strictly increasing continuous function φ : R

+ → R
+ with φ(0) = 0 such that for all x, y ∈ K,

∥
∥Tnx − Tny

∥
∥ ≤ ∥

∥Inx − Iny
∥
∥ + μnφ

(∥∥Inx − Iny
∥
∥) + λn, n ≥ 1. (1.6)

Now let us provide an example of a total asymptotically I-nonexpansive mapping,
which is not asymptotically nonexpansive mapping.

Example 1.7. Let us consider the space �1, and let B1 = {x ∈ �1 : ‖x‖1 ≤ 1}. Define a nonlinear
operator T : �1 → �1 by

Tα(x1, x2, . . . , xn, . . .) =
(
0, α

√
|x1|, αx2, . . . , αxn, . . .

)
, α ∈ (0, 1). (1.7)

Let ‖x‖1 ≤ 1, then from

‖Tα(x)‖1 = α

(
‖x‖1 − |x1| +

√
|x1|

)

≤ α

(
1 − |x1| +

√
|x1|

)
≤ 1,

(1.8)

one gets T(B1) ⊂ B1.
One can find that

Tk
α (x1, x2, . . . , xn, . . .) =

⎛

⎜
⎝0, . . . , 0

︸ ︷︷ ︸
k

, αk
√
|x1|, αkx2, . . . , α

kxn, . . .

⎞

⎟
⎠. (1.9)

Hence,

∥∥∥Tk
α (x) − Tk

α (y)
∥∥∥
1
= αk

(
‖x − y‖1 +

∣∣∣∣

√
|x1| −

√∣∣y1
∣∣
∣∣∣∣ −

∣∣x1 − y1
∣∣
)
. (1.10)

From x,y ∈ B1, we have

∣∣∣∣

√
|x1| −

√∣∣y1
∣∣
∣∣∣∣ ≤

√∣∣|x1| −
∣∣y1

∣∣∣∣ ≤
√∥∥x − y

∥∥
1
. (1.11)

So, it follows from (1.10) and (1.11) that

∥∥∥Tk
α (x) − Tk

α (y)
∥∥∥
1
≤ αk

(
‖x − y‖1 +

√
‖x − y‖1

)
∀x,y ∈ B1, k ∈ N. (1.12)
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Now consider a new Banach space R×�1 with a norm ‖X‖ = |x|+‖x‖1, where X = (x, x)
and define a new mapping S : R × �1 → R × �1 by

S(x, x) = (x, Tα(x)). (1.13)

Let K = [0, 1] × B1, then it is clear that S(K) ⊂ K. One can see that Sk(x, x) = (x, Tk
α (x)).

Therefore, using (1.14), we obtain

∥
∥
∥Sk(X) − Sk(Y)

∥
∥
∥ =

∣
∣x − y

∣
∣ +

∥
∥
∥Tk

α (x) − Tk
α (y)

∥
∥
∥
1

≤ ∣
∣x − y

∣
∣ + αk

(
‖x − y‖1 +

√
‖x − y‖1

)

≤ ‖X − Y‖ + αk

(
‖X − Y‖ +

√
‖X − Y‖

)
.

(1.14)

We let φ(t) = t +
√
t and μk = αk. It is clear that φ(0) = 0 and φ is strictly increasing, and

moreover, (1.14) implies

∥∥∥Sk(X) − Sk(X)
∥∥∥ ≤ ‖IX − IY‖ + μkφ(‖IX − IY‖), (1.15)

that is S is a totally asymptotically I-nonexpansive mapping. Here, I is the identity mapping
of R × �1.

Nowwe are going to show that S is not asymptotically nonexpansive. Namely, we will
establish that for any sequence of positive numbers {λn}with λn → 0 and any k ∈ N, one can
find X0,Y0 such that

∥∥∥Sk(X0) − Sk(Y0)
∥∥∥ > (1 + λk)‖X0 − Y0‖. (1.16)

In fact, choose X0, Y0 as follows:

X0 = (0, x0), Y0 = (0,y0), (1.17)

where

x0 = (x0, 0, . . . , 0, . . .), y0 =
(x0

4
, 0, . . . , 0, . . .

)
,

0 < x0 <
4α2k

9(1 + λk)
2
.

(1.18)

From (1.10), one finds that

∥∥∥Sk(X0) − Sk(Y0)
∥∥∥ = αk

∣∣∣∣
√
x0 −

√
x0

2

∣∣∣∣ = αk

√
x0

2
,

‖X0 − Y0‖ =
3x0

4
.

(1.19)
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The last equalities with (1.18) imply that

∥
∥Sk(X0) − Sk(Y0)

∥
∥

‖X0 − Y0‖ =
2αk

3
√
x0

> 1 + λk. (1.20)

This yields the required assertion. Note that S has infinitely many fixed points in K, that is,
Fix(S) = {(x, 0) : x ∈ [0, 1]}.

Example 1.8. Let us consider the Banach space R×�1 defined as before, and let f be a mapping
of a segment C ⊂ R to itself, that is, f : C → C with f(0) = 0 and

∣
∣fn(x) − fn(y

)∣∣ ≤ ∣
∣x − y

∣
∣ + cn, cn > 0, n ∈ N, (1.21)

where cn → 0. Note that such kind of functions do exist. One can take (see for more details
[8]) C = [−1/π, 1/π] and

fκ(x) =

⎧
⎨

⎩
κx sin

1
x
, x /= 0, κ ∈ (0, 1).

0, x = 0.
(1.22)

Define a new mapping Sf : C × B1 → C × B1 by

Sf(x, x) =
(
f(x), Tα(x)

)
, (1.23)

here T is defined as above (see (1.7)). Using the same argument as the above Example 1.7, we
can establish that

∥∥∥Sk
f(X) − Sk

f(X)
∥∥∥ ≤ ‖X − Y‖ + μkφ(‖X − Y‖) + ck ∀k ∈ N. (1.24)

Moreover, such a mapping is not asymptotically nonexpansive. Note that the mapping Sfκ

with the function fκ has a unique fixed point in C × B1.

Remark 1.9. To the best our knowledge, we should stress that the constructed examples are
currently only unique examples of totaly asymptotically nonexpansive mappings which are
not asymptotically nonexpansive. Before, no such examples were known in the literature.

The aim of the present paper is unification of all known iterative methods by
introducing a new iterative scheme for approximation of common fixed points of finite
families of total asymptotically I-nonexpansive mappings. Note that such a scheme contains
a particular case of the method introduced in [24] and allows us to construct more simpler
methods than [23, 24].

Namely, let K be a nonempty closed-convex subset of a real Banach space X and
{Ti}mi=1 : K → K be a finite family of total asymptotically Ii-nonexpansive mappings, that
is,

∥∥Tn
i x − Tn

i y
∥∥ ≤ ∥∥Ini x − Ini y

∥∥ + μinφi

(∥∥Ini x − Ini y
∥∥) + λin, (1.25)
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and {Ii}mi=1 : K → K is a finite family of total asymptotically nonexpansive mappings, that is,

∥
∥Ini x − Ini y

∥
∥ ≤ ∥

∥x − y
∥
∥ + μ̃inϕi

(∥∥x − y
∥
∥) + λ̃in, (1.26)

here φi, ϕi : R
+ → R

+ are the strictly increasing continuous functions with φi(0) = ϕi(0) = 0
for all i = 1, m, and {μin}∞n=1, {λin}∞n=1, {μ̃in}∞n=1, {λ̃in}∞n=1 are nonnegative real sequences with
μin, λin, μ̃in, λ̃in → 0 as n → ∞ for all i = 1, m. Then for given sequences {αjn}∞n=1, {βjn}∞n=1 in
(0, 1), where j = 0, m, we will consider the following explicit iterative process:

x0 ∈ K,

xn+1 = α0nxn +
m∑

i=1

αinT
n
i yn,

yn = β0nxn +
m∑

i=1

βinI
n
i xn,

(1.27)

such that
∑m

j=0 αjn = 1 and
∑m

j=0 βjn = 1.

C. E. Chidume and E. U. Ofoedu [24] have considered only a particular case of the
explicit iterative process (1.27), in which {Ii}mi=1 is to be taken as the identity mappings. One
of the main results of ([24], see Theorem 3.5, page 11) was correct, while the provided proof
of that result was wrong. Since, in their proof, they used Lemma 2.3, but which actually is
not applicable in that situation, the sequence {tn}∞n=1 tends to 0. As a counterexample, we can
consider the following one: let x ∈ X, ‖x‖ = d > 0, and let the sequences xn, yn, and tn be
defined as follows:

xn = x, yn = −x, tn =
1
n
, ∀n ∈ N. (1.28)

It is then clear that

lim
n→∞

∥∥tnxn + (1 − tn)yn

∥∥ = ‖x‖ lim
n→∞

∣∣∣∣1 −
2
n

∣∣∣∣ = d. (1.29)

However,

lim
n→∞

∥∥xn − yn

∥∥ = 2d > 0. (1.30)

In this paper, we shall provide a correct proof of Theorem 3.5 page 11 in [24]. As
we already mentioned in Lemma 2.3 is not applicable the main result of [24]. Therefore,
we first will generalize Lemma 2.3 to the case of finite number of sequences. Such a
generalization gives us a possibility to prove the mentioned result. On other hand, the
provided generalization presents an independent interest as well. Moreover, we extend
and unify the main result of [24] for a finite family of total asymptotically Ii-nonexpansive
mappings {Ti}mi=1. Namely, we shall prove the strong convergence of the explicit iterative
process (1.27) to a common fixed point of the finite family of total asymptotically Ii-
nonexpansive mappings {Ti}mi=1 and the finite family of total asymptotically nonexpansive
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mappings {Ii}mi=1. Here, we stress that Lemmas 3.1 and 3.2 play a crucial role. All presented
results here extend, generalize, unify, and improve the corresponding main results of
[21, 24, 29–33].

2. Preliminaries

Throughout this paper, we always assume that X is a real Banach space. The following
lemmas play an important role in proving our main results.

Lemma 2.1 (see [16]). Let {an}, {bn}, and {cn} be three sequences of nonnegative real numbers with∑∞
n=1 bn < ∞,

∑∞
n=1 cn < ∞. If the following condition is satisfied:

(i) an+1 ≤ (1 + bn)an + cn, n ≥ 1,

then the limit limn→∞an exists.

Lemma 2.2 (see [34]). Let X be a uniformly convex Banach space and t ∈ (0, 1). Suppose that
{xn},{yn} are two sequences in X such that

lim
n→∞

∥∥txn + (1 − t)yn

∥∥ = d, lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

∥∥yn

∥∥ ≤ d (2.1)

hold some d ≥ 0, then limn→∞‖xn − yn‖ = 0.

Lemma 2.3 (see [14]). LetX be a uniformly convex Banach space, and let b, c be two constants with
0 < b < c < 1. Suppose that {tn} is a sequence in [b, c] and {xn},{yn} are two sequences in X such
that

lim
n→∞

∥∥tnxn + (1 − tn)yn

∥∥ = d, lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

∥∥yn

∥∥ ≤ d, (2.2)

hold some d ≥ 0, then limn→∞‖xn − yn‖ = 0.

3. Main Results

In this section, we shall prove our main results. To formulate ones, we need some auxiliary
results.

First we are going to generalize Lemmas 2.2 and 2.3 for m number of sequences
{zin}∞n=1 from the uniformly convex Banach space X, where i = 1, m.

Lemma 3.1. Let X be a uniformly convex Banach space and αi ∈ (0, 1), i = 1, m any constants with
∑m

i=1 αi = 1. Suppose that {zin}∞n=1, i = 1, m are sequences in X such that

lim
n→∞

∥∥∥∥∥

m∑

i=1

αizin

∥∥∥∥∥
= d, lim sup

n→∞
‖zin‖ ≤ d, ∀i = 1, m (3.1)

hold some d ≥ 0, then limn→∞lim‖zin‖ = d and limn→∞‖zin − zjn‖ = 0 for any i, j = 1, m.



Journal of Applied Mathematics 9

Proof. Let us first prove lim
n→∞

‖zin‖ = d for any i = 1, m. Indeed, it follows from (3.1) that

d = lim
n→∞

∥
∥
∥
∥
∥

m∑

k=1

αkzkn

∥
∥
∥
∥
∥
= lim inf

n→∞

∥
∥
∥
∥
∥

m∑

k=1

αkzkn

∥
∥
∥
∥
∥

≤ lim inf
n→∞

(
m∑

k=1

αk‖zkn‖
)

≤ αilim inf
n→∞

‖zin‖ +
∑

k /= i

αklim sup
n→∞

‖zkn‖

≤ αilim inf
n→∞

‖zin‖ + (1 − αi)d.

(3.2)

We then get that lim inf
n→∞

‖zin‖ ≥ d, which means limn→∞‖zin‖ = d.

Now we prove the statement limn→∞‖zin − zjn‖ = 0 by means of mathematical
induction with respect to m. For m = 2, the statement immediately follows from Lemma 2.2.
Assume that the statement is true, form = k − 1. Let us prove for m = k. To do this, denote

tn =
1

1 − αk

k−1∑

i=1

αizin. (3.3)

Since (1/1 − αk)
∑k−1

i=1 αi = 1, we get lim sup
n→∞

‖tn‖ ≤ d. On the other hand, one has

d = lim inf
n→∞

∥∥∥∥∥

k∑

i=1

αizin

∥∥∥∥∥
= lim inf

n→∞
‖(1 − αk)tn + αkzkn‖

≤ (1 − αk)lim inf
n→∞

‖tn‖ + αklim sup
n→∞

‖zkn‖

≤ (1 − αk)lim inf
n→∞

‖tn‖ + αkd.

(3.4)

We then obtain lim inf
n→∞

‖tn‖ ≥ d which means limn→∞‖tn‖ = d. In this case, according to the

assumption of induction with the sequence tn, we can conclude that limn→∞‖zin − zjn‖ = 0, if
1 ≤ i, j ≤ k − 1.

Since limn→∞‖(1 − αk)tn + αkzkn‖ = d due to Lemma 2.2, one gets

lim
n→∞

‖tn − zkn‖ = 0. (3.5)

If 1 ≤ j ≤ k − 1, then the following inequality

∥∥zjn − zkn
∥∥ ≤ ∥∥zjn − tn

∥∥ + ‖tn − zkn‖

≤ 1
1 − αk

k−1∑

i=1

αi

∥∥zin − zjn
∥∥ + ‖tn − zkn‖

(3.6)

implies that limn→∞‖zjn − zkn‖ = 0. This completes the proof.
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Lemma 3.2. Let X be a uniformly convex Banach space, and let α∗, α∗ be two constants with 0 <

α∗ < α∗ < 1. Suppose that {αin}∞n=1 ⊂ [α∗, α∗], i = 1, m are any sequences with
∑m

i=1 αin = 1 for all
n ∈ N. Suppose that {zin}∞n=1, i = 1, m are sequences in X such that

lim
n→∞

∥
∥
∥
∥
∥

m∑

i=1

αinzin

∥
∥
∥
∥
∥
= d, lim sup

n→∞
‖zin‖ ≤ d, ∀i = 1, m (3.7)

hold for some d ≥ 0, then limn→∞‖zin‖ = d and limn→∞‖zin − zjn‖ = 0 for any i, j = 1, m.

Proof. Analogously as in the proof of Lemma 3.1, it is easy to show that limn→∞‖zin‖ = d.
Therefore, let us prove the statement limn→∞‖zin − zjn‖ = 0 for any i, j = 1, m. Suppose to the
contrary, that there exist two numbers i0, j0 such that

lim sup
n→∞

∥∥zi0n − zj0n
∥∥ = βi0,j0 > 0 (3.8)

then there exists a subsequence {zi0nk − zj0nk}∞k=1 of {zi0n − zj0n}∞n=1 such that limk→∞‖zi0nk −
zj0nk‖ = βi0j0 .

Let us consider the subsequences {αink}∞k=1 of {αin}∞n=1, here i = 1, m. Since {αink}∞k=1 ⊂
[α∗, α∗], there exists a subsequence {nkl}∞l=1 of {nk}∞k=1 such that liml→∞αinkl

= αi for all i = 1, m.

Since
∑m

i=1 αin = 1, for all n ∈ N, one gets
∑m

i=1 αi = 1, and αi ∈ [α∗, α∗], for all i = 1, m. We
know that

d = lim
l→∞

∥∥∥∥∥

m∑

i=1

αinkl
zinkl

∥∥∥∥∥
= lim inf

l→∞

∥∥∥∥∥

m∑

i=1

((
αinkl

− αi

)
zinkl

+ αizinkl

)
∥∥∥∥∥

≤ lim inf
l→∞

(
m∑

i=1

∣∣∣αinkl
− αi

∣∣∣
∥∥∥zinkl

∥∥∥ +

∥∥∥∥∥

m∑

i=1

αizinkl

∥∥∥∥∥

)

≤
m∑

i=1

lim sup
l→∞

(∣∣∣αinkl
− αi

∣∣∣
∥∥∥zinkl

∥∥∥
)
+ lim inf

l→∞

∥∥∥∥∥

m∑

i=1

αizinkl

∥∥∥∥∥
.

(3.9)

It then follows that lim inf
l→∞

‖∑m
i=1 αizinkl

‖ ≥ d. On the other hand, we have

lim sup
l→∞

∥∥∥∥∥

m∑

i=1

αizinkl

∥∥∥∥∥
≤

m∑

i=1

αilim sup
l→∞

∥∥∥zinkl

∥∥∥ ≤ d. (3.10)

Therefore, liml→∞‖
∑m

i=1 αizinkl
‖ = d. Consequently, Lemma 3.1 implies that liml→∞‖zi0nkl

−
zj0nkl

‖ = 0. However, it contradicts to

lim
l→∞

∥∥∥zi0nkl
− zj0nkl

∥∥∥ = lim
k→∞

∥∥zi0nk − zj0nk

∥∥ = βi0j0 > 0. (3.11)

This completes the proof.
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Proposition 3.3. LetX be a real Banach space, and letK be a nonempty closed-convex subset ofX. Let
{Ti}mi=1 : K → K be a finite family of total asymptotically Ii-nonexpansive mappings with sequences
{μin}∞n=1, {λin}∞n=1, where i = 1, m, and let {Ii}mi=1: K → K be a finite family of total asymptotically
nonexpansive mappings with sequences {μ̃in}∞n=1, {λ̃in}∞n=1, where i = 1, m. Suppose that there exist
Mi,M

∗
i ,Ni,N

∗
i > 0, i = 1, m such that φi(ξi) ≤ M∗

i ξi, for all ξi ≥ Mi and ϕi(ζi) ≤ N∗
i ζi for all

ζi ≥ Ni, where i = 1, m, then the following holds for any x, y ∈ K and for any i = 1, m:

∥
∥Ini x − Ini y

∥
∥ ≤ (

1 + μ̃inN
∗
i

)∥∥x − y
∥
∥ + μ̃inϕi(Ni) + λ̃in,

∥
∥Tn

i x − Tn
i y

∥
∥ ≤ (

1 + μinM
∗
i

)(
1 + μ̃inN

∗
i

)∥∥x − y
∥
∥ + μ̃in

(
1 + μinM

∗
i

)
ϕi(Ni)

(3.12)

+ λ̃in
(
1 + μinM

∗
i

)
+ μinφi(Mi) + λin. (3.13)

Proof. Since φi, ϕi: R+ → R
+ are the strictly increasing continuous functions, where i = 1, m, it

follows that φi(ξi) ≤ φi(Mi) and ϕi(ζi) ≤ φi(Ni)whenever ξi ≤ Mi and ζi ≤ Ni, where i = 1, m.
By the hypothesis of Proposition 3.3, for all ξi, ζi ≥ 0 and i = 1, m, we then get

φi(ξi) ≤ φi(Mi) +M∗
i ξi, (3.14)

ϕi(ζi) ≤ ϕi(Ni) +N∗
i ζi. (3.15)

Since {Ti}mi=1 : K → K, {Ii}mi=1 : K → K are total asymptotically Ii-nonexpansive and total
asymptotically nonexpansive mappings, respectively, from (3.14) and (3.15), one gets

∥∥Ini x − Ini y
∥∥ ≤ ∥∥x − y

∥∥ + μ̃inϕi

(∥∥x − y
∥∥) + λ̃in

≤ ∥∥x − y
∥∥ + μ̃in

(
ϕi(Ni) +N∗

i

∥∥x − y
∥∥) + λ̃in

=
(
1 + μ̃inN

∗
i

)∥∥x − y
∥∥ + μ̃inϕi(Ni) + λ̃in,

∥∥Tn
i x − Tn

i y
∥∥ ≤ ∥∥Ini x − Ini y

∥∥ + μinφi

(∥∥Ini x − Ini y
∥∥) + λin

≤ ∥∥Ini x − Ini y
∥∥ + μin

(
φi(Mi) +M∗

i

∥∥Ini x − Ini y
∥∥) + λin

=
(
1 + μinM

∗
i

)∥∥Ini x − Ini y
∥∥ + μinφi(Mi) + λin

≤ (
1 + μinM

∗
i

)(
1 + μ̃inN

∗
i

)∥∥x − y
∥∥ + μ̃in

(
1 + μinM

∗
i

)
ϕi(Ni)

+ λ̃in
(
1 + μinM

∗
i

)
+ μinφi(Mi) + λin.

(3.16)

Lemma 3.4. Let X be a uniformly convex real Banach space, and let K be a nonempty closed-convex
subset of X. Let {Ti}mi=1: K → K be a finite family of total asymptotically Ii-nonexpansive mappings
with sequences {μin}∞n=1, {λin}∞n=1, where i = 1, m, and let {Ii}mi=1 : K → K be a finite family of
total asymptotically nonexpansive mappings with sequences {μ̃in}∞n=1, {λ̃in}∞n=1, where i = 1, m, such
that F :=

⋂m
i=1(F(Ti) ∩ F(Ii))/= ∅. Suppose that

∑∞
n=1 μin < ∞,

∑∞
n=1 λin < ∞,

∑∞
n=1 μ̃in < ∞,
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∑∞
n=1 λ̃in < ∞ for all i = 1, m, and there exist Mi,M

∗
i ,Ni,N

∗
i > 0, i = 1, m such that φi(ξi) ≤ M∗

i ξi,
for all ξi ≥ Mi and ϕi(ζi) ≤ N∗

i ζi for all ζi ≥ Ni, where i = 1, m. If {xn} is the explicit iterative
sequence defined by (1.27), then for each p ∈ F, the limit limn→∞‖xn − p‖ exists.

Proof. Since F /= ∅, for any given p ∈ F, it follows from (1.27) and (3.13) that

∥
∥xn+1 − p

∥
∥ =

∥
∥
∥
∥
∥

(

1 −
m∑

i=1

αin

)
(
xn − p

)
+

m∑

i=1

αin

(
Tn
i yn − p

)
∥
∥
∥
∥
∥

≤
(

1 −
m∑

i=1

αin

)
∥
∥xn − p

∥
∥ +

m∑

i=1

αin

∥
∥Tn

i yn − p
∥
∥

≤
(

1 −
m∑

i=1

αin

)
∥
∥xn − p

∥
∥

+
m∑

i=1

αin

(
1 + μinM

∗
i

)(
1 + μ̃inN

∗
i

)∥∥yn − p
∥∥

+
m∑

i=1

(
αinμ̃in

(
1 + μinM

∗
i

)
ϕi(Ni) + αinλ̃in

(
1 + μinM

∗
i

))

+
m∑

i=1

(
αinμinφi(Mi) + αinλin

)
.

(3.17)

Again from (1.27) and (3.12), we derive that

‖yn − p‖ =

∥∥∥∥∥

(

1 −
m∑

i=1

βin

)
(
xn − p

)
+

m∑

i=1

βin
(
Ini xn − p

)
∥∥∥∥∥

≤
(

1 −
m∑

i=1

βin

)
∥∥xn − p

∥∥ +
m∑

i=1

βin
∥∥Ini xn − p

∥∥

=

(

1 +
m∑

i=1

μ̃inβinN
∗
i

)
∥∥xn − p

∥∥

+
m∑

i=1

(
μ̃inβinϕi(Ni) + λ̃inβin

)
.

(3.18)

Then from (3.17) and (3.18), one finds

∥∥xn+1 − p
∥∥ ≤ (1 + bn)

∥∥xn − p
∥∥ + cn. (3.19)
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Here

bn =
m∑

i=1

(

μinαinM
∗
i + μ̃inαinN

∗
i + αin

m∑

i=1

μ̃inβinN
∗
i

)

+
m∑

i=1

μinμ̃inαinM
∗
i N

∗
i +

m∑

i=1

μinαinM
∗
i ·

m∑

i=1

μ̃inβinN
∗
i

+
m∑

i=1

μ̃inαinN
∗
i ·

m∑

i=1

μ̃inβinN
∗
i ,

cn =
m∑

i=1

(
μ̃inβinϕi(Ni) + λ̃inβin

)
·

m∑

i=1

αin

(
1 + μinM

∗
i

)(
1 + μ̃inN

∗
i

)

+
m∑

i=1

(
μ̃inαin

(
1 + μinM

∗
i

)
ϕi(Ni) + λ̃inαin

(
1 + μinM

∗
i

))

+
m∑

i=1

(
μinαinφi(Mi) + λinαin

)
.

(3.20)

Denoting an = ‖xn − p‖ in (3.19), one gets

an+1 ≤ (1 + bn)an + cn. (3.21)

Since
∑∞

n=1 bn < ∞ and
∑∞

n=1 cn < ∞, it follows from Lemma 2.1 the existence of the limit
limn→∞an. This means the limit

lim
n→∞

∥∥xn − p
∥∥ = d (3.22)

exists, where d ≥ 0 is a constant. This completes the proof.

Now we prove the following result.

Theorem 3.5. LetX be a uniformly convex real Banach space, and letK be a nonempty closed-convex
subset ofX. Let {Ti}mi=1 : K → K be a finite family of total asymptotically Ii-nonexpansive continuous
mappings with sequences {μin}∞n=1, {λin}∞n=1, where i = 1, m, and let {Ii}mi=1 : K → K be a finite
family of total asymptotically nonexpansive continuous mappings with sequences {μ̃in}∞n=1, {λ̃in}∞n=1,
where i = 1, m, such that F :=

⋂m
i=1(F(Ti) ∩ F(Ii))/= ∅. Suppose that ∑∞

n=1 μin < ∞,
∑∞

n=1 λin < ∞,
∑∞

n=1 μ̃in < ∞,
∑∞

n=1 λ̃in < ∞ for all i = 1, m, and there exist Mi,M
∗
i ,Ni,N

∗
i > 0, i = 1, m such

that φi(ξi) ≤ M∗
i ξi, for all ξi ≥ Mi and ϕi(ζi) ≤ N∗

i ζi for all ζi ≥ Ni, where i = 1, m, then the explicit
iterative sequence {xn} defined by (1.27) converges strongly to a common fixed point in F if and only
if

lim inf
n→∞

d(xn, F) = 0. (3.23)

Proof. The necessity of condition (3.23) is obvious. Let us prove the sufficiency part of the
theorem.
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Since {Ti}mi=1, {Ii}mi=1 : K → K are continuous mappings, the sets F(Ti) and F(Ii) are
closed. Hence, F =

⋂m
i=1(F(Ti) ∩ F(Ii)) is a nonempty closed set.

For any given p ∈ F, we have (see (3.19))

∥
∥xn+1 − p

∥
∥ ≤ (1 + bn)

∥
∥xn − p

∥
∥ + cn. (3.24)

Hence, one finds

d(xn+1, F) ≤ (1 + bn)d(xn, F) + cn. (3.25)

From (3.25) due to Lemma 2.1, we obtain the existence of the limit limn→∞d(xn, F). By
condition (3.23), one gets

lim
n→∞

d(xn, F) = lim inf
n→∞

d(xn, F) = 0. (3.26)

Let us prove that the sequence {xn} converges strongly to a common fixed point in F.
We first show that {xn} is Cauchy sequence in X. In fact, due to 1+ t ≤ exp(t) for all t > 0, and
from (3.24), we obtain

∥∥xn+1 − p
∥∥ ≤ exp(bn)

(∥∥xn − p
∥∥ + cn

)
. (3.27)

Thus, for any positive integers m,n, from (3.27) with
∑∞

n=1 bn < ∞,
∑∞

n=1 cn < ∞, we find

∥∥xn+m − p
∥∥ ≤ exp(bn+m−1)

(∥∥xn+m−1 − p
∥∥ + cn+m−1

)

≤ exp(bn+m−1 + bn+m−2)
(∥∥xn+m−2 − p

∥∥ + cn+m−1 + cn+m−2
)

≤ · · · ≤ exp

(
n+m−1∑

i=n

bi

)(
∥∥xn − p

∥∥ +
n+m−1∑

i=n

ci

)

≤ exp

( ∞∑

i=n

bi

)(
∥∥xn − p

∥∥ +
∞∑

i=n

ci

)

.

(3.28)

Therefore, we get

‖xn+m − xn‖ ≤ ∥∥xn+m − p
∥∥ +

∥∥xn − p
∥∥

≤
(

1 + exp

( ∞∑

i=n

bi

))
∥∥xn − p

∥∥ + exp

( ∞∑

i=n

bi

) ∞∑

i=n

ci

≤ W

(
∥∥xn − p

∥∥ +
∞∑

i=n

ci

)

,

(3.29)

for all p ∈ F, where 0 < W − 1 = exp(
∑∞

i=n bi) < ∞. Taking infimum over p ∈ F in (3.29) gives

‖xn+m − xn‖ ≤ W

(

d(xn, F) +
∞∑

i=n

ci

)

. (3.30)
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Since lim
n→∞

d(xn, F) = 0 and
∑∞

i=1 ci < ∞, given ε > 0, there exists an integerN0 > 0 such

that for all n > N0, we have d(xn, F) < (ε/2W) and
∑∞

i=n ci < (ε/2W). Consequently, for all
integers n ≥ N0 and m ≥ 1 and from (3.30), we derive

‖xn+m − xn‖ ≤ ε, (3.31)

which means that {xn} is Cauchy sequence in X, and since X is complete, there exists x∗ ∈ X
such that the sequence {xn} converges strongly to x∗.

Now we show that x∗ is a common fixed point in F. Suppose for contradiction that
x∗ /∈ F. Since F is closed subset of X, we have that d(x∗, F) > 0. However, for all p ∈ F, we
have

∥
∥x∗ − p

∥
∥ ≤ ‖xn − x∗‖ + ∥

∥xn − p
∥
∥. (3.32)

This implies that

d(x∗, F) ≤ ‖xn − x∗‖ + d(xn, F), (3.33)

so that as n → ∞ we obtain d(x∗, F) = 0 which contradicts d(x∗, F) > 0. Hence, x∗ is a
common fixed point in F. This proves the required assertion.

To formulate and prove the main result, we need once more an auxiliary result.

Proposition 3.6. Let X be a uniformly convex real Banach space, and let K be a nonempty closed-
convex subset of X. Let {Ti}mi=1 : K → K be a finite family of total asymptotically Ii-nonexpansive
continuous mappings with sequences {μin}∞n=1, {λin}∞n=1, where i = 1, m, and let {Ii}mi=1 : K → K
be a finite family of total asymptotically nonexpansive continuous mappings with sequences {μ̃in}∞n=1,
{λ̃in}∞n=1, where i = 1, m, such that F :=

⋂m
i=1(F(Ti) ∩ F(Ii))/= ∅. Suppose that

∑∞
n=1 μin < ∞,

∑∞
n=1 λin < ∞,

∑∞
n=1 μ̃in < ∞,

∑∞
n=1 λ̃in < ∞ for all i = 1, m, and {αjn}∞n=1, {βjn}∞n=1 are sequences

with {αjn}∞n=1 ⊂ [α∗, α∗] and {βjn}∞n=1 ⊂ [β∗, β∗], for all j = 0, m, here 0 < α∗ < α∗ < 1, 0 < β∗ <

β∗ < 1, and there exist Mi,M
∗
i ,Ni,N

∗
i > 0, i = 1, m such that φi(ξi) ≤ M∗

i ξi, for all ξi ≥ Mi and
ϕi(ζi) ≤ N∗

i ζi for all ζi ≥ Ni, where i = 1, m. then the explicit iterative sequence {xn} defined by
(1.27) satisfies the following:

lim
n→∞

∥∥xn − Tn
i xn

∥∥ = 0, (3.34)

lim
n→∞

∥∥xn − Ini xn

∥∥ = 0, (3.35)

for all i = 1, m.

Proof. According to Lemma 3.4 for any p ∈ F, we have lim
n→∞

‖xn−p‖ = d. It follows from (1.27)

that

∥∥xn+1 − p
∥∥ =

∥∥∥∥∥
α0n

(
xn − p

)
+

m∑

i=1

αin

(
Tn
i yn − p

)
∥∥∥∥∥
−→ d, (3.36)
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as n → ∞. By means of
∑∞

n=1 μin < ∞,
∑∞

n=1 λin < ∞,
∑∞

n=1 μ̃in < ∞,
∑∞

n=1 λ̃in < ∞, for all
i = 1, m, from (3.18), one yields that

lim sup
n→∞

∥
∥yn − p

∥
∥ ≤ lim sup

n→∞

[(

1 +
m∑

i=1

μ̃inβinN
∗
i

)
∥
∥xn − p

∥
∥
]

+ lim sup
n→∞

[
m∑

i=1

(
μ̃inβinϕi(Ni) + λ̃inβin

)]

= lim sup
n→∞

∥
∥xn − p

∥
∥ = d,

(3.37)

and from (3.13), (3.37), we have

lim sup
n→∞

∥∥Tn
i yn − p

∥∥ ≤ lim sup
n→∞

[
(
1 + μinM

∗
i

)(
1 + μ̃inN

∗
i

)∥∥yn − p
∥∥

+lim sup
n→∞

μ̃in

(
1 + μinM

∗
i

)
ϕi(Ni)

]

+ lim sup
n→∞

[
λ̃in

(
1 + μinM

∗
i

)
+ μinφi(Mi) + λin

]

≤ d,

(3.38)

for all i = 1, m. Now using

lim sup
n→∞

∥∥xn − p
∥∥ = d, (3.39)

with (3.38) and applying Lemma 3.2 to (3.36), one finds

lim
n→∞

∥∥xn − Tn
i yn

∥∥ = 0, (3.40)

for all i = 1, m. Now from (1.27) and (3.40), we infer that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

∥∥∥∥∥

m∑

i=1

αin

(
Tn
i yn − xn

)
∥∥∥∥∥
= 0. (3.41)

On the other hand, from (3.13), we have

∥∥xn − p
∥∥ ≤ ∥∥xn − Tn

i yn

∥∥ +
∥∥Tn

i yn − p
∥∥

≤ ∥∥xn − Tn
i yn

∥∥ +
(
1 + μinM

∗
i

)(
1 + μ̃inN

∗
i

)∥∥yn − p
∥∥

+ μ̃in

(
1 + μinM

∗
i

)
ϕi(Ni) + λ̃in

(
1 + μinM

∗
i

)
+ μinφi(Mi) + λin,

(3.42)
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which implies

∥
∥xn − p

∥
∥ − ∥

∥xn − Tn
i yn

∥
∥ ≤ (

1 + μinM
∗
i

)(
1 + μ̃inN

∗
i

)∥∥yn − p
∥
∥

+ μ̃in

(
1 + μinM

∗
i

)
ϕi(Ni) + λ̃in

(
1 + μinM

∗
i

)

+ μinφi(Mi) + λin.

(3.43)

The last inequality with (3.22), (3.40) yields

lim inf
n→∞

∥
∥yn − p

∥
∥ = d. (3.44)

Combining (3.44) with (3.37), we get

lim
n→∞

∥∥yn − p
∥∥ = d. (3.45)

Again from (1.27), we can see that

∥∥yn − p
∥∥ =

∥∥∥∥∥
β0n

(
xn − p

)
+

m∑

i=1

βin
(
Ini xn − p

)
∥∥∥∥∥
−→ d, n −→ ∞. (3.46)

From (3.12) and (3.22), one finds

lim sup
n→∞

∥∥Ini xn − p
∥∥ ≤ lim sup

n→∞

((
1 + μ̃inN

∗
i

)∥∥xn − p
∥∥ + μ̃inϕi(Ni) + λ̃in

)
= d (3.47)

for all i = 1, m. Now applying Lemma 3.2 to (3.46), we obtain

lim
n→∞

∥∥xn − Ini xn

∥∥ = 0, (3.48)

for all i = 1, m. We then have

lim
n→∞

∥∥yn − xn

∥∥ = lim
n→∞

∥∥∥∥∥

m∑

i=1

βin
(
Ini xn − xn

)
∥∥∥∥∥
= 0. (3.49)

Consider

∥∥xn − Tn
i xn

∥∥ ≤ ∥∥xn − Tn
i yn

∥∥ +
∥∥Tn

i yn − Tn
i xn

∥∥

≤ ∥∥xn − Tn
i yn

∥∥ +
(
1 + μinM

∗
i

)(
1 + μ̃inN

∗
i

)∥∥yn − xn

∥∥

+
(
1 + μinM

∗
i

)(
μ̃inϕi(Ni) + λ̃in

)
+ μinφi(Mi) + λin,

(3.50)
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for all i = 1, m. Then from (3.40) and (3.49), we get

lim
n→∞

∥
∥xn − Tn

i xn

∥
∥ = 0, (3.51)

for all i = 1, m.
Now we are ready to formulate a main result concerning strong convergence of the

sequence {xn}.

Theorem 3.7. LetX be a uniformly convex real Banach space, and letK be a nonempty closed-convex
subset ofX. Let {Ti}mi=1 : K → K be a finite family of total asymptotically Ii-nonexpansive continuous
mappings with sequences {μin}∞n=1, {λin}∞n=1, where i = 1, m, and let {Ii}mi=1 : K → K be a finite
family of total asymptotically nonexpansive continuous mappings with sequences {μ̃in}∞n=1, {λ̃in}∞n=1,
where i = 1, m, such that F :=

⋂m
i=1(F(Ti) ∩ F(Ii))/= ∅. Suppose that ∑∞

n=1 μin < ∞,
∑∞

n=1 λin < ∞,
∑∞

n=1 μ̃in < ∞,
∑∞

n=1 λ̃in < ∞ for all i = 1, m, and {αjn}∞n=1, {βjn}∞n=1 are sequences with {αjn}∞n=1 ⊂
[α∗, α∗] and {βjn}∞n=1 ⊂ [β∗, β∗], for all j = 0, m, here 0 < α∗ < α∗ < 1, 0 < β∗ < β∗ < 1, and there
existMi,M

∗
i ,Ni,N

∗
i > 0, i = 1, m such that φi(ξi) ≤ M∗

i ξi, for all ξi ≥ Mi and ϕi(ζi) ≤ N∗
i ζi for all

ζi ≥ Ni, where i = 1, m. If at least one mapping of the mappings {Ti}mi=1 and {Ii}mi=1 is compact, then
the explicitly iterative sequence {xn} defined by (1.27) converges strongly to a common fixed point of
{Ti}mi=1 and {Ii}mi=1.

Proof. Without any loss of generality, wemay assume that T1 is compact. Thismeans that there
exists a subsequence {Tnk

1 xnk}∞k=1 of {Tn
1 xn}∞n=1 such that {Tnk

1 xnk}∞k=1 converges strongly to
x∗ ∈ K. Then from (3.34), we have that {xnk}∞k=1 converges strongly to x∗. Also from (3.34), we
obtain that {Tnk

i xnk}∞k=1 converges strongly to x∗, for all i = 2, m. Since {Ti}mi=1 are continuous
mappings, so {Tnk+1

i xnk}∞k=1 converges strongly to Tix∗, for all i = 1, m. On the other hand, from
(3.35) and continuousness of {Ii}mi=1, we obtain that {Ink

i xnk}∞k=1 converges strongly to x∗, and
{Ink+1

i xnk}∞k=1 converges strongly to Iix∗, for all i = 1, m. Due to (3.41), {‖xnk+1−xnk‖} converges
to 0, as k → ∞. Then, {xnk+1}∞k=1 converges strongly to x∗ and moreover, (3.13) and (3.12)
imply that {‖Tnk+1

i xnk+1 − Tnk+1
i xnk‖} and {‖Ink+1

i xnk+1 − Ink+1
i xnk‖} converge to 0, as k → ∞,

for all i = 1, m. From (3.34), (3.35), it yields that ‖xnk+1 − Tnk+1
i xnk+1‖ and ‖xnk+1 − Ink+1

i xnk+1‖
converge to 0 as k → ∞, for all i = 1, m. Observe that

‖x∗ − Tix
∗‖ ≤ ‖x∗ − xnk+1‖ +

∥∥∥xnk+1 − Tnk+1
i xnk+1

∥∥∥

+
∥∥∥Tnk+1

i xnk+1 − Tnk+1
i xnk

∥∥∥ +
∥∥∥Tnk+1

i xnk − Tix
∗
∥∥∥,

‖x∗ − Iix
∗‖ ≤ ‖x∗ − xnk+1‖ +

∥∥∥xnk+1 − Ink+1
i xnk+1

∥∥∥

+
∥∥∥Ink+1

i xnk+1 − Ink+1
i xnk

∥∥∥ +
∥∥∥Ink+1

i xnk − Iix
∗
∥∥∥,

(3.52)

for all i = 1, m. Taking limit as k → ∞, we have that x∗ = Tix
∗ and x∗ = Iix

∗, for all i = 1, m,
which means x∗ ∈ F. However, by Lemma 3.4, the limit limn→∞‖xn − x∗‖ exists, then

lim
n→∞

‖xn − x∗‖ = lim
nk →∞

‖xnk − x∗‖ = 0, (3.53)

which means {xn} converges strongly to x∗ ∈ F. This completes the proof.
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Remark 3.8. If one has that all Ii are identity mappings, then the obtained results recover and
correctly prove the main result of [24].

Remark 3.9. Suppose that we are given two families {Ti}mi=1 : K → K and {Si}mi=1 : K → K
of total asymptotically nonexpansive continuous mappings such that

⋂m
i=1(F(Ti) ∩ F(Si))/= ∅.

Define the following explicit iterative process:

x0 ∈ K,

xn+1 = α0nxn +
m∑

i=1

αinT
n
i yn + αm+1,nun,

yn = β0nxn +
m∑

i=1

βinS
n
i xn + βm+1,nvn,

(3.54)

such that
∑m+1

j=0 αjn = 1 and
∑m+1

j=0 βjn = 1.

Under suitable conditions, by the same argument and methods used above, one can
prove, with either little mirror or no modifications, the strong convergence of the explicit
iterative process defined by (3.54) to a common fixed point of the given families.

Remark 3.10. Let {Ti}mi=1: K → K be a finite family of total asymptotically nonexpansive
continuous mappings with sequences {μin}∞n=1, {λin}∞n=1, where i = 1, m. It is clear for each
operator Ti that one has

∥∥Tn
i x − Tn

i y
∥∥ ≤ ∥∥Tn

i x − Tn
i y

∥∥ + μin
∥∥Tn

i x − Tn
i y

∥∥, (3.55)

and this means that Ti is total asymptotically Ti-nonexpansive mappings with sequence
{μin}∞n=1 and the function φ(λ) = λ. Hence, our iteration scheme can be written as follows:

x0 ∈ K,

xn+1 = α0nxn +
m∑

i=1

αinT
n
i yn,

yn = β0nxn +
m∑

i=1

βinT
n
i xn,

(3.56)

where {αjn}∞n=1, {βjn}∞n=1 in (0, 1), (j = 0, m)with
∑m

j=0 αjn = 1,
∑m

j=0 βjn = 1.

The defined scheme is a new iterative method generalizing one given in [24]. So,
according to our main results for the defined sequence {xn} (see (3.56)), we obtain strong
convergence theorems. On the other hand, playing with numbers {αjn}∞n=1, {βjn}∞n=1 and by
means of the defined method, one may introduce lots of different schemes. All of the them
strongly converge to a common fixed point of {Ti}mi=1. Moreover, the recursion formula (3.56)
is much simpler than the others studied earlier for this problem [21, 23, 29, 30, 32, 35–38].
Therefore, all presented results here generalize, unify, and extend the corresponding main
results of the mentioned papers. Note that one can consider the method (1.27) with errors,
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and all the theorems could be carried over for such iteration scheme as well with little or no
modifications.

We stress that all the theorems of this paper carry over to the class of total asymptoti-
cally quasi-I-nonexpansive mappings (see [24]), [39] with little or no modifications.
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