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Let H be a real Hilbert space. Consider on H a nonexpansive semigroup S = {T(s) : 0 ≤ s < ∞}
with a common fixed point, a contraction f with the coefficient 0 < α < 1, and a strongly positive
linear bounded self-adjoint operator A with the coefficient γ > 0. Let 0 < γ < γ/α. It is proved
that the sequence {xn} generated by the iterative method x0 ∈ H, xn+1 = αnγf(xn) + βnxn + ((1 −
βn)I − αnA)(1/sn)

∫sn
0 T(s)xnds, n ≥ 0 converges strongly to a common fixed point x∗ ∈ F(S),

where F(S) denotes the common fixed point of the nonexpansive semigroup. The point x∗ solves
the variational inequality 〈(γf −A)x∗, x − x∗〉 ≤ 0 for all x ∈ F(S).

1. Introduction and Preliminaries

Let H be a real Hilbert space and T be a nonlinear mapping with the domain D(T). A point
x ∈ D(T) is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T ;
that is, F(T) = {x ∈ D(T) : Tx = x}. Recall that T is said to be nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ D(A). (1.1)

Recall that a family S = {T(s) | s ≥ 0} of mappings from H into itself is called a
one-parameter nonexpansive semigroup if it satisfies the following conditions:

(i) T(0)x = x, for all x ∈ H;

(ii) T(s + t)x = T(s)T(t)x, for all s, t ≥ 0 and for all x ∈ H;

(iii) ‖T(s)x − T(s)y‖ ≤ ‖x − y‖, for all s ≥ 0 and for all x, y ∈ H;

(iv) for all x ∈ C, s �→ T(s)x is continuous.
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We denote by F(S) the set of common fixed points of S, that is, F(S) =
⋂

0≤s<∞ F(T(s)).
It is known that F(S) is closed and convex; see [1]. Let C be a nonempty closed and convex
subset of H. One classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping; see [2, 3]. More precisely, take t ∈ (0, 1) and define a
contraction Tt : C → C by

Ttx = tu + (1 − t)Tx, x ∈ C, (1.2)

where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that Tt has
a unique fixed point xt in C. If T enjoys a nonempty fixed point set, Browder [2] proved the
following well-known strong convergence theorem.

TheoremB. LetC be a bounded closed convex subset of a Hilbert spaceH and let T be a nonexpansive
mapping on C. Fix u ∈ C and define zt ∈ C as zt = tu + (1 − t)Tzt for t ∈ (0, 1). Then as t → 0,
{zt} converges strongly to a element of F(T) nearest to u.

As motivated by Theorem B, Halpern [4] considered the following explicit iteration:

x0 ∈ C, xn+1 = αnu + (1 − αn)Txn, n ≥ 0, (1.3)

and proved the following theorem.

Theorem H. Let C be a bounded closed convex subset of a Hilbert space H and let T be a non-
expansive mapping on C. Define a real sequence {αn} in [0, 1] by αn = n−θ, 0 < θ < 1. Define a
sequence {xn} by (1.3). Then {xn} converges strongly to the element of F(T) nearest to u.

In 1977, Lions [5] improved the result of Halpern [4], still in Hilbert spaces, by proving
the strong convergence of {xn} to a fixed point of T where the real sequence {αn} satisfies the
following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) limn→∞(αn+1 − αn)/α2
n+1 = 0.

It was observed that both Halpern’s and Lions’s conditions on the real sequence {αn}
excluded the canonical choice αn = 1/(n + 1). This was overcome in 1992 by Wittmann [6],
who proved, still in Hilbert spaces, the strong convergence of {xn} to a fixed point of T if {αn}
satisfies the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3)
∑∞

n=1 |αn+1 − αn| < ∞.

Recall that amapping f : H → H is an α-contraction if there exists a constant α ∈ (0, 1)
such that

∥∥f(x) − f
(
y
)∥∥ ≤ α

∥∥x − y
∥∥, ∀x, y ∈ H. (1.4)
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Recall that an operator A is strongly positive onH if there exists a constant γ > 0 such
that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.5)

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [7–13] and the references therein. A typical
problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping T on a real Hilbert space H:

min
x∈F(T)

1
2
〈Ax, x〉 − 〈x, b〉, (1.6)

where A is a linear bounded operator on H and b is a given point in H. In [11], it is proved
that the sequence {xn} defined by the iterative method below, with the initial guess x0 ∈ H
chosen arbitrarily,

xn+1 = (I − αnA)Txn + αnb, n ≥ 0, (1.7)

strongly converges to the unique solution of the minimization problem (1.6) provided that
the sequence {αn} satisfies certain conditions.

Recently, Marino and Xu [9] studied the following continuous scheme:

xt = tγf(xt) + (I − tA)Txt, (1.8)

where f is an α-contraction on a real Hilbert spaceH,A is a bounded linear strongly positive
operator and γ > 0 is a constant. They showed that {xt} strongly converges to a fixed
point x of T . Also in [9], they introduced a general explicit iterative scheme by the viscosity
approximation method:

xn ∈ H, xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0 (1.9)

and proved that the sequence {xn} generated by (1.9) converges strongly to a unique solution
of the variational inequality

〈(
A − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T), (1.10)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Ax, x〉 − h(x), (1.11)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
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In this paper, motivated by Li et al. [8], Marino and Xu [9], Plubtieng and Punpaeng
[14], Shioji and Takahashi [15], and Shimizu and Takahashi [16], we consider the mapping Tt
defined as follows:

Ttx = tγf(x) + (I − tA)
1
λt

∫λt

0
T(s)x ds, (1.12)

where γ > 0 is a constant, f is an α-contraction, A is a bounded linear strongly positive self-
adjoint operator and {λt} is a positive real divergent net. If γα < γ for each 0 < t < ‖A‖−1, one
can see that Tt is a (1 − t(γ − γα))-contraction. So, by Banach’s contraction mapping principle,
there exists an unique solution xt of the fixed point equation

xt = tγf(xt) + (I − tA)
1
λt

∫λt

0
T(s)xtds. (1.13)

We show that the sequence {xt} generated by above continuous scheme strongly converges
to a common fixed point x∗ ∈ F(S), which is the unique point in F(S) solving the variational
inequality 〈(γf −A)x∗, x − x∗〉 ≤ 0 for all x ∈ F(S). Furthermore, we also study the following
explicit iterative scheme:

x0 ∈ H, xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

) 1
sn

∫ sn

0
T(s)xnds, n ≥ 0. (1.14)

We prove that the sequence {xn} generated by (1.14) converges strongly to the same x∗.
The results presented in this paper improve and extend the corresponding results

announced by Marino and Xu [9], Plubtieng and Punpaeng [14], Shioji and Takahashi [15],
and Shimizu and Takahashi [16].

In order to prove our main result, we need the following lemmas.

Lemma 1.1 (see [16]). LetD be a nonempty bounded closed convex subset of a Hilbert spaceH and
let S = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on D. Then, for any 0 ≤ h < ∞,

lim
t→∞

sup
x∈D

∥∥∥∥∥
1
t

∫ t

0
T(s)x ds − T(h)

1
t

∫ t

0
T(s)x ds

∥∥∥∥∥
= 0. (1.15)

Lemma 1.2 (see [17]). Let H be a Hilbert space, C a closed convex subset of H, and T : C → C
a nonexpansive mapping with F(T)/= ∅. Then I − T is demiclosed, that is, if {xn} is a sequence in C
weakly converging to x and if {(I − T)xn} strongly converges to y, then (I − T)x = y.

Lemma 1.3 (see [18]). Let C be a nonempty closed convex subset of a real Hilbert space H and let
PC be the metric projection from H onto C( i.e., for x ∈ H, PCx is the only point in C such that
‖x − PCx‖ = inf{‖x − z‖ : z ∈ C}). Given x ∈ H and z ∈ C. Then z = PCx if and only if there holds
the relations

〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C. (1.16)
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Lemma 1.4. Let H be a Hilbert space, f a α-contraction, and A a strongly positive linear bounded
self-adjoint operator with the coefficient γ > 0. Then, for 0 < γ < γ/α,

〈
x − y,

(
A − γf

)
x − (

A − γf
)
y
〉 ≥ (

γ − γα
)∥∥x − y

∥
∥2

, x, y ∈ H. (1.17)

That is, A − γf is strongly monotone with coefficient γ − αγ .

Proof. From the definition of strongly positive linear bounded operator, we have

〈
x − y, A

(
x − y

)〉 ≥ γ
∥
∥x − y

∥
∥2

. (1.18)

On the other hand, it is easy to see

〈
x − y, γfx − γfy

〉 ≤ γα
∥∥x − y

∥∥2
. (1.19)

Therefore, we have

〈
x − y,

(
A − γf

)
x − (

A − γf
)
y
〉
=
〈
x − y, A

(
x − y

)〉 − 〈
x − y, γfx − γfy

〉

≥ (
γ − γα

)∥∥x − y
∥∥2 (1.20)

for all x, y ∈ H. This completes the proof.

Remark 1.5. Taking γ = 1 and A = I, the identity mapping, we have the following inequality:

〈
x − y,

(
I − f

)
x − (

I − f
)
y
〉 ≥ (1 − α)

∥∥x − y
∥∥2

, x, y ∈ H. (1.21)

Furthermore, if f is a nonexpansive mapping in Remark 1.5, we have

〈
x − y,

(
I − f

)
x − (

I − f
)
y
〉 ≥ 0, x, y ∈ H. (1.22)

Lemma 1.6 (see [9]). Assume A is a strongly positive linear bounded self-adjoint operator on a Hil-
bert spaceH with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ .

Lemma 1.7 (see [12]). Let {αn} be a sequence of nonnegative real numbers satisfying the following
condition:

αn+1 ≤
(
1 − γn

)
αn + γnσn, ∀n ≥ 0, (1.23)

where {γn} is a sequence in (0, 1) and {σn} is a sequence of real numbers such that

(i) limn→∞γn = 0 and
∑∞

n=0 γn = ∞,

(ii) either lim supn→∞σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then {αn}∞n=0 converges to zero.
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2. Main Results

Lemma 2.1. LetH a real Hilbert space and S = {T(s) : 0 ≤ s < ∞} a nonexpansive semigroup onH
such that F(S)/= ∅. Let {λt}0<t<1 be a continuous net of positive real numbers such that limt→ 0λt = ∞.
Let f : H → H be an α-contraction, A a strongly positive linear bounded self-adjoint operator of H
into itself with coefficient γ > 0. Assume that 0 < γ < γ/α. Let {xt} be a sequence defined by (1.13).
Then

(i) {xt} is bounded for all t ∈ (0, ‖A‖−1);
(ii) limt→ 0‖T(τ)xt − xt‖ = 0 for all 0 ≤ τ < ∞;

(iii) xt defines a continuous curve from (0, ‖A‖−1) intoH.

Proof. (i) Taking p ∈ F(S), we have

∥∥xt − p
∥∥ ≤

∥
∥∥∥∥
tγf(xt) + (I − tA)

1
λt

∫λt

0
T(s)xtds − p

∥
∥∥∥∥

≤ t
∥∥γf(xt) −Ap

∥∥ +
(
1 − tγ

) 1
λt

∫λt

0

∥∥T(s)xt − p
∥∥ds

≤ t
∥∥γf(xt) −Ap

∥∥ +
(
1 − tγ

)∥∥xt − p
∥∥

≤ tγ
∥∥f(xt) − f

(
p
)∥∥ + t

∥∥γf
(
p
) −Ap

∥∥ +
(
1 − tγ

)∥∥xt − p
∥∥

≤ [
1 − t

(
γ − γα

)]∥∥xt − p
∥∥ + t

∥∥γf
(
p
) −Ap

∥∥.

(2.1)

It follows that

∥∥xt − p
∥∥ ≤ 1

γ − αγ

∥∥γf
(
p
) −Ap

∥∥. (2.2)

This implies that {xt} is not only bounded, but also that {xt} is contained in B(p, 1/(γ −
γα)‖γf(p) − Ap‖) of center p and radius 1/(γ − γα)‖γf(p) − Ap‖, for all fixed p ∈ F(S).
Moreover for p ∈ F(S) and t ∈ (0, ‖A‖−1),

∥∥∥∥∥
1
λt

∫λt

0
T(s)xtds − p

∥∥∥∥∥
=

∥∥∥∥∥
1
λt

∫λt

0

(
T(s)xt − T(s)p

)
ds

∥∥∥∥∥

≤ ∥∥xt − p
∥∥

≤ 1
γ − γα

∥∥γf
(
p
) −Ap

∥∥.

(2.3)

(ii) Observe that

‖T(τ)xt − xt‖ ≤
∥∥∥∥∥
T(τ)xt − T(τ)

(
1
λt

∫λt

0
T(s)xtds

)∥∥∥∥∥

+

∥∥∥∥∥
T(τ)

(
1
λt

∫λt

0
T(s)xtds

)

− 1
λt

∫λt

0
T(s)xtds

∥∥∥∥∥
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+

∥
∥
∥
∥
∥
1
λt

∫λt

0
T(s)xtds − xt

∥
∥
∥
∥
∥

≤ 2

∥
∥
∥
∥
∥
xt − 1

λt

∫λt

0
T(s)xtds

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
T(τ)

(
1
λt

∫λt

0
T(s)xtds

)

− 1
λt

∫λt

0
T(s)xtds

∥
∥
∥
∥
∥

= 2t

∥
∥∥
∥
∥
γf(xt) −A

1
λt

∫λt

0
T(s)xtds

∥
∥∥
∥
∥

+

∥
∥
∥
∥
∥
T(τ)

(
1
λt

∫λt

0
T(s)xtds

)

− 1
λt

∫λt

0
T(s)xtds

∥
∥
∥
∥
∥
.

(2.4)

Taking B(p, 1/(γ − γα)‖γf(p) − Ap‖) as D in Lemma 1.1 and passing to limt→ 0 in (2.4), we
can obtain (ii) immediately.

(iii) Taking t1, t2 ∈ (0, ‖A‖−1) and fixing p ∈ F(S), we see that

‖xt1 − xt2‖

≤
∥∥∥∥∥
(t1 − t2)γf(xt1) + t2γ

(
f(xt1) − f(xt2)

) − (t1 − t2)A
1
λt1

∫λt1

0
T(s)xt1ds

+(I − t2A)

(
1
λt1

∫λt1

0
T(s)xt1ds −

1
λt2

∫λt2

0
T(s)xt2ds

)∥∥∥∥∥

≤ |t1 − t2|γ
∥∥f(xt1)

∥∥ + t2γα‖xt1 − xt2‖ + |t1 − t2|‖A‖
∥∥∥∥∥

1
λt1

∫λt1

0
T(s)xt1ds

∥∥∥∥∥

+
(
1 − t2γ

)
∥∥∥∥∥

1
λt1

∫λt1

0
T(s)xt1ds −

1
λt2

∫λt1

0
T(s)xt2ds −

1
λt2

∫λt2

λt1

T(s)xt2ds

∥∥∥∥∥

≤ |t1 − t2|γ
∥∥f(xt1)

∥∥ + t2γα‖xt1 − xt2‖ + |t1 − t2|‖A‖
∥∥∥∥∥

1
λt1

∫λt1

0
T(s)xt1ds

∥∥
∥∥∥

+
(
1 − t2γ

)
(

‖xt1 − xt2‖ +
∣∣∣∣
1
λt1

− 1
λt2

∣∣∣∣

∥∥∥∥∥

∫λt1

0
T(s)xt2ds

∥∥∥∥∥
+

1
λt2

∥∥∥∥∥

∫λt2

λt1

T(s)xt2ds

∥∥∥∥∥

)

.

(2.5)

Thus applying (2.3), we arrive at

‖xt1 − xt2‖

≤ |t1 − t2|γ
∥∥f(xt1)

∥∥ + t2γα‖xt1 − xt2‖ + |t1 − t2|‖A‖
(

1
γ − γα

∥∥γf
(
p
) −Ap

∥∥ +
∥∥p

∥∥
)

+
(
1 − t2γ

)
(
‖xt1 − xt2‖ +

2
λt2

|λt2 − λt1 |
(

1
γ − γα

∥∥γf
(
p
) −Ap

∥∥ +
∥∥p

∥∥
))
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≤ |t1 − t2|
(
γ
∥
∥f(xt1)

∥
∥ + ‖A‖

(
1

γ − γα

∥
∥γf

(
p
) −Ap

∥
∥ +

∥
∥p

∥
∥
))

+
(
1 − t2

(
γ − γα

))‖xt1 − xt2‖ +
2
λt2

|λt2 − λt1 |
(

1
γ − γα

∥
∥γf

(
p
) −Ap

∥
∥ +

∥
∥p

∥
∥
)
.

(2.6)

It follows that

‖xt1 − xt2‖ ≤ M1|t1 − t2| +M2|λt2 − λt1 |, (2.7)

where

M1 =
γ
(
γ − γα

)∥∥f(xt1)
∥
∥ + ‖A‖∥∥γf(p) −Ap

∥
∥ +

(
γ − γα

)‖A‖∥∥p∥∥
t2
(
γ − γα

)2 (2.8)

and

M2 =
2
(∥∥γf

(
p
) −Ap

∥∥ +
(
γ − γα

)∥∥p
∥∥)

λt2t2
(
γ − γα

)2 . (2.9)

This inequality, together with the continuity of the net {λt}, gives the continuity of the curve
{xt}.

Theorem 2.2. Let H be a real Hilbert space H and S = {T(s) : 0 ≤ s < ∞} a nonexpansive
semigroup such that F(S)/= ∅. Let {λt}0<t<1 be a net of positive real numbers such that limt→ 0λt = ∞.
Let f be an α-contraction and let A be a strongly positive linear bounded self-adjoint operator on H
with the coefficient γ > 0. Assume that 0 < γ < γ/α. Then sequence {xt} defined by (1.13) strongly
converges as t → 0 to x∗ ∈ F(S), which solves the following variational inequality:

〈(
γf −A

)
x∗, p − x∗〉 ≤ 0, ∀p ∈ F(S). (2.10)

Equivalently, one has

PF(S)
(
I −A + γf

)
x∗ = x∗. (2.11)

Proof. The uniqueness of the solution of the variational inequality (2.10) is a consequence of
the strong monotonicity of A − γf (Lemma 1.4) and it was proved in [9]. Next, we will use
x∗ ∈ F(S) to denote the unique solution of (2.10). To prove that xt → x∗ (t → 0), we write,
for a given p ∈ F(S),

xt − p = t
(
γf(xt) −Ap

)
+ (I − tA)

(
1
λt

∫λt

0
T(s)xtds − p

)

. (2.12)
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Using xt − p to make inner product, we obtain that

∥
∥xt − p

∥
∥2 =

〈

(I − tA)

(
1
λt

∫λt

0
T(s)xtds − p

)

, xt − p

〉

+ t
〈
γf(xt) −Ap, xt − p

〉

≤ (
1 − tγ

)∥∥xt − p
∥
∥2 + t

〈
γf(xt) −Ap, xt − p

〉
.

(2.13)

It follows that

∥
∥xt − p

∥
∥2 ≤ 1

γ

(
γ
〈
f(xt) − f

(
p
)
, xt − p

〉
+
〈
γf

(
p
) −Ap, xt − p

〉)

≤ γα

γ

∥
∥xt − p

∥
∥2 +

1
γ

〈
γf

(
p
) −Ap, xt − p

〉
,

(2.14)

which yields that

∥∥xt − p
∥∥2 ≤ 1

γ − αγ

〈
γf

(
p
) −Ap, xt − p

〉
. (2.15)

SinceH is a Hilbert space and {xt} is bounded as t → 0, we have that if {tn} is a sequence in
(0, 1) such that tn → 0 and xtn ⇀ x. By (2.15), we see xtn → x. Moreover, by (ii) of Lemma 2.1
we have x ∈ F(S). We next prove that x solves the variational inequality (2.10). From (1.13),
we arrive at

(
A − γf

)
xt = −1

t
(I − tA)

[

xt − 1
λt

∫λt

0
T(s)xtds

]

. (2.16)

For p ∈ F(S), it follows from (1.22) that

〈(
A − γf

)
xt, xt − p

〉
= −1

t

〈

(I − tA)

[

xt − 1
λt

∫λt

0
T(s)xtds

]

, xt − p

〉

= −1
t

〈
1
λt

∫λt

0

[
(I − T(s))xt − (I − T(s))p

]
ds, xt − p

〉

+

〈

A
1
λt

∫λt

0
(I − T(s))xtds, xt − p

〉

= − 1
tλt

∫λt

0

〈
(I − T(s))xt − (I − T(s))p, xt − p

〉
ds

+

〈

A
1
λt

∫λt

0
(I − T(s))xtds, xt − p

〉

≤
〈

A
1
λt

∫λt

0
(I − T(s))xtds, xt − p

〉
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=

〈

A

(

tγf(xt) − tA
1
λt

∫λt

0
T(s)xtds

)

, xt − p

〉

= t

〈

A

(

γf(xt) −A
1
λt

∫λt

0
T(s)xtds

)

, xt − p

〉

.

(2.17)

Passing to limt→ 0, since {xt} is a bounded sequence, we obtain

〈(
A − γf

)
x, x − p

〉 ≤ 0, (2.18)

that is, x satisfies the variational inequality (2.10). By the uniqueness it follows x = x∗. In
a summary, we have shown that each cluster point of {xt} (as t → 0) equals x∗. Therefore,
xt → x∗ as t → 0. The variational inequality (2.10) can be rewritten as

〈[(
I −A + γf

)
x∗] − x∗, x∗ − p

〉
, p ∈ F(S). (2.19)

This, by Lemma 1.3, is equivalent to

PF(S)
(
I −A + γf

)
x∗ = x∗. (2.20)

This completes the proof.

Remark 2.3. Theorem 2.2 which include the corresponding results of Shioji and Takahashi [15]
as a special case is reduced to Theorem 3.1 of Plubtieng and Punpaeng [14] when A = I, the
identity mapping and γ = 1.

Theorem 2.4. Let H be a real Hilbert space H and S = {T(s) : 0 ≤ s < ∞} a nonexpansive
semigroup such that F(S)/= ∅. Let {sn} be a positive real divergent sequence and let {αn} and {βn} be
sequences in (0, 1) satisfying the following conditions limn→∞αn = limn→∞βn = 0 and

∑∞
n=0 αn =

∞. Let f be an α-contraction and let A be a strongly positive linear bounded self-adjoint operator
with the coefficient γ > 0. Assume that 0 < γ < γ/α. Then sequence {xn} defined by (1.14) strongly
converges to x∗ ∈ F(S), which solves the variational inequality (2.10).

Proof. We divide the proof into three parts.

Step 1. Show the sequence {xn} is bounded.
Noticing that limn→∞αn = limn→∞βn = 0, we may assume, with no loss of generality,

that αn/(1 − βn) < ‖A‖−1 for all n ≥ 0. From Lemma 1.6, we know that ‖(1 − βn)I − αnA‖ ≤
(1 − βn − αnγ). Picking p ∈ F(S), we have

∥∥xn+1 − p
∥∥

=
∥∥∥∥αn

(
γf(xn) −Ap

)
+ βn

(
xn − p

)
+
((
1 − βn

)
I − αnA

)
(

1
sn

∫ sn

0
T(s)xnds − p

)∥∥∥∥
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≤ αn

∥
∥γf(xn) −Ap

∥
∥ + βn

∥
∥xn − p

∥
∥ +

(
1 − βn − αnγ

)
∥
∥
∥
∥
1
sn

∫sn

0
T(s)xnds − p

∥
∥
∥
∥

≤ αnγ
∥
∥f(xn) − f

(
p
)∥∥ + αn

∥
∥γf

(
p
) −Ap

∥
∥ + βn

∥
∥xn − p

∥
∥ +

(
1 − βn − αnγ

)∥∥xn − p
∥
∥

≤ [
1 − αn

(
γ − γα

)]∥∥xn − p
∥
∥ + αn

∥
∥γf

(
p
) −Ap

∥
∥.

(2.21)

By simple inductions, we see that

∥
∥xn − p

∥
∥ ≤ max

{
∥
∥x0 − p

∥
∥,

∥
∥Ap − γf

(
p
)∥∥

γ − γα

}

, (2.22)

which yields that the sequence {xn} is bounded.

Step 2. Show that

lim sup
n→∞

〈(
γf −A

)
x∗, yn − x∗〉 ≤ 0, (2.23)

where x∗ is obtained in Theorem 2.2 and yn = (1/sn)
∫sn
0 T(s)xnds.

Putting z0 = PF(S)x0, from (2.22) we see that the closed ball M of center z0 and radius
max{‖z0 −p‖, ‖Az0 − γf(z0)‖/(γ − γα)} is T(s)-invariant for each s ∈ [0,∞) and contain {xn}.
Therefore, we assume, without loss of generality, S = {T(s) : 0 ≤ s < ∞} is a nonexpansive
semigroup onM. It follows from Lemma 1.1 that

lim
n→∞

∥∥yn − T(h)yn

∥∥ = 0 (2.24)

for all 0 ≤ h < ∞. Taking a suitable subsequence {yni} of {yn}, we see that

lim sup
n→∞

〈(
γf −A

)
x∗, yn − x∗〉 = lim

i→∞
〈(
γf −A

)
x∗, yni − x∗〉. (2.25)

Since the sequence {yn} is also bounded, we may assume that yni ⇀ x. From the
demiclosedness principle, we have x ∈ F(S). Therefore, we have

lim sup
n→∞

〈(
γf −A

)
x∗, yn − x∗〉 =

〈(
γf −A

)
x∗, x − x∗〉 ≤ 0. (2.26)

On the other hand, we have

∥∥xn+1 − yn

∥∥ ≤ αn

∥∥γf(xn) −Axn

∥∥ + βn
∥∥xn − yn

∥∥. (2.27)

From the assumption limn→∞αn = limn→∞βn = 0, we see that

lim
n→∞

∥∥xn+1 − yn

∥∥ = 0, (2.28)
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which combines with (2.26) gives that

lim sup
n→∞

〈(
γf −A

)
x∗, xn+1 − x∗〉 ≤ 0. (2.29)

Step 3. Show xn → x∗ as n → ∞.
Note that

‖xn+1 − x∗‖2
=
〈
αn

(
γf(xn) −Ax∗) + βn(xn − x∗) +

((
1 − βn

)
I − αnA

)(
yn − x∗), xn+1 − x∗〉

= αn

〈
γf(xn) −Ax∗, xn+1 − x∗〉 + βn〈xn − x∗, xn+1 − x∗〉

+
〈((

1 − βn
)
I − αnA

)(
yn − x∗), xn+1 − x∗〉

≤ αn

(
γ
〈
f(xn) − f(x∗), xn+1 − x∗〉 +

〈
γf(x∗) −Ax∗, xn+1 − x∗〉)

+ βn‖xn − x∗‖‖xn+1 − x∗‖ + ∥∥(1 − βn
)
I − αnA

∥∥∥∥yn − x∗∥∥‖xn+1 − x∗‖
≤ αnαγ‖xn − x∗‖‖xn+1 − x∗‖ + αn

〈
γf(x∗) −Ax∗, xn+1 − x∗〉

+ βn‖xn − x∗‖‖xn+1 − x∗‖ + (
1 − βn − αnγ

)‖xn − x∗‖‖xn+1 − x∗‖
=
[
1 − αn

(
γ − γα

)]‖xn − x∗‖‖xn+1 − x∗‖ + αn

〈
γf(x∗) −Ax∗, xn+1 − x∗〉

≤ 1 − αn

(
γ − γα

)

2

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)
+ αn

〈
γf(x∗) −Ax∗, xn+1 − x∗〉.

≤ 1 − αn

(
γ − γα

)

2
‖xn − x∗‖2 + 1

2
‖xn+1 − x∗‖2 + αn

〈
γf(x∗) −Ax∗, xn+1 − x∗〉.

(2.30)

It follows that

‖xn+1 − x∗‖2 ≤ [
1 − αn

(
γ − γα

)]‖xn − x∗‖2 + 2αn

〈
γf(x∗) −Ax∗, xn+1 − x∗〉. (2.31)

By using Lemma 1.7, we can obtain the desired conclusion easily.

Remark 2.5. If γ = 1 andA = I, the identity mapping, then Theorem 2.4 is reduced to Theorem
3.3 of Plubtieng and Punpaeng [14].

If the sequence {βn} ≡ 0, then Theorem 2.4 is reduced to the following.

Corollary 2.6. Let H be a real Hilbert space H and S = {T(s) : 0 ≤ s < ∞} a nonexpansive
semigroup such that F(S)/= ∅. Let {sn} be a positive real divergent sequence and let {αn} be a sequence
in (0, 1) satisfying the following conditions limn→∞αn = 0 and

∑∞
n=0 αn = ∞. Let f be a α-contraction

and letA be a strongly positive linear bounded self-adjoint operator with the coefficient γ > 0. Assume
that 0 < γ < γ/α. Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnγf(xn) + (I − αnA)
1
sn

∫sn

0
T(s)xnds, n ≥ 0. (2.32)

Then the sequence {xn} defined by above iterative algorithm converges strongly to x∗ ∈ F(S), which
solves the variational inequality (2.10).

Remark 2.7. Corollary 2.6 includes Theorem 2 of Shioji and Takahashi [15] as a special case.
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Remark 2.8. Theorem 2.2 and Corollary 2.6 improve Theorem 3.2 and Theorem 3.4 of Marino
and Xu [9] from a single nonexpansive mapping to a nonexpansive semigroup, respectively.
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