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Let X be a uniformly convex Banach space and S = {T(s) : 0 < s < oo} be a nonexpansive
semigroup such that F(S) = (.o F(T(s)) #0. Consider the iterative method that generates the

sequence {x,} by the algorithm X1 = a,f(x,) + fpxn + (1 — ay, — ) (1/54) 5" T(s)x,ds,n >0,

where {a,}, {B.}, and {s,} are three sequences satisfying certain conditions, f : C — Cis a
contraction mapping. Strong convergence of the algorithm {x,} is proved assuming X either has a
weakly continuous duality map or has a uniformly Gateaux differentiable norm.

1. Introduction

Let X be a real Banach space and let C be a nonempty closed convex subset of X. A mapping
T of C into itself is said to be nonexpansive if |[Tx-Ty|| < |[x—y|| for each x, y € C. We denote
by F(T) the set of fixed points of T. One classical way to study nonexpansive mappings is to
use contractions to approximate a nonexpansive mapping (Browder [1] and Reich [2]). More
precisely, take t € (0,1) and define a contraction T; : C — C by

Tix=tu+(1-)Tx, x€C, (1.1)

where u € C is a fixed point. Banach’s contraction mapping principle guarantees that T; has
a unique fixed point x; in C. It is unclear, in general, what is the behavior of {x;} ast — 0,
even if T has a fixed point. In 1967, in the case of T having a fixed point, Browder [3] proved
that if X is a Hilbert space, then x; converges strongly to the element of F(T) which is nearest
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touin F(T) as t | 0. Song and Xu [4] extended Browder’s result to the setting of Banach
spaces and proved that if X is a uniformly smooth Banach space, then x; converges strongly
to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from
C onto F(T).

Let f be a contraction on H such that ||[fx — fy| < allx — y|, where « € [0,1) is
a constant. Let x € C,t € (0,1) and x; € C be the unique fixed point of the contraction
Six=tf(x)+ (1 -t)Tx, thatis,

Xt = tf(xt) + (]. — t)Txt. (12)

Concerning the convergence problem of the net {x;}, Moudafi [5] and Xu [6] by using
the viscosity approximation method proved that the net {x;} converges strongly to a fixed
point X of T in C which is the unique solution to the following variational inequality:

((I-f)% x-%)>0, VxeF(T). (1.3)

Moreover, Xu [6] also studied the strong convergence of the following iterative
sequence generated by

X1 = Puf (xn) + (1= u)Tx,, n>0, (1.4)

where xo € C is arbitrary, the sequence {f,} in (0,1) satisfies the certain appropriate
conditions.

A family {T(s) : 0 < s < oo} of mappings of C into itself is called a nonexpansive
semigroup if it satisfies the following conditions:

(i) TO)x =xforall x € C;
(ii) T(s+t) =T(s)T(t) forall x,y € Cand s,t > 0;
(iii) |IT(s)x = T(s)y|| < ||lx —y|| forall x,y € C and 5 > 0;
)

(iv) for all x € C, s — T(s)x is continuous.

We denote by F(S) the set of all common fixed points of .S, that is, F(S) = {x € C :
T(s)x = x,0 < s < oo}. It is known that F(S) is closed and convex.

It is an interesting problem to extend above (Moudafi’s [5], Xu’s [6], and so on) results
to the nonexpansive semigroup case. Recently, for the nonexpansive semigroups S = {T(s) :
0 < s < o0}, Plubtieng and Punpaeng [7] studied the continuous scheme {x;} defined by

At

X = tf () + (1= D jo T(s)xids, (15)

where t € (0,1) and {\;} is a positive real divergent net, and the iterative scheme {x,} defined

by

X1 = Anf (Xn) + Ppxn + (1 - ay — ﬁn)sl J‘ ' T(s)x,ds, n>0, (1.6)
nJo
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where xy € C, {a,}, {fn]} are a sequence in (0,1) and {s,} is a positive real divergent real
sequence in the setting of a real Hilbert space. They proved the continuous scheme {x;}
defined by (1.5) and the iterative scheme {x,} defined by (1.6) converge strongly to a fixed
point X of S which is the unique solution of the variational inequality (1.3). At this stage, the
following question arises naturally.

Question 1. Do Plubtieng and Punpaeng’s results hold for the nonexpansive semigroups in a
Banach space?

The purpose of this paper is to give affirmative answers of Question 1. One result of
this paper says that Plubtieng and Punpaeng’s results hold in a uniformly convex Banach
space which has a weakly continuous duality map.

On the other hand, Chen and Song [8] proved the following implicit and explicit
viscosity iteration processes defined by (1.7) to nonexpansive semigroup case,

Sn
X =anf(xn) + (1 - acn)sl f T(s)xyds, n>0,
0

n

1
Xne1 = O f (xy) + (1 - an)s— f T(s)x,ds, n>0.
nJo

And they proved that {x, } converges strongly to a common fixed point of F($) in a uniformly
convex Banach space with a uniformly Gateaux differentiable norm.

Motivated by the above results, the other result of this paper says that Plubtieng
and Punpaeng’s results hold in the framework of uniformly convex Banach space with a
uniformly Gateaux differentiable norm. The results improve and extend the corresponding
results of Plubtieng and Punpaeng [7], Chen and Song [8], Moudafi’s [5], Xu’s [6], and others.

2. Preliminaries

Let X be a real Banach space with inner product (-, -) and norm || -||, respectively. Let J denote
the normalized duality mapping from X into the dual space 2X" given by

J(x) = {x* eX*: (x,x") = ||x|* = ||x*||2}, xeX. (2.1)

In the sequel, we will denote the single valued duality mapping by j. When {x,} is a
sequence in X, then x, — x(x,, — x) will denote strong (weak) convergence of the sequence
{x,} to x.

Let S(X) = {x € X : ||x]| = 1}. Then the norm of X is said to be Gateaux differentiable if

i 1t = Dl 2.2)
t—0 t

exists for each x, y € S(X). In this case, X is called smooth. The norm of X is said to be uniformly
Gateaux differentiable if for each y € S(X), the limit (2.2) is attained uniformly for x € S(X).
It is well known that X is smooth if and only if any duality mapping on X is sigle valued.
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Also if X has a uniformly Gateaux differentiable norm, then the duality mapping is norm-
to-weak* uniformly continuous on bounded sets. The norm of E is called Fréchet differentiable,
if for each x € S(X), the limit (2.2) is attained uniformly for y € S(X). The norm of X is
called uniformly Fréchet differentiable, if the limit (2.2) is attained uniformly for x, y € S(X). It
is well known that (uniformly) Fréchet differentiability of the norm of X implies (uniformly)
Gateaux differentiability of the norm of X and X is uniformly smooth if and only if the norm
of X is uniformly Fréchet differentiable.
A Banach space X is said to be strictly convex if

Il = Iyl =1, x#y implies M <1 (2.3)

A Banach space X is said to be uniformly convex if 6x(¢) > 0 for all € > 0, where 6x(¢)
is modulus of convexity of E defined by

vl <1,

6E(5):inf{1_w Slxll <1, | 25}, e€[0,2]. (2.4)

A uniformly convex Banach space E is reflexive and strictly convex [9, Theorem 4.1.6,
Theorem 4.1.2].

Lemma 2.1 (Goebel and Reich [10], Proposition 5.3). Let C be a nonempty closed convex subset
of a strictly convex Banach space X and T : C — C a nonexpansive mapping with F(T) # 0. Then
F(T) is closed and convex.

Lemma 2.2 (see Xu [11]). In a smooth Banach space X there holds the inequality
lx+yI* <=l +2(y, J(x +v)), x vy, €X. (2.5)

Lemma 2.3 (Browder [12]). Let E be a uniformly convex Banach space, K a nonempty closed convex
subset of E, and T : K — E a nonexpansive mapping. Then I — T is demi closed at zero.

Lemma 2.4 (see [8, Lemma 2.7]). Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X, and let S = {T(s) : 0 < s < oo} be a nonexpansive semigroup on C such that
F(8)#0. For x € Cand t > 0. Then, for any 0 < h < oo,

t t
L fOT(S)xds—T(h)<%IOT(S)XdS>

Recall that a gauge is a continuous strictly increasing function ¢ : [0,00) — [0,00)
such that ¢(0) = 0 and ¢(t) — oo ast — oo. Associated to a gauge ¢ is the duality map
Jp : X — X* defined by

lim sup
t=ooyeC

= 0. (2.6)

Jp(x) = {x" € X" : (x,x7) = ||Ixllp(llxIl), Ix*ll = @(llx)}, xe€X. (2.7)
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Following Browder [13], we say that a Banach space X has a weakly continuous
duality map if there exists a gauge ¢ for which the duality map J, is single valued and
weak-to-weak* sequentially continuous (i.e., if {x,} is a sequence in X weakly convergent

to a point x, then the sequence J,(x,) converges weakly* to J,(x)). It is known that IF has a
weakly continuous duality map for all 1 < p < oo. Set

D(t) = f; p(t)dr, t>0. (2.8)

Then

Jo(x) = 0@([Ix[), x€X, (2.9)

where 0 denotes the subdifferential in the sense of convex analysis. The next lemma is an
immediate consequence of the subdifferential inequality.

Lemma 2.5 (Xu [11, Lemma 2.6]). Assume that X has a weakly continuous duality map J, with
gauge @, for all x,y € X, there holds the inequality

O(|lx + ) < @lxl) + (Y, Jo(x +y))- (2.10)
Lemma 2.6 (Xu [6]). Assume {a,} is a sequence of nonnegative real numbers such that

ap+1 < (1 - Yn)an + 6n/ nz O/ (211)

where {y,} is a sequence in (0,1) and {6, } is a sequence in R such that
(i) X5 yn = o
(ii) imsup, .,  6n/Yn <001 X2 |64] < c0.

Then lim,, _, xat,, = 0.

Finally, we also need the following definitions and results [9, 14]. Let u be a continuous
linear functional on [ satisfying ||x|| = 1 = p(1). Then we know that y is a mean on N if and
only if

inf{a,;n € N} < p(a) <supfa,;ne N}, (2.12)

for every a = (aj, ap, ...) € I*°. Occasionally, we will use y,(a,) instead of p(a). A mean y on
N is called a Banach limit if

pn(an) = pn(ans1), (2.13)
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for every a = (ay, ap, ...) € I1*. Using the Hahn-Banach theorem, or the Tychonoff fixed point
theorem, we can prove the existence of a Banach limit. We know that if y is a Banach limit,
then

liminfa, < py(a,) <limsupa, (2.14)

n— oo

for every a = (aj, ap,...) € 1*.50,if a = (a1, az,...), b = (b1, by,...) € 1®,and a, — c (resp.,
a,—-b, — 0),asn — oo, we have

pn(an) = p(a) = c (resp., pn(an) = pn(by)). (2.15)

Subsequently, the following result was showed in [14, Lemma 1] and [9, Lemma 4.5.4].

Lemma 2.7 (see [14, Lemma 1]). Let C be a nonempty closed convex subset of a Banach space X
with a uniformly Gateaux differentiable norm and {x, } a bounded sequence of E. If zg € C, then

Hnllxn = Z0”2 = r}{ggﬂn”xn - x||2, (2.16)
if and only if
Un(x — 20, J(xn —20)) <0, VxeC. (2.17)

Lemma 2.8 (Song and Xu [4, Proposition 3.1]). Let X be a reflexive strictly convex Banach space
with a uniformly Gateaux differentiable norm, and C a nonempty closed convex subset of X. Suppose
{x,} is a bounded sequence in C such that lim,, . ||x, — Tx,|| = 0, an approximate fixed point of
nonexpansive self-mapping T on C. Define the set

C*= {y € C: phyl|xn —y”z = irelcfj#"”x" - x||2}. (2.18)
IfF(T) #0, then C* N F(T) #4.

3. Implicit Iteration Scheme

Theorem 3.1. Let X be a uniformly convex Banach space that has a weakly continuous duality map
J, with gauge ¢, and let C be a nonempty closed convex subset of X. Let S = {T(s) : 0 < s < oo} be
a nonexpansive semigroup from C into itself such that F(S) = 4o F(T(s))#0and f : C — Ca
contraction mapping with the contractive coefficient a € [0,1). Suppose {A;}o<1 is a net of positive
real numbers such that lim; _, o+ Ay = oo, the sequence {x;} is given by the following equation:

At
xp=tf(x)+(1- t)%t fo T (s)x;ds. (3.1)



Journal of Applied Mathematics 7

Then {x;} converges strongly to X ast — 0%, where X is the unique solution in F(S) of the variational
inequality

(I-f)X,J(x-X)) >0, xeF(S). (3.2)

Proof. Note that F(S) is a nonempty closed convex set by Lemma 2.1. We first show that {x;}
is bounded. Indeed, for any fixed p € F(S), we have

1 (M
=l <l o -pll + a5 [ T(s)xtds-pH

1 (M
<H(lf@) - FPI+1F@) =)+ =0T [ ITOn-plds 33
<t(allx—pll + I f(p) - pI) + A =B)||x —pl|

= [lx = pll =t = @)l = p[l + £l £ (p) = I

It follows that

1
I pll < = 1£ () Pl 64

Thus {x;} is bounded, so are { f(x¢)} and {T(s)x;} for every 0 < s < co. Furthermore, we note
that

[l = T(s)xe] <

1M 1 (M 1 (M
Xt — — f T(s)xids — f T(s)xids—T(s)| — J T(s)xids
A o A o A o

At
+ [T (s) <%f T(s)xtds> —T(s)x; (3.5)
tJo
1 1 1
< 2o — — I T(s)x;ds — f T(s)x;ds—T(s)| — f T(s)xids )||,
./\,t 0 -)Lt 0 ')Lt 0
for every 0 < s < oo. On the one hand, we observe that
x —lJ‘MT(s)de —L”x — f(xt) (3.6)
T, t =7l )|l .
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for every t > 0. On the other hand, let zg € F(S) and D = {z € C : ||z — zo|| < ||f(20) — 20ll},
then D is a nonempty closed bounded convex subset of C which is T(s)-invariant for each
0 < s < oo and contains {x;}. It follows by Lemma 2.4 that

1 1

/\}linoo N Jo T(s)xids —T(s) <)»_t fo T(s)xtds>
(3.7)

1 1

< lim sup —I T(s)xids —T(s) —f T(s)xids )|| = 0.
M=o rep || At Jo A Jo
Hence, by (3.5)-(3.7), we obtain

[[xt =T(s)x¢]] — 0 ast—0, (3.8)

for every 0 < s < oo. Assume {t,};—; C (0,1) is such thatt, — 0Oasn — oo. Put x,, := x4,
An = A, we will show that {x,} contains s subsequence converging strongly to X, where
X € F(5). Since {x,} is a bounded sequence, there is a subsequence {x,,} of {x,} which
converges weakly to X € C. By Lemma 2.3, we have X € F(S). For each n > 1, we have

1 (M
Xp = %=ty (f(xn) = %) + (1= t,) <)T f T(s)xnds — i> (3.9)

0

Thus, by Lemma 2.5, we obtain

D(||x, — X)) = (D<

)

> + tn(f (xn) = X, Jp (X0 — X))

1 ("
ta(f (xn) =X) + (1 - t,) (-)L_n J‘o T(s)xpds — 5c'>

A
< (D<H(1 —ty) <%n fo T(s)x,ds — 5E>
< (1 - tn)(D<

< (1 =t)D(||x, — X|) + tn<f(xn) - X, ](p(xn - i))

(3.10)

1 (M
— J T(s)x,ds—Xx

1 > + tn(f(xn) - i/](p(xn - 52:)>
nJ0

This implies that

D (|, — X)) < <f(xn) _ffj(p(xn _£)> (3.11)
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In particular, we have

o

Xn; —5c'||> < <f<xn].> —i,](p(xnj —5c'>> (3.12)

Now observing that {x,;} — X implies J,(x,,—X) — 0. And since f(x,,) is bounded, it follows
from (3.12) that

o

Xn; = 55”) — 0 asj— oo. (3.13)

Hence x,;, — X.
Next, we show that X € F(S) solves the variational inequality (3.2). Indeed, for g €
F(38), it is easy to see that

0 0

1 (M 1 (™
(-1 [ Temas oG- ) =0 -al)+ (o= 1 [ T s~ )

1 (M
>0 -al) - o [ 1mas| UG-
> (|| - q]]) - @(||x: - ql|)
=0.
(3.14)
However, we note that
1 (M t
Xt — _)L_ J‘ T(s)xtds = 1—(f(xt) - xt). (315)
tJo —t
Thus, we get that for t € (0,1) and g € F(S)
(xt = f(xe), Jp(xe —q)) <0. (3.16)

Taking the limit through t := t,, — 0, we obtain

((I-£)x,J,(¥x-q)) <0, VYgqeF(3). (3.17)
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This implies that
(I-H%J(X-q) <0, VgeF(S), (3.18)

since J,(x) = (¢(llx[])/[lx[1) ] () for x #0.

Finally, we show that the net {x;} convergence strong to X. Assume that there is a
sequence {s,} C (0,1) such thatx,, — X, wheres, — 0. wenoteby Lemma 2.3 thatx € F(S).
It follows from the inequality (3.18) that

((I- )%, J(x-x)) <0. (3.19)
Interchange ¥ and ¥ to obtain
((I-£)x,J(x-%))<0. (3.20)
Adding (3.19) and (3.20) yields
(1-a) % -X* < (F-%- (f(X) - f(),]F-5)) <0. (3.21)

We must have X = x and the uniqueness is proved. In a summary, we have shown that each
cluster point of {x;} ast — 0 equals X. Therefore x;y — Xast — 0. O

Theorem 3.2. Let X be a uniformly convex Banach space with a uniformly Gateaux differentiable
norm and C be a nonempty closed convex subset of X. Let S = {T(s) : 0 < s < oo} be a nonexpansive
semigroup from C into itself such that F(S) = (4o F(T(s))#0 and f : C — C a contraction
mapping with the contractive coefficient a € [0, 1). Suppose {As} o4 is a net of positive real numbers
such that lim; o+ Ay = oo, the sequence {x;} is given by the following equation:

At
xp=tf(x) + (1- t))% jo T(s)x:ds. (3.22)

Then {x;} converges strongly to X ast — 0%, where X is the unique solution in F (S) of the variational
inequality

(I- f)% J(x-%)) 20, xeF(S). (3.23)

Proof. We include only those points in this proof which are different from those already
presented in the proof of Theorem 3.1. As in the proof of Theorem 3.1, we obtain that there is
a subsequence {xy,, } of {x,} which converges weakly to X € F(5). For each n > 1, we have

1 (M
Xn =X =ty (f (xn) —X) + (1 — t,) <r 4[0 T(s)xpds — 3?) (3.24)
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Thus, we have

Ay
(B = <tn (f(xn) = %) + (1 ty) <% f T(s)x,ds — f),](x,, - yc)>
nJo
= ta(f (xn) = f(X) + f(X) = X, ] (0 = X))
1 (M 5 5
+ (1 _tn)<<)t_nJ‘0 T(S)xnds_x>r](xn _x)> (3.25)
< | £ () = FE [T (e = D) + £a(f(X) = %, ] (20 — X))

1 - -
“(1=t)|| - [ TExds - 2|11 - D

< (1= (1= a)ty)||xn = X + ta{ f(F) = F, ] (2 — %))

Therefore,
12 1 o = ~
[l = X||° < m(f(x)—x,](xn—x)} (3.26)
We claim that the set {x,} is sequentially compact. Indeed, define the set
C*= {y €C: punllxn-yl* = )icr€1£yn||xn - x||2}. (3.27)

By Lemma 2.8, we found X € C*. Using Lemma 2.7 we get that

Un(x =X, J(x,— X)) <0, VxeC. (3.28)
From (3.26), we get
palln = FIP € g () - %, e - ) <0, (3.29)
that is
Hanllxn — X|| = 0. (3.30)

Hence, there exists a subsequence {x,, } of {x,} converges strongly to X € F(S) as k — oo.



12 Journal of Applied Mathematics

Next we show that X is a solution in F(S) to the variational inequality (3.23). In fact,
for any fixed x € F(S), there exists a constant M > 0 such that ||x, — x|| < M, then

%6 = xI? = £ (xn) = £ () + X = 2, ] (xtn = X)) + ta(f (%) = X, ] (xn — X))
An
+ {2y —x, J(x, —x)) + (1= t‘n)<)Li J T(s)xyds—x, J(x, — x)> (3.31)
nJo
< (1 +a)t,Mlx, - X[| + tn<f(§) =X, J(xn - x)> + |lxn - x”z'
Therefore,
(f(X) =X, J(x—x,)) < (1 +a)M|x, — X||. (3.32)

Since the duality mapping ]| is single valued and norm topology to weak* topology
uniformly continuous on any bounded subset of a Banach space X with a uniformly Gateaux
differentiable norm, we have

(fE) =%, J(x = xn)) — (f(%) - X, J(x - %)). (3.33)
Taking limit as j — oo in two sides of (3.32), we get

(f(®) -% J(x-%)) <0, VYxeF(S). (3.34)

Finally we will show that the net {x;} convergence strong to X. This section is similar
to that of Theorem 3.1. O

4. Explicit Iterative Scheme

Theorem 4.1. Let X be a uniformly convex Banach space that has a weakly continuous duality map
Jp with gauge ¢ and C be a nonempty closed convex subset of X. Let S = {T(s) : 0 < s < oo} be
a nonexpansive semigroup from C into itself such that F(S) = g F(T(s))#0and f : C — Ca
contraction mapping with the contractive coefficient a € [0,1). Let {a, } and {p,,} be the sequence in
(0, 1) which satisfies an + B < 1, lim,—, oat, — 0, limy, ooy — 0and 377, ay = oo, and {s,} is
a positive real divergent sequence such that lim, _, s, — oo. If the sequence {x,} defined by xo € C
and

X1 = O f (Xn) + Puxn + (1 -y — ﬂn)i J? T(s)x,ds, n>0. (4.1)

Then {x,} converges strongly to X as n — oo, where X is the unique solution in F(S) of the
variational inequality

(I-f)x,J(x-X)) >0, xeF(S). (4.2)
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Proof. Note that F(S) is a nonempty closed convex set. We first show that {x,} is bounded.
Let g € F(S). Thus, we compute that

anf (xn) + Puxn + (1 —an - ﬁn)i Jzn T(s)xpds — q“

21 =l =

< | fGen) =gl + Pullxn = qll + (1= an = fin)

1
s

J "T(s)xnds qH

nJo

< an([If G = F @I +11£(a) = all) + Bullen - 4l

1 ("
+(1-ay _ﬂn)s_fo |T(s)xn — q||ds

(4.3)
< anet||xcn = g|| + an| £ (q) — gl + (1 - an)|[xn - q]|

= (1= an(l =) [|xn = ql| + @]l £ (9) - 4]

< max{ [ - all ;= 170) - all}

@ -all}

< max{ [lx0 -]l

Therefore, {x,} is bounded, { f(x,)} and {T(s)x,} for every 0 < s < oo are also bounded.
Next we show ||x, — T(h)x,|| — 0asn — oco. Notice that

||xn+1 - T(h)xn+1” <

1 (*
Xpsl — — f T(s)x,ds
sn Jo

+ Sl IO T(s)xnds — T(h) (Sl JO T(s)x,,ds)
T <% f; T(s)xnds> CT(h) %
< 2|[ape1 — % Jjn T(s)x,ds (4.4)

+

1 f T(s)xnds — T(h) (Sl JO T(s)xnds>

SnJo

<2a, + 2B,

o) -+ f T(s)xads

SnJo

1 f T(s)xnds — T(h) (Sl f T(s)xnds)

SnJo 0

1 (*
Xy — — j T(s)x,ds
snJ)o

+

Put zp = Prgyxpand D = {z € C: ||z — zo]| < ||x0 — 2ol| + 1/ (1 = )| f (z0) — 20}. Then D
is a nonempty closed bounded convex subset of C which is T (s)-invariant for each s € [0, oo)
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and contains {x,}. So without loss of generality, we may assume that S = {T(s) : 0 < s < oo}
is a nonexpansive semigroup on D. By Lemma 2.4, we get

lim

n—oo

1 f T(s)xnds - T(h) (Sl L T(s)xnds>

SnJo

‘ =0, (4.5)

for every h € [0, o0). On the other hand, since {x,}, { f(x,)}, and {T(s)x,} are bounded, using
the assumption that lim,, , a0, — 0, lim,_, .f, — 0, and (4.5) into (4.4), we get that

[[xpe1 = T(h)xpe1|| — 0 as n — oo, (4.6)
and hence
|, = T(h)xy]| — 0 as n— co. (4.7)
We now show that
(f(%) = %, Jo(xn — %)) <0. (4.8)

Letx; =tf(x;)+(1-t)(1/As) fo)l ' T(s)x;ds, where t and \; satisfies the condition of Theorem 3.1.
Then it follows from Theorem 3.1 that X = lim;_,ox; and X be the unique solution in F(S) of
the variational inequality (3.2). Clearly X is a unique solution of (4.2). Take a subsequence
{x,, } of {x,} such that

lim sup (£ (%) = %, (s = ¥)) = lim ( (%) =%, J (x, = ). ®9)

n—oo

Since X is uniformly convex and hence it is reflexive, we may further assume that x,, — p.
Moreover, we note that p € F(S) by Lemma 2.3 and (4.7). Therefore, from (4.9) and (3.17),
we have

limsup(f (%) = %, Jy(xn = X)) = (f(X) = %, Jo(p — X)) < 0. (4.10)

n— oo

That is (4.8) holds.
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Finally we will show that x,, — X. For each n > 0, we have

O (s - F) = cD(

tn (f (n) = F) + Puon — %) + (1 - —pn)( ! f T (s)xnds — f)

SnJo

)

<@ (llan (f(xn) = £ + 0 () = )+ s -

)

(£ () = F(®)) + Pultn = ) + (1 - @y — o) (l fo T(s)xnds - x) H)

)

+(1—an ) <Sl fo T(s)xnds — 3?)
<o

+a, (f(X) = X, Jp(xpe1 — X))

< cp<ana||xn — 7|+ ulln -l + (1 - @0 B)

1 (%
— I T(s)x,ds—X
s Jo

+a, (f(X) = X, Jp(xpe1 — X))
< D((1 - an(1 - a))lxn = Zl|) + an{f (%) = &, Jp (1 — %))

< (1= ay(1 = a)D(||x, - ZI|) + an(f(F) = X, Jp(Xne1 = %))
(4.11)

An application of Lemma 2.6, we can obtain @(||x, — X||) — 0, hence ||x, — X|| — 0. That s,
{x,} converges strongly to a fixed point X of S. This completes the proof. O

Theorem 4.2. Let X be a uniformly convex Banach space with a uniformly Gateaux differentiable
norm and C be a nonempty closed convex subset of X. Let S = {T(s) : 0 < s < oo} be a nonexpansive
semigroup from C into itself such that F(S) = (4o F(T(s))#0 and f : C — C a contraction
mapping with the contractive coefficient a € [0,1). Let {a,} and {p,} be the sequence in (0, 1) which
satisfies an + B, < 1, lim, , a, — 0, lim, o, — 0, and >, a, = oo, and {s,} is a positive
real divergent sequence such that lim,_, s, — oo. If the sequence {x,} defined by xy € C and

Sn
X1 = Anf(Xn) + Puxtn + (1 — ay - ﬂ")sl f T(s)xpds, n>0. (4.12)
nJo

Then {x,} converges strongly to X as n — oo, where X is the unique solution in F(S) of the
variational inequality

(I-£)%J(x-%))>0, xe€F(3S). (4.13)

Proof. We also show only those points in this proof which are different from that already
presented in the proof of Theorem 4.1. We now show that

(f(X) =%, J(x, - X)) 0. (4.14)
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Leto; = tf (x;)+(1-)(1/ ) fé” "T(s)x;ds, where t and J; satisfies the condition of Theorem 3.2.
Then it follows from Theorem 3.2 that X = lim;_,ox; and X is the unique solution in F(S) of
the variational inequality (3.23). Clearly X is a unique solution of (4.13). Take a subsequence
{x,, } of {x,} such that

limsup(f () - %, ] (e = 9) = lim (f(F) = %, ] (xn, ~ %), (4.15)

n—oo

Since X is uniformly convex and hence it is reflexive, we may further assume that x,, — p.
Moreover, we note that p € F(S) by Lemma 2.3 and (4.7). Therefore, from (4.15) and (3.23),
we have

limsup(f(X) - X, J(x, - X)) = (f(X) - %, J(p -X)) <0. (4.16)

n—oo

That is, (4.14) holds.
Finally we will show that x,, — X. For each n > 0, by Lemma 2.2, we have

2

a, (f(xn) - E) + ﬂn(xn - 55) + (1 -y, — ﬁn) (% J;)" T(s)xnds — f)

2

~12
ll2¢ne1 = X||° =

f" T(s)xds - &) t Bulon - %)

0

Jo-n-sofd

n

+ 20, (f (xn) — X, J (X1 — X))

<(-ar-p0 +ﬁn||xn—o~c||)2

+ 20, ( f(xn) = %, J (Xns1 — X))

< (1= an) 10 = FI)? + 20 (f () = £(2), ] (X1 = %))
+ 20, (f (%) = &, ] (X1 — %))

< (1= an)?[locn = FI + 20| £ (2cn) = FE) || (xns1 = F)|
+2a, (f(X) = X, (xps1 = X))

<(1- an)zllxn - 55'”2 + 2aal|xn — X||[|2tnen — X[ + 2“n<f(§) =X, J(xps1 = §)>

1 (*
‘— J T(s)x,ds — X
s Jo

< (1= )l = I + e ([1n = FI + 01 = FI) + 200 (f(F) = &, T (001 — F)

= ((1 —a,)* + ana) ¢, = %|I* + ana||xp — X|I* + 20, (f(X) = X, J (xps1 — X)),
(4.17)
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which implies that

2
1-2a, +a, + aya

It = P € 5 T = P 4 g () - F (e~ D)
2(1 n a; 2a, o = -
= |1 2y - 5P+ it = F 4 (D) - F (- D)
2(1 - a)ay,
R e R

2(1 — a)an a,M
1- anx {2(1 d) <f(x) x ] Xn+1 — .X')>}
= (1= 6,) 12 = XI|* + 6,
(4.18)

where M = sup{||xn—§||2 :n € N}, 6, =21 -a)a,/(1 — aya), and y,, = (anM/Z(l -
a) + (1/(1 - a)(f(X) = X, J(xp41 — X)). It is easily to see that 6, — 0, >,;2; 6, = oo and
limsup, , y» < 0 by (4.14). Finally by using Lemma 2.6, we can obtain {x,} converges
strongly to a fixed point X € F(S). This completes the proof. O

5. Applications

Theorem 5.1. Let X be a uniformly convex Banach space that has a weakly continuous duality map
J, with gauge ¢ and C be a nonempty closed convex subset of X. Let S = {T(s) : 0 < s < oo} be
a nonexpansive semigroup from C into itself such that F(S) = Ny F(T(s))#0and f : C — C
a contraction mapping with the contractive coefficient a € [0,1). Let {a,} be the sequence in (0,1)
which satisfies im,, _, ,a, — 0and 3,71 a, = oo, and {s,} is a positive real divergent sequence such
that lim,, _, s, — oo. If the sequence {x,} defined by x, € C and

Xps1 = An f(x,) + (1 - an)slj ' T(s)x,ds, n>0. (5.1)
nJo

Then {x,} converges strongly to X as n — oo, where X is the unique solution in F(S) of the
variational inequality

(I-£)%J(x-%))>0, xe€F(S). (5.2)

Proof. Taking f3, = 0 in the in Theorem 4.1, we get the desired conclusion easily. O

Theorem 5.2. Let X be a uniformly convex Banach space with a uniformly Gateaux differentiable
norm and C be a nonempty closed convex subset of X. Let S = {T(s) : 0 < s < oo} be a

nonexpansive semigroup from C into itself such that F(S) = (4o F(T(s))#0and f : C — Ca
contraction mapping with the contractive coefficient a € [0,1). Let {a,} be the sequence in (0,1)
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which satisfies im,, _, ,a, — 0 and >7° 1 a, = oo, and {s,} is a positive real divergent sequence
such that lim, .5, — oo. If the sequence {x,} defined by xo € C and

rn T(s)xyds, n>0. (5.3)

1
Xn+l = anf(-xn) + (1 - lxn)s_
0

n

Then {x,} converges strongly to X as n — oo, where X is the unique solution in F(S) of the
variational inequality

(I- )% J(x-%)) >0, xeF(S). (5.4)

Proof. Taking f3, = 0 in the in Theorem 4.2, we get the desired conclusion easily. O
When X is a Hilbert space, we can get the following corollary easily.

Corollary 5.3 (Reich [2]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
S ={T(s): 0 < s < oo} beastrongly continuous semigroup of nonexpansive mapping on C such that
F(S8) is nonempty. Let {a,, } and { B, } be sequences of real numbers in (0,1) which satisfies a,+p, <1,
lim, e, — 0,lim, B, — 0, and 3,7, a, = co. Let f be a contraction of C into itself with a
coefficient a € [0,1) and {s,} be a positive real divergent sequence such that lim, _, .5, — oo. Then
the sequence {x,} defined by xo € C and

Xn+l = anf(xn) + ﬂnxn + (1 —0n — ﬂn)sl_n J‘Osn T(S)xndS, n> 0. (55)

Then {x,} converges strongly to X, where X is the unique solution in F(S) of the variational
inequality

(I-f)%x-%)>0, xeF(S), (5.6)

or equivalent X = Pr(s)(f)(X), where P is a metric projection mapping from H into F(S).

Funding

This paper is supported by the National Science Foundation of China under Grants (10771050
and 11101305).

References

[1] E E. Browder, “Fixed-point theorems for noncompact mappings in Hilbert space,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 53, pp. 1272-1276, 1965.

[2] S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,”
Journal of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287-292, 1980.

[3] E E. Browder, “Convergence of approximants to fixed points of nonexpansive non-linear mappings
in Banach spaces,” Archive for Rational Mechanics and Analysis, vol. 24, pp. 82-90, 1967.

[4] Y. Song and S. Xu, “Strong convergence theorems for nonexpansive semigroup in Banach spaces,”
Journal of Mathematical Analysis and Applications, vol. 338, no. 1, pp. 152-161, 2008.



Journal of Applied Mathematics 19

[5] A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathematical
Analysis and Applications, vol. 241, no. 1, pp. 46-55, 2000.

[6] H.-K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of Mathematical
Analysis and Applications, vol. 298, no. 1, pp. 279-291, 2004.

[7] S. Plubtieng and R. Punpaeng, “Fixed-point solutions of variational inequalities for nonexpansive
semigroups in Hilbert spaces,” Mathematical and Computer Modelling, vol. 48, no. 1-2, pp. 279-286,
2008.

[8] R. Chen and Y. Song, “Convergence to common fixed point of nonexpansive semigroups,” Journal of
Computational and Applied Mathematics, vol. 200, no. 2, pp. 566-575, 2007.

[9] W. Takahashi, Nonlinear Functional Analysis—Fixed Point Theory and Its Applications, Yokohama
Publishers, Yokohama, Japan, 2000.

[10] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, vol. 83 of
Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1984.

[11] H.-K. Xu, “Strong convergence of an iterative method for nonexpansive and accretive operators,”
Journal of Mathematical Analysis and Applications, vol. 314, no. 2, pp. 631-643, 2006.

[12] E E. Browder, “Semicontractive and semiaccretive nonlinear mappings in Banach spaces,” Bulletin of
the American Mathematical Society, vol. 74, pp. 660—-665, 1968.

[13] E E. Browder, “Convergence theorems for sequences of nonlinear operators in Banach spaces,”
Mathematische Zeitschrift, vol. 100, pp. 201-225, 1967.

[14] W. Takahashi and Y. Ueda, “On Reich’s strong convergence theorems for resolvents of accretive
operators,” Journal of Mathematical Analysis and Applications, vol. 104, no. 2, pp. 546-553, 1984.



