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This paper employs the numerical assembly method (NAM) to determine the exact frequency-
response amplitudes of an offshore structure such as piles or towers having the form of a hollow
column filled with multiple fluids, immersed in water, carrying an eccentric tip mass supported
by a translational spring and/or a rotational spring, and subjected to a harmonic force. The hollow
column is modeled as a Bernoulli-Euler cantilever beam fixed at the bottom. For the case of
zero harmonic force, the simultaneous equations of the vibration system reduce to an eigenvalue
problem so that the natural frequencies and mode shapes of the beam can also be obtained. The
effect of height of filled fluids on the characteristics of free vibration is also presented.

1. Introduction

In offshore engineering, structures such as towers or piles immersed inwater can be predicted
with rational accuracy from a fixedly supported beam with a tip mass. Many important
papers [1–5] have been published in the field. Those researches was assumed that the
beam was solid or empty hollow. Chan and Zhang [6] presented the natural frequency of a
cantilever tube filled with only one liquid by using the continuity and equilibrium conditions
at the liquid level position. Amabili [7] studied the free vibration of circular cylindrical shells
and tubes completely filledwith one dense fluid and partially immersed in one different fluid.
Wu at el. [8–10] used three different methods to present the natural frequencies and mode
shapes of an immersed solid beam carrying an eccentric tip mass with rotary inertia. Lin
[11–13] presented the exact natural frequencies and mode shape of a beam carrying multiple
concentrated elements.
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From the foregoing literature review one finds that the literature regarding deter-
mination of the natural frequencies and mode shapes of a hollow beam (partially or
completely) filled with fluids of different densities and (partially or completely) immersed
in different fluids is little. In this paper an accurate method is presented to determine the
natural frequencies and mode shapes of an immersed hollow beam filled with fluids of
different densities and carrying an eccentric tip mass supported by a rotational spring and a
translational spring. The vibration characteristics of the beam system subjected to a harmonic
force are also presented.

In the exploratory offshore drilling operations, the long slender vertical cylindrical
pipe placed between the sea surface and the ocean floor for conveying various fluids is called
“riser.” In the existing literature concerning the analyses of marine risers [14], the fluids in
the “riser” are assumed to be uniform with constant mass density for simplicity. In practice,
the last assumption may be different from the actual situations to some degree, because the
riser pipe may be filled with several fluids with different mass densities simultaneously, such
as water, gas, oil, or clay. For this reason, this paper tries to present a technique to study
the dynamic behaviors of a pipe filled with multiple fluids and immersed in water. Because
the presented mathematical model is closer to the marine risers, it is believed that more
satisfactory results will be obtained.

In order to confirm the reliability of the presented approach, the numerical example
illustrated in this paper is also conducted by using the FEM and good agreement is achieved.
One of the predominant merits for the presented approach is that its numerical results belong
to the “exact solutions” and may be the benchmark for evaluating the accuracy of the other
approximate methods (such as FEM).

2. Theoretical Model

Figure 1 shows the sketch of a immersed hollow beam filled with fluids of different densities
and carrying an eccentric tip mass with rotary inertia, rotational spring, and translational
spring supports. The points corresponding to the locations of fluid interfaces and/or applied
concentrated forces are referred to as “stations.” The positions of stations are defined by
xn(n = 1, . . . , n) and the subscript of xn refer to the numbering of the stations. Symbol “⊗”
denotes the center of mass of the tip mass. E is Young’s modulus of the beam, I is moment of
inertia of the cross-sectional area of the beam, do andds are outer and inner diameters of the
hollow beam, respectively,m is mass per unit length of the beam, ρt, ρo, and ρs are the density
of the stainless steel beam, density of the outer fluid (water) of the hollow beam, and density
of the filled fluids of the hollow beam, respectively. Me is the tip mass, Je is its moment of
inertia, kTe is the translational spring constant of supporting tip mass, kRe is the rotational
spring constant of supporting tip mass, em is the distance between the upper end of beam
and center of gravity of the tip mass, and ek is the distance between the upper end of beam
and the translational spring support.

2.1. Equation of Motion and Displacement Function

The differential equation of motion for the ith beam segment of a uniform immersed hollow
beam filled with fluids of different densities, subjected to a harmonic force, and carrying an
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Figure 1: The sketch of an immersed hollow beam filled with fluids of different densities, subjected to a
force, and carrying an eccentric tip mass supported by a translational and a rotational spring.

eccentric tip mass supported by a rotational spring and a translational spring (cf. Figure 1)
with small deflections is given by

EIi
∂4yi(x, t)
∂x4

+mi
∂2yi(x, t)

∂2t
= F(t) · δ(x − xi), (2.1)

mi = (m +moi +msi) (2.2)

withm,moi, andmsi given by

m =
π
(
d2
o − d2

s

)
ρt

4
, (2.3)

moi =
πd2

oρoi
4

, (2.4)

msi =
πd2

sρsi
4

, (2.5)

where m, moi, and msi are the mass per unit length of the ith beam segment, outer fluid
(added)mass per unit length of the ith beam segment, and filled fluid (added)mass per unit
length of the ith beam segment, respectively, yi(x, t) is the transverse displacement at position
x and time t for the ith beam segment, and F(t) is a force at time t. Besides, δ(x − xi) is the
Dirac delta with xi denoting the coordinate at which the concentrated force F(t) is applied.

If the applied concentrated force takes the form

F(t) = F(x)ejωet, (2.6)
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then, in the steady state, one has

yi(x, t) = Yi(x)ejωet, (2.7)

where Yi(x) is the amplitude of yi(x, t), ωe is the exciting frequency of the applied harmonic
forces, F is amplitude of F(t), and j =

√−1.
Substitution of (2.6), (2.7) into (2.1) gives

Yi
′′′′(x) − β4i Yi(x) =

F

EI
· δ(x − xi), (2.8)

where

ωv =
(
βiL

)2( EIi
miL4

)1/2

= Ω2
i

(
EIi
miL4

)1/2

. (2.9)

Equation (2.8) is a nonhomogeneous equation, and its “complete” solution takes the
form

Yi(x) = Ci,1 sin
(
βix

)
+ Ci,2 cos

(
βix

)
+ Ci,3 sinh

(
βix

)
+ Ci,4 cosh

(
βix

) − F

β4i EI
· δ(x − xi),

(2.10)

in which C1, C2, C3, and C4 are the unknown integration constants. From (2.10), one sees that,
for any beam segment on which no concentrated force F(t) being applied, its displacement
function will take the form

Yi(x) = Ci,1 sin
(
βix

)
+ Ci,2 cos

(
βix

)
+ Ci,3 sinh

(
βix

)
+ Ci,4 cosh

(
βix

)
. (2.11)

2.2. Coefficient Matrix [Bu] for an Intermediate Fluid Interface

If the station numbering of an intermediate fluid interface is u, then the continuity of
deformations and the equilibrium of moments and forces at station u require that

Yu(ξu) = Yu+1(ξu) (2.12)

Y ′
u(ξu) = Y

′
u+1(ξu) (2.13)

Y ′′
u(ξu) = Y

′′
u+1(ξu) (2.14)

Y ′′
u(ξu) = Y

′′′
u+1(ξu) (2.15)

ξu =
xu
L
. (2.16)
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Substitution of (2.11) into (2.12)–(2.15) leads to

(
Cu,1 sinΩuξu − Cu,2 cosΩuξu

+Cu,3 sinhΩuξu + Cu,4 coshΩuξu

)
−

(
Cu+1,1 sinΩu+1ξu − Cu+1,2 cosΩu+1ξu

+Cu+1,3 sinhΩu+1ξu + Cu+1,4 coshΩu+1ξu

)
= 0,

(2.17)

Ωu

(
Cu,1 cosΩuξu − Cu,2 sinΩuξu

+Cu,3 coshΩuξu + Cu,4 sinhΩuξu

)
−Ωu+1

(
Cu+1,1 cosΩu+1ξu − Cu+1,2 sinΩu+1ξu+
Cu+1,3 coshΩu+1ξu + Cu+1,4 sinhΩu+1ξu

)
= 0,

(2.18)

Ω2
u

( −Cu,1 sinΩuξu − Cu,2 cosΩuξu
+Cu,3 sinhΩuξu − Cu,4 coshΩuξu

)
−Ω2

u+1

( −Cu+1,1 sinΩu+1ξu − Cu+1,2 cosΩu+1ξu
+Cu+1,3 sinhΩu+1ξu − Cu+1,4 coshΩu+1ξu

)
= 0,

(2.19)

Ω3
u

( −Cu,1 cosΩuξu − Cu,2 sinΩuξu
+Cu,3 coshΩuξu − Cu,4 sinhΩuξu

)
−Ω3

u+1

( −Cu+1,1 cosΩu+1ξu − Cu+1,2 sinΩu+1ξu
+Cu+1,3 coshΩu+1ξu − Cu+1,4 sinhΩu+1ξu

)
= 0,

(2.20)

Ωu =

[
ω2(mu)L4

EI

]1/4

, (2.21)

Ωu+1 =

[
ω2(mu+1)L4

EI

]1/4

, (2.22)

mu = (m +mou +msu), (2.23)

mu+1 =
(
m +mo(u+1) +ms(u+1)

)
. (2.24)

Writing (2.17)–(2.20) in matrix form, one has

[Bu]{Cu} = {0}, (2.25)

where

{Cu} =
{
Cu,1 Cu,2 Cu,3 Cu,4 Cu+1,1 Cu+1,2 Cu+1,3 Cu+1,4

}
(2.26)

In the above equations (2.25) and (2.26), the symbols, [] and {}, denote the rectangular
matrix and column vector, respectively. The coefficient matrix [Bu] is placed in (A.1) of
Appendix A.
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2.3. Coefficient Matrix [Bv] for an Intermediate Applied Force

If the station numbering for the intermediate harmonic concentrated force normal to the beam
is v, then the continuity of deformations and equilibrium of moments and forces require that

Yv(ξv) = Yv+1(ξv) (2.27)

Y ′
v(ξv) = Y

′
v+1(ξv) (2.28)

Y ′′
v (ξv) = Y

′′
v+1(ξv) (2.29)

EI
1
L3
Y ′′′
v (ξv) + Fv = EI

1
L3
Y ′′′
v+1(ξv). (2.30)

From (2.11), (2.27)–(2.30), one obtains

(
Cv,1 sinΩvξv + Cv,2 cosΩvξv

+Cv,3 sinhΩvξv + Cv,4 coshΩvξv

)
−
(

Cv+1,1 sinΩv+1ξv + Cv+1,2 cosΩv+1ξv
+Cv+1,3 sinhΩv+1ξv + Cv+1,4 coshΩv+1ξv

)
= 0, (2.31)

Ωv

(
Cv,1 cosΩvξv − Cv,2 sinΩvξv

+Cv,3 coshΩvξv + Cv,4 sinhΩvξv

)
−Ωv+1

(
Cv+1,1 cosΩv+1ξv − Cv+1,2 sinΩv+1ξv

+Cv+1,3 coshΩv+1ξv + Cv+1,4 sinhΩv+1ξv

)
= 0,

(2.32)

Ω2
v

( −Cv,1 sinΩvξv − Cv,2 cosΩvξv
+Cv,3 sinhΩvξv + Cv,4 coshΩvξv

)
−Ω2

v+1

( −Cv+1,1 sinΩv+1ξv − Cv+1,2 cosΩv+1ξv
+Cv+1,3 sinhΩv+1ξv + Cv+1,4 coshΩv+1ξv

)
= 0,

(2.33)

Ω3
v

( −Cv,1 cosΩvξv + Cv,2 sinΩvξv
+Cv,3 coshΩvξv + Cv,4 sinhΩvξv

)
−Ω3

v+1

( −Cv+1,1 cosΩv+1ξv + Cv+1,2 sinΩv+1ξv
+Cv+1,3 coshΩv+1ξv + Cv+1,4 sinhΩv+1ξv

)

= −FvL
3

EI
.

(2.34)

Writing (2.31)–(2.34) in matrix form, one has

[Bv]{Cv} = {Dv}, (2.35)

{Cv} =
{
Cv,1 Cv,2 Cv,3 Cv,4 Cv+1,1 Cv+1,2 Cv+1,3 Cv+1,4

}
, (2.36)

{Dv} =
{
0 0 0 −FvL

3

EI

}
. (2.37)

And the coefficient matrix [Bv] is placed in (B.1) of Appendix B.
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2.4. Coefficient Matrices [B0] and [BN] for the Two Ends of the Entire Beam

The lower end of hollow beam is fixed as shown in Figure 1, then the boundary condition is

Y0(0) = Y ′
0(0) = 0. (2.38)

From (2.11), (2.38), one obtains

[B0]{C0} = {0}, (2.39)

where

[B0] =
1 2 3 4[
0 1 0 1
1 0 1 0

]
1
2
,

(2.40)

{C0} =
{
C0,1 C0,2 C0,3 C0,4

}
. (2.41)

If the tip of the beam is carrying an eccentric mass with rotary inertia, a rotational
spring, and translational spring as shown in Figure 1, then the boundary conditions are

EI
1
L2
Y ′′
N(ξN) −

(
Jeω

2 +Mee
2
mω

2 − kRe − e2kkTe
) 1
L
Y ′
N(ξN) −

(
Meemω

2 − ekkTe
)
YN(ξN) = 0

(2.42)

EI
1
L3
Y ′′′
N(ξN) +

(
Meemω

2 − ekkTe
) 1
L
Y ′
N(ξN) +

(
Meω

2 − kTe
)
YN(ξN) = 0, (2.43)

where

N = n + 1, (2.44)

n is the total number of intermediate stations.
From (2.11) and (2.42)–(2.43), one obtains

(
−Ω2

N −M∗
ee

∗
mΩ

4
N + k∗Tee

∗
k

)
(CN,1 sinΩN + CN,2 cosΩN)

+
(
Ω2
N −M∗

ee
∗
mΩ

4
N + k∗Tee

∗
k

)
(CN,3 sinhΩN + CN,4 coshΩ)

−
(
J∗eΩ

5
N − k∗ReΩN +M∗

ee
∗
m
2Ω5

N − k∗Tee∗k2ΩN

)( CN,1 cosΩN − CN,2 sinΩN

+CN,3 coshΩN + CN,4 sinhΩN

)
= 0,

(2.45)
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M∗

eΩ
4
N − k∗Te

)
(CN,1 sinΩN + CN,2 cosΩN + CN,3 sinhΩN + CN,4 coshΩN)

+
(
M∗

ee
∗
mΩ

5
N − k∗Tee∗kΩN −Ω3

N

)
(CN,1 cosΩN − CN,2 sinΩN)

+
(
M∗

ee
∗
mΩ

5
N − k∗Tee∗kΩN + Ω3

N

)
(CN,3 coshΩN + CN,4 sinhΩN) = 0,

(2.46)

M∗
e =

Me

mL
, (2.47)

J∗e =
Je
mL3

, (2.48)

k∗Re =
kReL

EI
, (2.49)

k∗Te =
kTeL

3

EI
, (2.50)

e∗m =
em
L
, (2.51)

e∗k =
ek
L
. (2.52)

Writing (2.45)–(2.46) in matrix form, one has

[BN]{CN} = {0}, (2.53)

where

{CN} =
{
CN,1 CN,2 CN,2 CN,2

}
. (2.54)

And the coefficient matrix [BN] is placed in (C.1) of Appendix C.

2.5. Determination of Natural Frequencies and Mode Shapes of the Beam

The integration constants relating to the lower-end and upper-end supports of the beam
are defined by (2.41) and (2.54), respectively, while those relating to the intermediate
stations are defined by (2.26) and (2.36) depending upon the interface of fluid and/or the
concentrated force being located there. The associated coefficient matrices are given by [B0]
(cf. (2.40)), [Bu](cf. (A.1) of Appendix A), [Bv] (cf. (B.1) of Appendix B) and [BN] (cf. (C.1) of
Appendix C). From the last equations concerned, one may see that the identification number
for each element of the last coefficient matrices is shown on the top side and right side of each
matrix. Therefore, using the numerical assembly technique, onemay obtain amatrix equation
for all the integration constants of the entire beam

[
B
]{
C
}
=
{
D
}
. (2.55)
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For the case of free vibrations, the applied force amplitude F is zero and (2.55) reduces
to

[
B
]{
C
}
= {0}. (2.56)

Nontrivial solution of (2.56) requires that its coefficient determinant is equal to zero,
that is,

∣∣∣B∣∣∣ = 0, (2.57)

which is the frequency equation for the present problem.
In this paper, the incremental search method is used to find the natural frequencies

of the vibrating system, ωv (v = 1, 2, . . .). With respect to each natural frequency ωv, one
may obtain the corresponding integration constants from (2.56). The substitution of the last
integration constants into the displacement functions of the associated beam segments will
determine the corresponding mode shape of the entire beam, Y (v)(ξ).

2.6. Determination of Forced Vibration Response of the Beam

For the case of forced vibrations, from (2.55), one has

{
C
}
=
[
B
]−1{

D
}
. (2.58)

Thus, if the exciting frequency ωe (or the associated dimensionless frequency parameter Ωe)
of the harmonic forces is given, then one may obtain the corresponding integration constants
from (2.58). The substitution of last integration constants into the displacement functions of
associated beam segments will determine the corresponding vibration amplitude |Y (ξ)|.

3. Numerical Results and Discussions

Before the vibration analysis of an immersed hollow beam filled with fluids of different
densities, subjected to a force, and carrying an eccentric tip mass supported by a translational
and a rotational spring is performed, the reliability of the theory and the computer program
developed for this paper are confirmed by comparing the present results with those obtained
from the existing literature.

3.1. Reliability of the Developed Computer Program

The first example studied is a fixedly supported immersed beam carrying tip mass M∗
e =

Me/(ρAL) = 0.1 with rotary inertia J∗e = Je/(ρAL3) = 0.1 and eccentricity e = 0.5m and two
intermediate lumped masses M∗

2 = M∗
3 = 0.5(ρAL)kg located at x2 = 13m and x3 = 14m,

respectively, for the case of draft ratio L∗
1 = L1/L = 0.5 and water density ρ = 1000Kg/m3.

The dimensions of the solid beam are as follows: Young’s modulus = 2.068 × 1011N/m2,
diameter d= 0.3m, mass density ρ = 7850Kg/m3, and total length L = 15m. The lowest four
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Figure 2: The sketch of a immersed hollow beam filled with two kinds of fluids and carrying an eccentric
tip mass with rotary inertia, translational and rotational spring supports.

Table 1: The lowest four natural frequencies of a fixedly supported immersed beam carrying an eccentric
tip mass and two intermediate lumped masses.

Methods Parameters Natural frequencies (rad/sec)
x2 x3 J∗2 J∗3 M∗

2 M∗
3 ω1 ω2 ω3 ω4

Present 13 14 0.1 0.1 0.1 0.1 2.5978 10.0440 42.3158 109.7077
[9] 13 14 0.1 0.1 0.1 0.1 2.5978 10.0441 42.3158 109.7078

natural frequencies of the immersed beam are shown in Table 1. From Table 1, one sees that
the results of this paper are in good agreement with those of [9].

3.2. Natural Frequencies and Mode Shapes of the Immersed Hollow Beam
Filled with Two Kinds of Fluids Carrying an Eccentric Tip Mass with
Rotary Inertia, Translational and Rotational Spring Supports

The second example studied is a immersed hollow beam filled with two kinds of fluids
and carrying an eccentric tip mass with rotary inertia, translational and rotational spring
supports (cf. Figure 2). The parameters of the steel hollow beam are as follows: total length
L = 15m, outer diameter do = 0.6m, inner diameter ds = 0.54m, Young’s modulus
E = 2.068 × 1011 N/m2, density ρt = 7850 kg/m3, density of the inner upper fluids ρs2 =
1000 kg/m3, and density of the inner lower fluid ρs1 = 1400 kg/m3. The nondimensional
parameters of the eccentric tip mass are as follows: mass M∗

e = Me/mL = 1; rotary inertia
of the tip mass J∗u = 0.01; constants of the rotational spring support k∗Re = 10; constants of
the translational spring support k∗Te = 30; distance between the fixed point of the tip mass
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Figure 3: The lowest four mode shapes of the hollow beam are shown in Figures 3(a)–3(c), respectively,
where (a), (b), and (c) refer to the 1st, 2nd, and 3rd mode shapes of the hollow beam. Besides, the curves
− − −−, — ———, – – – –, . . . . . . . . . . . ., and − · − · − denote the mode shapes of the hollow beam filled with
the upper fluid height ξ∗i = xi/L = 0.4 to 0.8, respectively.

and its center of gravity e∗m = em/L = 1/15; distance between the fixed point of the tip
mass and the translational spring support e∗

k
= ek/L = 0.1; the nondimensional height of

the beam immersed in water ξ∗2 = 9/15 = 0.6; height of filled lower fluid ξ∗1 = x1/L = 0.3;
height of filled with upper fluid ξ∗i = xi/L = 0.4 to 0.8, respectively. The lowest four natural
frequencies and non-dimensional parameters for the hollow beam are shown in Table 2. In
order to confirm the reliability of the presented results, the current example is also conducted
by using the FEM with the lowest four natural frequencies shown in Table 2. From the table
one sees that the lowest four natural frequencies of the hollow beam obtained from FEM are
very close to those obtained from the presented approach; furthermore, they decrease with
increasing the height of filled upper fluid due to its added mass. Corresponding to the four
natural frequencies listed in Table 2, the lowest four mode shapes of the hollow beam are
shown in Figures 3(a)–3(c), respectively, where (a), (b), and (c) refer to the 1st,2nd, and 3rd
mode shapes of the hollow beam. Besides, the curves − − −−, — — — —, – – – –, . . . . . . . . . . . .,
and − · − · − denote the mode shapes of the hollow beam filled with the upper fluid height
ξ∗i = xi/L = 0.4 to 0.8, respectively.
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Figure 4: The relationship for dimensionless frequency parameters (Ω) versus dimensionless amplitudes
(|Y (ξ)|max) for the points located at ξ = 0.4, 0.6, and 0.8 of the beam subjected to a harmonic force applied
at ξ = 0.8.

3.3. Forced Vibration Responses of the Hollow Beam Filled with Two kinds of
Fluids, Immersed in Water and Carrying an Eccentric Tip Mass

The beam system of the present example is the same as the last one but the beam subjected
to a harmonic force F

∗
v = 1 is located at ξ = 0.8. For each value of Ω (from 0 to 13.0

with interval ΔΩ = 0.001), one may obtain the integration constants from (2.58). Then
we compute the vibration amplitudes when it is placed in different locations on the beam.
Figure 4 shows the relationship between the dimensionless frequency parameters (Ω) and the
dimensionless response amplitudes (|Y (ξ)|max = |Y (ξ)|max/(FL

3/EI)) for the points located at
ξ = 0.4, 0.6, and 0.8, where the horizontal axis is the dimensionless frequency parameter (Ω)
and the vertical axis is the dimensionless vibration amplitude (|Y (ξ)|max). The blue, black,
and red curves are for points located at locations ξ = 0.4, 0.6, and 0.8, respectively. The
vibration amplitudes for the point located at either ξ = 0.4, 0.6 or 0.8 have peaks when the
dimensionless frequency parameter Ω ≈ 2.9, 4.9, 7.4, 9.6, and 12.7. This is because when the
dimensionless frequency parameter Ω is near any of the natural frequencies of the beam, as
shown in the parenthesis of line 1 of Table 2, resonance appears.

4. Conclusion

The results presented in this work have found that one can obtain the lowest several
“exact” natural frequencies and corresponding mode shapes of an immersed hollow beam
partially filled with two kinds of fluids and carrying an eccentric tip mass with rotary inertia,
rotational and translation spring supports. For the beam subjected to a harmonic force, one
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can determine the frequency-response curve for any point of the beam using this method.
Because a peak will appear in each curve when the exciting frequency of the harmonic force
is near any of natural frequencies of the beam, one can determine natural frequencies of the
beam based on the peaks of any frequency-response curve.

Appendices

A.

Consider the following:

[Bu] =

4u − 3⎡
⎢⎢⎣
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(A.1)

θu = Ωuξu, (A.2)

θu+1 = Ωu+1ξu. (A.3)

where B denotes sin θu, C denotes Ωu cos θu, D denotes −Ω2
u sin θu, E denotes −Ω3

u cos θu,
G denotes cos θu, H denotes −Ωu sin θu, � denotes −Ω2

u cos θu, K denotes Ω3
u sin θu, A denotes

sinh θu, F denotesΩu cosh θu, M denotesΩ2
u sinh θu, N denotesΩ3

u cosh θu, O denotes cosh θu,
P denotes Ωu sinh θu, Q denotes Ω2

u cosh θu, � denotes Ω3
u sinh θu, S denotes − sin θu+1,

T denotes −Ωu+1 cos θu+1, U denotes Ω2
u+1 sin θu+1, V denotes Ω3

u+1 cos θu+1, W denotes
− cos θu+1,X denotesΩu+1 sin θu+1,Y denotesΩ2

u+1 cos θu+1, Z denotes −Ω3
u+1 sin θu+1, a denotes

− sinh θu+1, b denotes −Ωu+1 cosh θu+1, c denotes −Ω2
u+1 sinh θu+1, d denotes −Ω3

u+1 cosh θu+1,
e denotes − cosh θu+1, f denotes −Ωu+1 sinh θu+1, g denotes −Ω2

u+1 cosh θu+1, and h denotes
−Ω3

u+1 sinh θu+1.

B.

Consider the following:

[Bv] =

4v − 3⎡
⎢⎢⎣

i

j

k

l

4v − 2
m

n

o

p

4v − 1
q

r

s

t

4v
u

v

w

x

4v + 1
y

z

z
y

4v + 2
x
w
v
u

4v + 3
t
s

r
q

4v + 4
p
o
n
m

⎤
⎥⎥⎦

4v − 1
4v

4v + 1
4v + 2

(B.1)

θv = Ωvξv, (B.2)

θv+1 = Ωv+1ξv. (B.3)

where i denotes sin θv, j denotes Ωv cos θv, k denotes −Ω2
v sin θv, l denotes −Ω3

v cos θv, m

denotes cos θv, n denotes −Ωv sin θv, o denotes −Ω2
v cos θv, p denotes Ω3

v sin θv, q denotes
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sinh θv, r denotes Ωv cosh θv, s denotes Ω2
v sinh θv, t denotes Ω

3
v cosh θv, u denotes cosh θv, v

denotes Ωv sinh θv, w denotes Ω2
v cosh θv, x denotes Ω

3
v sinh θv, y denotes − sin θv+1, z denotes

−Ωv+1 cos θv+1, z denotesΩ2
v+1 sin θv+1, y denotesΩ

3
v+1 cos θv+1, x denotes − cos θv+1, w denotes

Ωv+1 sin θv+1, v denotesΩ2
v+1 cos θv+1, u denotes −Ω3

v+1 sin θv+1, t denotes − sinh θv+1, s denotes
−Ωv+1 cosh θv+1, r denotes −Ω2

v+1 sinh θv+1, q denotes −Ω3
v+1 cosh θv+1, p denotes − cosh θv+1, o

denotes −Ωv+1 sinh θv+1, n denotes −Ω2
v+1 cosh θv+1, and m denotes −Ω3

v+1 sinh θv+1.

C.

Consider the following:

[BN] =
4N − 3[
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4N
G

H

]q−1
q

(C.1)
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δ2 = Ω2
N −M∗

ee
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eΩ
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N − k∗Te, (C.3)

η = J∗eΩ
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ReΩN +M∗
ee
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k Ω2, (C.4)

ψ1 =M∗
ee
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N − k∗Tee∗kΩN −Ω3

N, (C.5)

ψ2 =M∗
ee

∗
mΩ

5
N − k∗Tee∗kΩN + Ω3

N, (C.6)

whereA denotes (δ1 sin θN+η cos θN),B denotes (κ sin θN+ψ1 cos θN),C denotes (δ1 cos θN−
η sin θN), D denotes (κ cos θN − ψ1 sin θN), E denotes (δ2 sinh θN + η cosh θN), F denotes
(κ sinh θN + ψ2 cosh θN), G denotes (δ2 cosh θN + η sinh θN), and H denotes (κ cosh θN +
ψ2 sinh θN).
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