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Two solution schemes are proposed and compared for large 3D soil consolidation problems with
nonassociated plasticity. One solution scheme results in the nonsymmetric linear equations due to
the Newton iteration, while the other leads to the symmetric linear systems due to the symmetrized
stiffness strategies. To solve the resulting linear systems, the QMR and SQMR solver are employed
in conjunction with nonsymmetric and symmetric MSSOR preconditioner, respectively. A simple
footing example and a pile-group example are used to assess the performance of the two solution
schemes. Numerical results disclose that compared to the Newton iterative scheme, the symmetric
stiffness schemes combined with adequate acceleration strategy may lead to a significant reduction
in total computer runtime as well as in memory requirement, indicating that the accelerated
symmetric stiffness method has considerable potential to be exploited to solve very large
problems.

1. Introduction

The wide applications of large-scale finite element analyses for soil consolidation settlements
demand efficient iterative solutions. Among various iterative solvers the Krylov subspace
iterative methods have enjoyed great popularity so that it was ranked as one of top ten
algorithms invented in the 20th century [1]. In large-scale finite element computations, the
success of Krylov subspace iterative methods may be partially attributed to the matrix-vector



2 Journal of Applied Mathematics

multiplications which can be implemented sparsely in the iterative process, but it is the
preconditioning technique that makes Krylov subspace iterative methods become practically
useful.

For an indefinite linear system some preconditioning methods (such as incomplete
LU or ILU) originally proposed for general problems may encounter slow convergence or
even breakdown during the iterative process (e.g., [2]). In the past decade, many researchers
have focused on constructing preconditioners for indefinite problems either by revising a
standard preconditioner or by designing a block preconditioner according to the block matrix
structure. For example, for the indefinite linear equation stemming from Biot’s consolidation
a generalized Jacobi (GJ) preconditioner was proposed by Phoon et al. [3] to overcome the
unbalanced diagonal scaling of standard Jacobi, while to obviate unstable triangular solves
a modified symmetric successive overrelaxation (MSSOR) preconditioner [4] was designed
to enhance the pivots embedded within the standard symmetric successive overrelaxation
(SSOR) factorization. The successes of GJ and MSSOR undoubtedly are attributed to the fact
that both of them were developed based on the block matrix structure. On a separate
track, many other researchers have been working on block preconditioners. Perugia and
Simoncini [5] proposed symmetric indefinite block diagonal preconditioners for mixed
finite element formulations, and, furthermore, Simoncini [6] proposed block triangular pre-
conditioners to couple with symmetric quasiminimal residual (SQMR) [7] for symmetric
saddle-point problems. Keller et al. [8] and Bai et al. [9] developed their own block constraint
preconditioners for indefinite linear systems. For three types of block preconditioners, an in-
depth comparison and eigenvalue study has been carried out by Toh et al. [10], and it was
concluded that the block constraint preconditioner and the diagonal GJ preconditioner could
be more promising for large-scale Biot’s linear system. Recently, more attentions have been
paid to the constraint block structure. For instance, Bergamaschi et al. [11], Ferronato et al.
[12], and Haga et al. [13] defined their own block constraint preconditioners, respectively,
and validated the good performance of their block constraint preconditioners. Furthermore,
Janna et al. [14] developed a parallel block preconditioner for symmetric positive definite
(SPD) matrices by coupling the generalized factored sparse approximate inverse (FSAI)
with ILU factorization, and it was concluded that in many realistic cases the FSAI-ILU
preconditioner is more effective than both FSAI and ILU preconditioners. To resolve the
soil-structure problems in which material stiffness contrast is significant, the partitioned
block diagonal preconditioners were proposed by Chaudhary [15], and numerical results
indicate that the proposed preconditioners are not sensitive to the material stiffness contrast
ratio. Based on the above review, it seems that constructing a preconditioner based on the
block structure of the coefficient matrix has become a popular strategy for large-scale Biot’s
indefinite linear systems.

Soil consolidation accompanied with soil dilatancy may be frequently encountered
in practice, and commonly the soil dilatancy may be modeled by nonassociated plasticity.
The main contribution of the article is that for coupled consolidation problems involving
nonassociated plasticity, two solution strategies are proposed and evaluated, respectively, by
employing a strategy of combining a nonlinear iterative scheme with a corresponding linear
iterative method (e.g., [16, 17]). The paper is organized as follows. In Section 2, the nonlinear
iterative methods are formulated for elastoplastic soil consolidation problems, and the
coupled 2 × 2 nonsymmetric indefinite Biot’s finite element linear system of equation due to
nonassociated plastic flow is derived. In Section 3, the recently proposed block precondition-
ers are reviewed and commented. In Section 4, both symmetric version and nonsymmetric
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version of MSSOR are implemented within the proposed two schemes, respectively, to
solve the soil consolidation examples with nonassociated plasticity, and their performances
are investigated and compared. Finally, some useful observations and conclusions are
summarized in Section 5.

2. Coupled Linear System of Equation Arising from Elastoplastic Biot’s
Consolidation Problems

Soil consolidation is a soil settlement process coupled with dissipation of excess pore
water pressure, and this process may be physically modeled by the widely accepted Biot’s
consolidation theory [18]. Recall that for a fully saturated porous media, the volumetric fluid
content variation within the soil skeleton is solely related to the deformation of solid skeleton,
that is,

∇ · σ(x, t) − γb = 0, (x, t) ∈ Ω × (0, T], (2.1)

in which the Terzaghi’s effective stress principle σ = σ
′
+ p is applied; b = [0, 0, 1]T is the

unit body force vector; γ is the total unit weight; Ω is the solution domain; T is the total
analyzing time. For the fully saturated porous media, the pore fluid should comply with the
fluid continuity equation or the mass-conservation equation, that is,

∇ · u̇(x, t) +∇ · vf(x, t) = 0, (2.2)

where ∇ · u̇ = ε̇v with εv as the volumetric strain, the dot symbol over any symbols means
time differentiation, and u is the displacement vector; the fluid velocity vf is described by
Darcy’s law

vf = − [k]
γf

(∇p − γfb
)
. (2.3)

Here, γf is the unit weight of pore fluid; [k] = [ks] is the hydraulic conductivity tensor (it
is a diagonal matrix [ks] = diag(ks,x, ks,y, ks,z) when orthogonal hydraulic conductivity
properties are assumed) for saturated flow. The solution domain Ω has the complementary
boundary conditions may be given as ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅ with ∂ΩD

for the Dirichlet (or prescribed displacement and pore pressure) boundary and ∂ΩN for
the Neumann (or prescribed force and flux) boundary. After discretizing (2.1) and (2.2) in
space and time domain, respectively, the incremental form of Biot’s finite element equation is
derived as (e.g., [19]):

[
K L
LT −θΔtG

]{
Δu
Δpex

}
=
{

Δf
ΔtGpex

n

}
(2.4)
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in which the subblocks within the coupled matrix are defined, respectively, as

K =
∑

e

(∫
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BT
uDepBudV

)

,

L =
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e
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u1NpdV

)

,

G =
∑

e

(∫
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BT
p

[k]
γf

BpdV

)

,

(2.5)

where Dep is the constitutive matrix; Bu, Bp is the gradient of shape function Nu and Np

used for interpolating the displacement u and the excess pore pressure pex, respectively; 1 =
[1 1 1 0 0 0]T ; Δt is the time increment; θ is the time integration parameter ranging from 0
to 1; θ =1/2 corresponds to the second-order accuracy Crank-Nicolson method, while θ =1
leads to the fully implicit method possessing the first-order accuracy.

Equation (2.4) is the discretized finite element equation for each time increment, and
to be convenient the following weak form of the residual equation is used to derive the
nonlinear iterative process,

R(u;pex) =
[
Ru

Rp

]
=

[
Fext
u

Fext
p

]

−
[
Fint
u

Fint
p

]

=
[
0
0

]
, (2.6)

where R is the residual or out-of-balance force vector derived from the total potential energy
Φ(u;pex); Fext is the applied external force at current time increment, and its two parts
corresponding to u and pex, respectively, have been presented in the RHS of (2.4). Noting
that the deformation of soil skeleton is solely caused by the effective stress, the internal forces
Fint
u and Fint

p may be expressed, respectively, as below,

Fint
u =

∫

V

BT
uσ

′dV +
∫

V

BT
up

exdV,

Fint
p =

∫

V

NT
pεdV + θΔt

∫

V

BT
pvfdV.

(2.7)

Applying the first-order Taylor expansion to (2.6) leads to the following Newton-Raphson
(NR) iteration:

R
(
uk−1;pex

k−1

)
+Ak−1

[
δuk

δpex
k

]
= 0, (2.8)

[
uk

pex
k

]
=
[
uk−1

pex
k−1

]
+
[
δuk

δpex
k

]
, (2.9)
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where

Ak−1 =

⎡
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∂Ru

∂pex
=

[
∂Rp

∂u

]T
= −L, ∂Rp

∂pex
= θΔtG (2.10)

in which it is apparent that L is independent of time increment and iterative process due to
small-strain finite element computation, and G is independent of time increment and iterative
process due to the saturated soil assumption. In Ak−1, the gradient of Ru about u is the
tangential solid stiffness matrix,

KT = −∂Ru

∂u
=

∂Fint
u (u)
∂u

, (2.11)

and KT is assembled by the element stiffness kep, that is,

KT =
∑

elements

∂
(∫

V e BTDepBdV ue

)

∂u
=
∑

elements

kep with kep =
∫

V e

BTDepBdV. (2.12)

Evidently, the symmetry of KT or the 2 × 2 coupled matrix Ak−1 in (2.10) is governed by Dep,
which may be expressed as

Dep = De −Dp = De − DebaTDe

aTDeb − cTh
, (2.13)

where a = ∂σF represents the yield surface normal vector, b = ∂σG denotes the plastic flow
direction vector, while c = ∂qF is the gradient of yield function (i.e., F) about the internal
variables of the soil model. In conventional elastoplastic soil models, the physically associated
plastic flow leads to symmetric Dep due to b = a, while the nonassociated plastic flow results
in nonsymmetric Dep due to b/= a. For convenience, (2.8) may be further expressed as

[
Kk−1 L
LT −θΔtG

]{
δu
δpex

}

k

= Rk−1 = Fext − Fint
k−1, (2.14)

where the superscript k signifies the nonlinear iteration count within each time increment.
To distinguish the nonlinear iterative process from the Krylov subspace iterative process, the
iteration count for the first process as described by (2.14) is called nonlinear iteration count,
while the second Krylov subspace process is a linear iterative process, and the iteration count
for this process is called linear iteration count.

In the nonlinear iterative process, the search direction dk may be computed inexactly
(i.e., dk ≈ [δu; δpex]Tk), leading to the so-called inexact Newton method whose convergence
is governed by (e.g., [16, 17]),

‖Rk−1 +Ak−1dk‖ ≤ ηk−1‖Rk−1‖, (2.15)



6 Journal of Applied Mathematics

where ηk−1 ∈ [0, 1) is the forcing term. With the computed search direction dk, the displace-
ment is updated by

[
uk

pex
k

]
=
[
uk−1

pex
k−1

]
+ χk

[
δuk

δpex
k

]
(2.16)

in which χk is the step-length parameter, which may be determined by some optimization
strategies. The inexact computation of dk may arise from the approximate solve of dk or the
approximation to Ak−1.

For ease of presentation, the linear system of equation at each nonlinear iteration as
shown by (2.14) is expressed concisely as

[
K B
BT −C

]{
x
y

}
=
{
f
g

}
with A =

[
K B
BT −C

]

N×N
. (2.17)

3. Block-Structured Preconditioners

Here, the block-structured preconditioners are defined as those developed according to the
coefficient matrix block structure, and hence they include the block preconditioners and those
modified preconditioners inspired by the matrix block structure.

3.1. Block Preconditioners for Biot’s Linear System of Equation

Block preconditioners can be classified into three types as mentioned previously. According
to Toh et al. [10], it could be convenient to derive the preconditioners based on the matrix
inverse. Note that the inverse of the 2 × 2 matrix in (2.17) may be expressed as

[
K B2

BT
1 −C

]−1

=
[
K−1 −K−1B2S

−1BT
1 K

−1 K−1B2S
−1

S−1BT
1 K

−1 −S−1

]
(3.1)

in which S = C + BT
1 K

−1B2 (with B1 = B2) is the Schur complement matrix. Given a vector [u;
v] and a block preconditioner M ≈ A with the approximation K̂ and Ŝ to K and S, respec-
tively. Hence, the preconditioning step may be written as the following.

Preconditioning Step M−1[u;v]:

solve p = K̂−1u,

solve q = Ŝ−1(BT
1 p − v),

compute M−1[u, v]T = [K̂−1(u − B2q); q].

The above preconditioning step has already been introduced in [4, 10] for the block
constraint preconditioners; however, it is highlighted here as a unified computational frame-
work for all block preconditioners. It can be observed that within the above preconditioning
step, canceling the terms associated with off-diagonal subblocks B1 and B2 corresponds
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Table 1: Block preconditioners recently proposed for Biot’s linear system.

Authors
Block preconditioner

Type K̂ Ŝ

Phoon et al. [3] Diagonal Diag(K) diag[C + BT diag(K)−1B]

Direct inverse Direct inverse

Simoncini [6] Triangular K C + BTB

Incomplete Cholesky Incomplete Cholesky

Toh et al. [10] All three types diag(K) C + BTK̂−1B

Direct inverse Incomplete or sparse Cholesky

Bergamaschi et
al. [11]

Constraint LKLK
T& (ZZT )−1

C + BTK̂−1B

Incomplete Cholesky and
approximate inverse Incomplete Cholesky

Haga et al. [13] Constraint diag(K) & K
diag[C + BT diag (K)−1B] &

C + BT diag (K)−1B

AMG Direct inverse & AMG

Chaudhary
[15] Diagonal

Partitioned block
diagonal diag[C + BT diag(K)−1B]

Cholesky & direct inverse Direct inverse

to the block diagonal preconditioning, while canceling either B1 or B2 corresponds to
the block triangular types. Depending on how K̂ and Ŝ are approximated, various block
preconditioners may be developed. Regardless of the type of preconditioners adopted,
solving the linear systems associated with K̂ and Ŝ can not be obviated. Consequently, how
K̂ and Ŝ are approximated and how these linear systems are solved efficiently are the key
features distinguishing recently proposed block preconditioners. For example, Phoon et al.
[3] proposed the diagonal approximations to both K̂ and Ŝ so that the inverses of K̂ and Ŝ
can be directly attained. While in the block constraint preconditioner proposed by Toh et al.
[10], because it is observed that the size of K is significantly larger than that of S, a diagonal
approximation is employed for K, and the incomplete or sparse Cholesky factorization is
recommended for Ŝ. In another version of block constraint preconditioner proposed by
Bergamaschi et al. [11, 12], the incomplete Cholesky factorization and factorized approximate
inverse are adopted for K̂ and Ŝ, respectively. Different from the previous studies, Haga et al.
[13] recommended solving the linear systems K̂ and Ŝ using the algebraic multigrid (AMG)
method. To summarize the key differences, these block preconditioners with the proposed
K̂ and Ŝ as well as the corresponding solution schemes are tabulated in Table 1. In the
table, all block preconditioners are categorized into three types including the block diagonal
preconditioners, block triangular preconditioners, and block constraint preconditioners
which are denoted as “diagonal,” “constraint,” and “triangular,” respectively.

3.2. Modified Preconditioners Based on Matrix Block Structure

There are some advantages to developing preconditioners based on the matrix block
structure, particularly in the case of block indefinite linear systems. It is natural to hope
that modifying some standard or general preconditioning techniques may lead to improved
versions. For instance, the generalized Jacobi preconditioner [3] may be viewed as an



8 Journal of Applied Mathematics

improved version of standard Jacobi preconditioner by referring to the block diagonal. The
MSSOR preconditioner [4] may also be regarded as a good example that demonstrates how
to develop a preconditioner based on a standard preconditioner to suit indefinite problems.
The general nonsymmetric form of MSSOR may be expressed as below

MMSSOR =
(
LA +

D

ω

)(
D

ω

)−1(
UA +

D

ω

)
=
(
LA + D̃

)
D̃−1
(
UA + D̃

)
, (3.2)

where ω ∈ [1, 2] is the relaxation parameter; LA, UA is the strictly lower and upper part of
matrix A, respectively, that is, A = LA + UA + DA. For symmetric linear equation, LA = UT

A

leads to the symmetric MSSOR. D is the modified diagonal and it is recommended to take GJ,
that is,

D = MGJ =

[
diag(K) 0

0 α diag
(
Ŝ
)
]

(3.3)

in which α is a scaling factor which is recommended to be −4 according to the eigenvalue
study. It is clear that MSSOR preconditioner can be implemented efficiently when combined
with the Eisenstat trick [20]. In the following part, both symmetric version and nonsymmetric
version of MSSOR preconditioner will be employed for large-scale nonlinear soil consolida-
tion involving nonassociated plasticity.

4. Numerical Experiments

To simulate soil dilatancy during the soil consolidation process, an elastoplastic soil model
with nonassociated plasticity should be used [21]. The nonassociated plasticity theory is
a generalization of the classical elastoplastic theory by introducing a new plastic potential
function [22], and in the past decades the nonassociated plasticity theory is widely applied
in practical finite element analyses.

It is also well known that when the nonassociated plastic soil models are employed in
finite element analysis, the resulting linear systems of equations are nonsymmetric. Solving
the linear equations separately from the nonlinear iterative procedure may not be wise,
because an appropriate combination between the outer nonlinear iterative scheme and an
inner linear iterative solution may lead to a significant reduction in computer runtime with-
out sacrificing accuracy [17]. In this work, two solution schemes are proposed and compared
for the target problem.

Scheme 1. Applying the Newton-Krylov iterative method. As shown by (2.8), the resultant
linear system is nonsymmetric at each Newton iteration, a nonsymmetric Krylov subspace
iterative method, such as quasiminimal residual (QMR) [23], is adopted, and hence the
nonsymmetric MSSOR preconditioner is used to accelerate its convergence.

Scheme 2. Compared to the nonsymmetric linear systems, solving the symmetric linear
systems could lead to a saving in required memory and computer runtime. Therefore,
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accelerated nonlinear solution schemes with symmetrized stiffness are attempted here, that
is, at each nonlinear iteration one attempts to solve

R
(
uk−1;pex

k−1

)
+ Âk−1

[
δuk

δpex
k

]
= 0, (4.1)

and the solution vector may be updated according to (2.16). The difficulty associated with
the scheme is how to construct the symmetric linear systems. In the accelerated symmetric
stiffness method proposed by Chen and Cheng [24], the idea is to construct the symmetric
constitutive matrix as

sym
(
Dep

)
= De − sym

(
Dp

)
, (4.2)

where sym(·) is a symmetrizing symbol. When sym(Dep) = De, it corresponds to the initial
stiffness (IS) method proposed by Zienkiewicz et al. [25]. When it is defined that

sym
(
Dep

)
= DG

ep = De − DebbTDe

bTDeb − cTGhG

(4.3)

which corresponds to the so-called accelerated KG approach. In (2.16), the step-length pa-
rameter χk can be determined by some optimization strategies such as the Chen’s method
[26] and Thomas’ method [27]. Chen’s method is derived by minimizing the out-of-balance
load at next iteration in the least-squares sense, while the Thomas method is proposed by
minimizing the “symmetric” displacement at the next iteration in the least-squares sense.
In this study, the solution vector consists of coupled displacement and excess pore water
pressure degrees of freedom (DOFs). The Chen method may be more straightforward to
apply in this case, which will be demonstrated by the following numerical experiments. As a
result, by using the present scheme, the symmetric MSSOR preconditioner may be adopted
to accelerate the convergence of the SQMR solver.

4.1. Convergence Criteria

In the examples to be studied, the nonlinear iteration is terminated if the relative residual
force criterion is satisfied,

‖Rk‖2

‖Fext‖2
≤ Tol NL or k ≥ Maxit NL, (k = 0, 1, . . .) (4.4)

in which Tol NL and Maxit NL are the prescribed tolerance and the maximum nonlinear
iterative number, respectively, and in this study Tol NL and Maxit NL are set as 0.01 and
50. For the employed Krylov subspace iterative method, the relative residual convergence
criterion is adopted,

∥∥∥Rk−1 −Ak−1[δu; δpex]Tk,j
∥∥∥

2

‖Rk−1‖2
≤ Tol Lin, or j ≥ Maxit Lin,

(
j = 0, 1, . . .

), (4.5)
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Figure 1: The 20 × 20 × 20 finite element mesh of the flexible footing.

in which zero initial guess is assumed; j is the linear iterative index; Tol Lin and Maxit Lin
are the prescribed tolerance and the maximum iterative number, respectively, and in this
study Maxit Lin is set as 50000. While to achieve a better performance for the adopted
nonlinear scheme, a combined tolerance (in which Tol Lin = 1.E − 5 is used if the residual
load is the external applied force, or Tol Lin = 1.E − 3 is used if the residual load is the
out-of-balance force) is employed, as recommended by Chen and Cheng [24]. Based on our
numerical experiences, this recommendation is reasonable because the deformation of a soil
body induced by an external load is usually large and should be solved more accurately,
while corrections of the deformation to resolve out-of-balance loads are relatively smaller in
magnitude and hence may be solved with a less strict tolerance.

In addition, it should be mentioned that the uniform substepping method with
nsubstep = 500 (i.e., the number of substeps) is adopted for stress-strain integration. For
more advanced automatic substepping algorithms, see Abbo [28]. In the present study, an
ordinary personal computer platform equipped with a 2.4 GHz Intel Core(TM)2 Duo CPU
and 3 GB physical memory is used.

4.2. Homogeneous Flexible Footing

To investigate and compare the two schemes proposed, a simple flexible footing problem with
homogeneous soil material is simulated. For the homogenous soil property, the hydraulic
conductivity is assumed to be ks,x = ks,y = ks,z = 10−9 m/s, the effective Young’s modulus E′

as 10 MPa, and the Poisson’s ratio as ν′ = 0.3. The nonassociated Mohr-Coulomb soil model is
used to simulate soil plasticity with the cohesion c′=10 kPa, the internal friction angle φ′ = 30◦

and the dilatancy angle ϕ = 5◦. The K0 approach is used to generate the initial field stress with
K0 = 1 − sinφ′ and soil unit weight is γ = 18 kN/m3. Due to the geometric symmetry, only a
quadrant of the footing is modeled with the solution domain discretized by 8000 (20 × 20 ×
20) 20-node hexahedral consolidation elements as shown in Figure 1, and the resultant total
number of DOFs is 107180. For the boundary conditions, standard displacement fixities are
assumed, and only the ground surface is drained. The uniform pressure load is applied on a
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Table 2: Performance of different solution schemes for the flexible footing example.

Load step no. Number of
nonlinear iteration

Average iterations for
each linear system

Total solution
time (hours)

Scheme 1: Newton + QMR preconditioned by nonsymmetric MSSOR

1 1 1940 0.137
2 4 1755 0.494
3 5 1756 0.624
4 5 1732 0.625
5 6 1723 0.751
Total 21 — 2.662

Scheme 2: IS (Chen) method + SQMR preconditioned by symmetric MSSOR

1 1 1060 0.061
2 4 780 0.180
3 5 780 0.241
4 6 793 0.308
5 6 753 0.317
Total 22 — 1.129

Scheme 2: KG (Chen) method + SQMR preconditioned by symmetric MSSOR

1 1 1060 0.060
2 4 845 0.182
3 4 865 0.189
4 4 855 0.200
5 5 860 0.256
Total 18 — 0.903

1 × 1 m2 area. It is increased incrementally using a total of 5 load steps. Each load increment
is 0.1 MPa per second.

Table 2 provides the numerical performance of two solution schemes proposed above,
that is, the Newton-Krylov (i.e., Newton-QMR) solution scheme and the Chen accelerated
symmetric stiffness scheme. In the two schemes, the nonsymmetric MSSOR and symmetric
MSSOR are used in conjunction with QMR and SQMR solver, respectively. Because the
combined tolerance is used, the required linear iterative count for the first nonlinear iteration
is higher than the following nonlinear iterations. When comparing the two schemes, it is
found that the average iterative count required by MSSOR-preconditioned QMR is about
two times of that required by MSSOR preconditioned SQMR solver, explaining the final
results. In addition, the fact that two matrix-vector products are required in each iteration
of QMR contributes to the longer computer runtime. Note that the average iterative count
required by SQMR in Chen accelerated IS method is slightly smaller than that required by
SQMR in Chen accelerated KG method, indicating that the initial stiffness (i.e., the elastic
stiffness) could be better conditioned. When observing the required nonlinear iterations by
each scheme, it is interesting to note that three solution strategies (i.e., the Newton scheme,
the Chen accelerated IS method, and Chen accelerated KG method) exhibit similar nonlinear
iterative behavior, although the Chen accelerated KG method leads to slightly less nonlinear
iterations (i.e., 18) than the other two counterparts. The exhibited similarity in nonlinear
convergence indicates that the nonlinearity in the present problem is not strong. Obviously,
for the homogeneous flexible footing problem the Chen accelerated KG method coupled with
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Soil layer 1

Soil layer 2

Soil layer 3

Figure 2: The finite element mesh of heterogeneous pile-group example.

Table 3: Material properties for the pile-group foundation.

Material E′ (MPa) ν′ k (m/s) c′ (kPa) φ′ (◦) ϕ (◦)
Soil layer 1 20 0.3 10−5 5 35 5
Soil layer 2 8 0.3 10−9 50 30 8
Soil layer 3 50 0.3 10−6 10 35 7
Pile and pile cap concrete 3 × 107 0.18 10−14 — — —

MSSOR preconditioned SQMR solver may lead to a 66% reduction in total computer runtime
than the Newton-QMR scheme preconditioned by nonsymmetric MSSOR. Even for the Chen
accelerated IS method, a 57% reduction of total computer runtime can be achieved. It is
noteworthy that the Thomas’ acceleration strategy appears to be more effective in a past study
[24]. However, for the coupled consolidation problem discussed in the present study, the
Thomas accelerated IS method requires 1, 4, 7, 8, 8 nonlinear iterations, respectively, for the
five load steps, while the Thomas accelerated KG method takes 1, 5, 8, 6 nonlinear iterations,
respectively, for the first four load steps, but it fails to converge at the last load step.

4.3. Heterogeneous Soil-Structure Interaction Example

A pile-group example is used to demonstrate the interaction between soil and structure.
Because of the significant contrast in material stiffness between soils and concrete, the
performance of the MSSOR preconditioner may deteriorate with the increasing contrast ratio,
as noticed and investigated by Chaudhary [15]. As shown in Figure 2, the pile-group finite
element mesh has total 4944 elements, in which 430 are concrete elements. The material
properties for soils and concrete are tabulated in Table 3. From the table, it is seen that the
concrete material is modeled by linear elastic consolidation elements with extremely small
permeability, but the soils are still simulated by the Mohr-Coulomb model.
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Table 4: Performance of different solution schemes for the pile-group example.

Load step no. Number of
nonlinear iteration

Average iterations for
each linear system

Total solution
time (hours)

Scheme 1: Newton + QMR preconditioned by nonsymmetric MSSOR

1 4 7400 0.951

2 5 7944 1.276

3 6 (1) 13967 2.601

Total 15 — 4.823

Scheme 2: IS (Chen) method + SQMR preconditioned by symmetric MSSOR

1 8 3300 0.464

2 13 3095 0.707

3 12 3020 0.636

Total 33 — 1.801

Scheme 2: KG (Chen) method + SQMR preconditioned by symmetric MSSOR

1 4 3410 0.242

2 5 3180 0.283

3 6 3284 0.349

Total 15 — 0.874

Table 4 provides numerical results of these solution schemes for the pile-group
example. To be efficient for the accelerated symmetric stiffness methods, the combined
tolerance introduced in Section 4.1 is still adopted. In the pile-group example, three uniform
load steps are simulated and the pressure increment of 50 kPa is applied on the pile cap
for a 2-day time increment. Similar to the flexible footing example, the iteration number
spent by nonsymmetric MSSOR-preconditioned QMR is about two times of that of MSSOR-
preconditioned SQMR solver. From the nonlinear iteration counts, it is seen that the Chen
accelerated KG method achieves a similar convergence rate as that of the Newton method,
but at the third load step QMR solver dose not converge at one nonlinear iteration, which
denoted by the bracketed number. Hence, at that load step the average iterative number
for each linear system is remarkably increased because of Maxit Lin = 50000. Compared
to the Newton method, the Chen accelerated symmetric stiffness methods show better
convergence behaviors, while the Chen accelerated IS method may be markedly slower than
Newton method, indicating that the soil-structure interaction involving significant contrast
in material stiffness may produce a stronger nonlinearity than the simple homogeneous
footing problem. Upon close examination of the computer runtime, it is noticed that
even though it is slower in convergence, the Chen accelerated IS method may lead to a
reduction of 63% in computer runtime compared with the Newton method. When using
KG symmetric stiffness, the resultant convergence rate is similar to the Newton method, the
saving in computer runtime is more impressive and a reduction of 82% may be attained.
Furthermore, the Thomas acceleration scheme is examined for the initial stiffness and the
KG stiffness matrix, respectively. Both nonlinear solution strategies associated with the
Thomas acceleration scheme fail, indicating that the Thomas acceleration scheme may not be
suitable for problems involving coupled pore water pressure and the displacement degrees of
freedom.
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5. Conclusions

Soil consolidation accompanied with soil dilatancy may be frequently encountered in prac-
tice, and usually it can be modeled by nonassociated soil models. Due to the nonassociated
soil model, the resultant finite element linear equation is nonsymmetric. To solve the nonsym-
metric coupled Biot’s linear systems of equations, two schemes in conjunction with MSSOR
preconditioner are proposed and examined. Some useful observations are summarized as
follows.

(1) Two schemes are proposed for the Biot’s consolidation problem involving nonasso-
ciated plasticity. Depending on the discretized linear equations, both nonsymmetric
and symmetric MSSOR preconditioners are adopted for such problems,

(2) In the accelerated symmetric stiffness methods for coupled consolidation problems,
the Thomas’ acceleration strategy does not exhibit better convergence behaviors
as observed in the previous studies. On the other hand, the Chen’s acceleration
strategy is more effective, and hence it is the recommended approach for such
coupled consolidation problems.

(3) Compared to the Newton solution scheme which adopts the QMR solver precondi-
tioned by nonsymmetric MSSOR preconditioner, the Chen accelerated symmetric
stiffness approaches, which use the SQMR solver preconditioned by the symmetric
MSSOR, may lead to a significant reduction in computer runtime. Based on the
above numerical experiments, it may be concluded that the Chen accelerated sym-
metric stiffness methods have considerable potential to be exploited for solution of
large-scale Biot’s consolidation problems.
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