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The implementation of and the solution to large computational models is becoming quite
a common effort in both engineering and applied sciences. The accurate and cost-effective
numerical solution to the sequence of linearized algebraic systems of equations arising
from these models often represents the main memory-demanding and time-consuming task.
Direct methods for sparse linear systems often represent the de facto solver in several
commercial codes on the basis of their robustness and reliability. However, these methods
scale poorly with the matrix size, especially on three-dimensional problems. For such large
systems, iterative methods based on Krylov subspaces can be a much more attractive
option. A significant number of general-purpose Krylov subspace, or conjugate gradient-
like, solvers have been developed during the 70s through the 90s. Interest in these solvers
is growing in many areas of engineering and scientific computing. Nonetheless, to become
really competitive with direct solvers, iterative methods typically need an appropriate
preconditioning to achieve convergence in a reasonable number of iterations and time.

The term “preconditioning” refers to “the art of transforming a problem that appears
intractable into another whose solution can be approximated rapidly” [L.N. Trefethen and D.
Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997], while the “preconditioner” is
the operator that is responsible for such a transformation. It is widely recognized that
preconditioning is the key factor to increasing the robustness and the computational
efficiency of iterative methods. Generally speaking, there are three basic requirements for a
good preconditioner: (i) the preconditioned matrix should have a clustered eigenspectrum
away from 0; (ii) the preconditioner should be as cheap to compute as possible;
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(iii) its application to a vector should be cost-effective. It goes without saying that these are
conflicting requirements, and an appropriate trade-offmust be found for any specific problem
at hand. Unfortunately, theoretical results are few, and frequently somewhat “empirical”
algorithms may work surprisingly well despite the lack of a rigorous foundation. This is
why finding a good preconditioner for solving a sparse linear system can be viewed rather
as “a combination of art and science” [Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM,
Philadelphia, 2003] than a rigorous mathematical exercise.

Research on the construction of effective preconditioners has significantly grown
over the last two decades. Currently, preconditioning appears to be a much more active
and promising research field than either direct or iterative solution methods, particularly
within the context of the fast evolution of the hardware technology. On one hand, this
is due to the understanding that there are virtually no limits to the available options for
obtaining a good preconditioner. On the other hand, it is also generally recognized that an
optimal general-purpose preconditioner is unlikely to exist. There are undoubtedly fertile
grounds for research in improving the solution efficiency of a specific problem within a
specific computing environment. From this viewpoint, the knowledge of the governing
physical processes, the structure of the resulting discrete system, and the prevailing computer
technology are essential aspects that cannot be ignored when addressing the development of
an appropriate preconditioning technique.

The present special issue of Journal of Applied Mathematics is intended to provide
some insight on efficient preconditioning techniques in computational engineering and
sciences. This special issue should not be viewed as a comprehensive survey or an exhaustive
compilation of all the current trends in preconditioning research. However, the papers
included in this volume cover different algorithms and applications, thus offering an
overview of the recent advances achieved in this field and suggesting potential future
research directions.

The special issue contains 11 articles addressing the numerical solution to sparse linear
systems and eigenproblems arising from different applications, including the Helmholtz
equation in electromagnetics and seismology, steady and unsteady Navier-Stokes equations
for incompressible flow, soil consolidation with nonassociated plasticity, optimal control
problems governed by coupled elliptic-type equations, graph approaches for electric power
networks, industrial processes and traffic models, and the equilibrium of multibody discrete
systems. The different linear systems and eigenproblems arising from these applications are
addressed using (a) algebraic preconditioners, that is, general-purpose algorithms requiring
the knowledge of the coefficient matrix only, and (b) problem-specific preconditioners,
that is, specialized methods based on the peculiar structure of the mathematical problem
at hand. In group (a), novel formulations of the algebraic multigrid (AMG) method are
proposed and tested, using aggregation and parallel wavelet techniques as smoothers in
a parallel environment, modified symmetric successive overrelaxation (MSSOR) iterations
are introduced in both electromagnetics and soil consolidation, and factorized sparse
approximate inverse- (FSAI-) based algorithms are developed for large symmetric positive
definite parallel eigenanalyses. In group (b), an important role is played by saddle-
point matrices, which can be encountered in several different applications. Such problems
are typically addressed by specific algorithms, which can also make use of algebraic
preconditioners as a kernel. Three papers are devoted to the development and testing of
methods for saddle-point matrices, using the Hermitian/Skew-Hermitian (HSS) approach,
the semi-implicit method for pressure linked equations (SIMPLE), and a relaxed splitting
preconditioner. Finally, problem-specific approaches based on the mathematical structure of
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the native application are considered for the solution to optimal control problems discretized
with spectral elements, the equilibrium of multibody discrete systems, and the observability
of physical processes through a graph approach.
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