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We first investigate the structures of the square roots of a class of circulant matrices and give
classifications of the square roots of these circulant matrices. Then, we develop several algorithms
for computing their square roots. We show that our algorithms are faster than the standard
algorithm which is based on the Schur decomposition.

1. Introduction

Circulant matrices and their generalizations arise in many areas of physics, electromagnetics,
signal processing, statistics, and applied mathematics for the investigation of problems
with periodicity properties [1–3]. Also, numerical solutions of certain types of elliptic and
parabolic partial differential equations with periodic boundary conditions often involve
linear systems Ax = b with A a circulant matrix. For recent years, the properties and
applications of them have been extensively investigated [4–9].

A matrixX is said to be a square root ofA ifX2 = A. The number of square roots varies
from two (for a nonsingular Jordan block) to infinity (any involuntary matrix is a square root
of the identity matrix). The key roles that the square root plays in, for example, the matrix
sign function, the definite generalized eigenvalue problem, the polar decomposition, and
the geometric mean, make it a useful theoretical and computational tool. The rich variety
of methods for computing the matrix square root, with their widely differing numerical
stability properties, is an interesting subject of study in their own right [10]. For these reasons,
many authors became interested in the matrix square roots [11–14]. Although the theory of
matrix square roots is rather complicated, simplifications occur for certain classes of matrices.
Consider, for example, Hamiltonian matrices [15], semidefinite matrices [16], and so forth.
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This paper is organized as follows. In Section 2, we review some basic properties of
a class of circulant matrices. In Section 3, we investigate the structures of the square roots,
then give the classifications of all the square roots of these circulant matrices. In Section 4,
we develop some algorithms to compute the primary square roots of them. Finally, we
present several numerical experiments in Section 5, exhibiting the efficiency of the proposed
algorithms in terms of CPU time.

2. Preliminaries

Throughout this paper we denote the set of all n × n complex matrices by C
n×n and the set of

all real matrices by R
n×n.

Definition 2.1 (see [4]). Let a = (a0, a1, . . . , an−1)
T ∈ C

n and k ∈ C. In a k-circulant matrix

Circk(a) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · an−1
kan−1 a0 a1 · · · an−2
kan−2 kan−1 a0 · · · an−3

...
...

...
...

ka1 ka2 ka3 · · · a0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.1)

Another equivalent definition of a k-circulant matrix is as follows: A ∈ C
n×n is a k-

circulant matrix if and only if A = G−1AG, where G = Circk([0, 1, 0, . . . , 0]).
Let n be an even number, A ∈ C

n×n is a skew k-circulant matrix if A = −G−1AG and a
Hermitian k-circulant matrix if A = G−1AG, where A denotes the elementwise conjugate of
the matrix A.

If the circulant matrixA is similar to a block diagonal matrix (even a diagonal matrix),
that is, if there exists an invertible matrix P such that P−1AP is a block diagonal matrix,
the problem of computing the square roots of a circulant matrix can be reduced to that of
computing the square roots of some small size matrices. It will help to reduce the costs of
computation.

Lemma 2.2. If k ∈ R, then all the matrices in Circk(a) are simultaneously diagonalizable, with the
eigenvectors determined completely by k and a primitive nth root of unity.

We first review the structure and reducibility of above matrices. All the formulas
become slightly more complicated when n is odd and k is a complex number; for simplicity,
we restrict our attention to the case of even n = 2m and k ∈ R. Using the partition, the
n × n k-circulant matrix A can be described as

A =
(

B C
kC B

)
, (2.2)

where B and C are m ×mmatrices.
For a skew k-circulant matrixA, its partition can be expressed as follows: if n/2 is odd,

A =
(

B −C
kC −B

)
, (2.3)

and if n/2 is even,the matrix A is of the same form as (2.2).
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Define

P =

√
2
2

(
Im Im
rIm −rIm

)
, (2.4)

where

r =

{√
k, k > 0√
|k|(cos(π/2) + isin(π/2)), k < 0

(2.5)

and Im is the mth unit matrix.
It can easily get

P−1 =
√
2
2

⎛
⎜⎜⎝

Im
1
r
Im

Im −1
r
Im

⎞
⎟⎟⎠. (2.6)

By applying (2.2), (2.4), and (2.6), we have the following.

Lemma 2.3. If A is an n × n k-circulant matrix, then

P−1AP =
(
M

N

)
, (2.7)

whereM = B + rC, N = B − rC.

By applying (2.2)–(2.6), we have the following.

Lemma 2.4. Let A be a skew k-circulant matrix. If n/2 is odd, then

P−1AP =
(

M
N

)
, (2.8)

whereM = B + rC and N = B − rC. If n/2 is even, P−1AP is of the same form as (2.7).

For a Hermitian k-circulant matrix A, its partition can be expressed as follows: if n/2
is odd,

A =

(
B C

kC B

)
, (2.9)

and if n/2 is even, the matrix A is of the same form as (2.2).
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Define

Q =

√
2
2

(
Im iIm
rIm −irIm

)
, (2.10)

where i is the imaginary unit.
It can easily get

Q−1 =
√
2
2

⎛
⎜⎜⎝

Im
1
r
Im

−iIm i

r
Im

⎞
⎟⎟⎠. (2.11)

By applying (2.2), (2.4), (2.6), (2.9), (2.10), and (2.11), we have the following.

Lemma 2.5. LetA be an n×n Hermitian k-circulant matrix andQ be defined by the relation (2.10).
If n/2 is odd, then

Q−1AQ = RA (2.12)

is an n × n real matrix, where

RA =
(
Re(B + rC) − Im(B + rC)
Im(B − rC) Re(B − rC)

)
, (2.13)

with Re(T) and Im(T) denoting the real and imaginary parts of the matrix T , respectively. If n/2 is
even, then P−1AP is of the same form as (2.7).

Definition 2.6. Given a square matrixA, a function f : Ω ∈ C → C is said to be defined on the
spectrum σ(A) ofA if f and its derivatives of order l − 1 are defined at each element of σ(A).
Here, l is the size of the largest Jordan block of A. If p(x) is the interpolating polynomial of
all of these values, the function f of A is defined to be f(A) := p(A).

For instance, the square roots of a matrix A whose eigenvalues belong to exactly one
Jordan block are functions of A. These are the primary square roots. On the other hand,
choices of different branches of the square root for each Jordan block lead to the so-called
nonprimary matrix square root functions of A.

In most applications, it is primary square roots that are of interest and simplicity,
virtually all the existing theory and available methods are for such square roots [10]; thus,
we will concentrate on primary roots in this paper.
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Lemma 2.7 (see [10]). Let the nonsingular matrix A ∈ C
n×n have the Jordan canonical form

Z−1AZ = J = diag(J1, J2, . . . , Jp), and let s ≤ p be the number of distinct eigenvalues of A. Let

L
(jk)
k

= L
(jk)
k (λk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f(λk) f ′(λk) · · · f (mk−1)(λk)
(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.14)

where f(x) = x1/2 and jk = 1 or 2 denotes the branch of f. Then A has precisely 2s square roots that
are primary functions of A, given by

Xj = Z diag
(
L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p

)
Z−1, j = 1 : 2s, (2.15)

corresponding to all possible choices of j1, . . . , jp, jk = 1 or 2, subject to the constraint that ji = jk
whenever λi = λk.

If s < p, A has nonprimary square roots. They form parametrized families

Xj(U) = ZUdiag
(
L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p

)
U−1Z−1, j = 2s + 1 : 2p, (2.16)

where jk = 1 or 2, U is an arbitrary nonsingular matrix that commutes with J , and for each j there
exist i and k, depending on j, such that λi = λk while ji /= jk.

3. Square Roots

In this section we present some new results which characterize the square roots of the
circulant matrices.

3.1. Square Roots of k-Circulant Matrices

It is known that the product of two k-circulant matrices is k-circulant, however, whether a
k-circulant matrix has square roots which are also k-circulant or not? We have some answers
to this question.

Theorem 3.1. Let A ∈ C
n×n be a nonsingular k-circulant matrix and let X2 = A, where X are the

primary functions of A. Then all square roots X are k-circulant matrices.

Proof. By assumption,X2 = A andX = f(A), here f(x) = x1/2, which is clearly defined on the
spectrum ofA, including the case that the eigenvalues of the matrixA are complex numbers.
From Definition 2.6, we can construct a polynomial p such that p(A) = f(A). Using the fact
that the sum and product of two k-circulant matrices are also k-circulant, the polynomial
X = p(A) is a k-circulant matrix.
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By Lemma 2.7 and Theorem 3.1, we get that any nonsingular k-circulant matrix always
has a k-circulant square root.

In fact, if G−1BG = −B, then A = B2 implies G−1AG = A. That means k-circulant
matrices may have square roots which are skew k-circulant. Although it is unknown whether
it is true, if it has a skew k-circulant matrix, we have the following.

Theorem 3.2. Let A ∈ C
n×n be a nonsingular k-circulant matrix. Assume that A has a skew k-

circulant square root. (i) If n/2 is even, then eachM andN in (2.7) admits a square root, respectively.
(ii) If n/2 is odd, then the matrixM and N in (2.7) are similar.

Proof. let Y be a skew k-circulant matrix and Y 2 = A.
(i) If n/2 is even, by Lemma 2.4, we have P−1YP =

(
Y1 0
0 Y2

)
. That implies Y 2

1 = M,Y 2
2 =

N hold simultaneously, that is Y1 and Y2 are square roots of M and N, respectively.
(ii) If n/2 is odd, by Lemma 2.4 again, we have P−1YP =

(
Y1

Y2

)
.

Note that Y 2 = A means that Y1Y2 = M and Y2Y1 = N. Therefore, Y1 and Y2 are both
nonsingular (due to the nonsingularity ofM andN) andN = Y−1

1 MY1 = Y2MY−1
2 . That is to

say, M and N in (2.7) are similar.

In general, a nonsingular k-circulant matrix A, besides the k-circulant square roots,
possibly has other kinds of square roots (e.g., skew k-circulant square roots), which are
nonprimary functions of A. The existence and the families of square roots depend on the
spectrums ofM andN. The following theorem gives a classification of all the square roots of
a nonsingular k-circulant matrix.

Theorem 3.3. Let the nonsingular k-circulant matrix A ∈ C
n×n has s distinct eigenvalues λi (i =

1 : s), then A has 2s k-circulant square roots that are the primary functions of A, given by

Xj = F−1 diag
(
L
(j1)
1 , L

(j2)
2 , . . . , L

(jn)
n

)
F, j = 1 : 2s, (3.1)

corresponding to all possible choices of j1, . . . , jp, jk = 1 or 2, subject to the constraint that ji = jk
whenever λi = λk.

If s < n, A has nonprimary square roots. They form parametrized families

Xj(U) = F−1Udiag
(
L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p

)
U−1F, j = 2s + 1 : 2n, (3.2)

where jk = 1 or 2, U is an arbitrary nonsingular matrix that commutes with Λ, and for each j there
exist i and k, depending on j, such that λi = λk while ji /= jk.

Proof. According to the hypothesis, A has s distinct eigenvalues. Then by Lemma 2.7, A has
2s square roots which are primary functions ofA and take the form (3.1). By Theorem 3.1, the
square roots are k-circulant matrices. By Lemma 2.7 again, we get the form (3.2).

Theorem 3.3 shows that the square roots of a nonsingular k-circulant matrix consist of
two classes. The first class comprises finitely many primary square roots which are “isolated,”
and they are k-circulant matrices. The second class, which may be empty, comprises a finite
number of parametrized families of matrices, each family containing infinitely many square
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roots sharing the same spectrum, and the square roots in this class maybe k-circulant matrices
or not.

3.2. Square Roots of Skew k-Circulant Matrices

If A is an n × n nonsingular skew k-circulant matrix, let (λ, x) be an eigenpair of A. From
G−1AG = −Awe getAG−1x = −λG−1x which means that the eigenvalues ofAmust appear in
± pairs, and A has a Jordan decomposition of the following form:

A = Sdiag
(
J, Ĵ
)
S−1 (3.3)

with

J = diag(J1, J2, . . . , Jl), Ĵ = diag
(
Ĵ1, Ĵ2, . . . , Ĵl

)
, (3.4)

where

Jj = λjI + δ, Ĵj = −λjI + δ (3.5)

are mj ×mj matrices such that
∑l

j=1 mj = n/2, and δ is a forward shift matrix.
Assume that J has s distinct eigenvalues. We have the following result.

Theorem 3.4. Let the nonsingular skew k-circulant matrix A ∈ C
n×n have the Jordan decomposition

(3.3), and let s ≤ l be the number of distinct eigenvalues of J . Then A has 4s square roots, which are
primary functions of A, taking the following form:

X = Sdiag
(
L, L̂
)
S−1, (3.6)

where L is a primary square root of J and L̂ is a primary square root of Ĵ , respectively.
If s < l, then A has nonprimary square roots which are of 4l − 4s parameterized families in the

following form:

X(U) = SUdiag
(
L, L̂
)
U−1S−1, (3.7)

whereU is an arbitrary nonsingular matrix which commutes with diag(J, Ĵ).

Proof. The proof consists in using Lemma 2.7 again and the fact that A has 2s distinct
eigenvalues and 2l Jordan blocks.

Let us consider how to compute the primary square roots of a nonsingular skew k-
circulant matrix. If n/2 is even, from Lemma 2.4, we can see that skew k-circulant matrices
have the same deduced form (2.7). We can use Algorithm 4.2 (in Section 4) in this case. If n/2
is odd, we have that P−1AP takes the form (2.8). Exploiting this form, we have the following
theorem.
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Theorem 3.5. Let A ∈ C
n×n be a nonsingular skew k-circulant matrix and let n/2 be odd. Assume

that Z ∈ C
n×n and Z̃ = PZP−1 are partitioned as follows:

Z =
(
Z1 Z2

Z3 Z4

)
, Z̃ =

(
Z̃1 Z̃2

Z̃3 Z̃4

)
(3.8)

which are conformable with the partition of A in (2.3). Then Z̃ is a square root of A if and only if

(A) Z2Z3 is a square root of −(1/4)MN;

(B) Z1 is a fourth root of −(1/4)MN;

(C) Z4 is a fourth root of −(1/4)NM;

(D) Z2 is a solution of Z1Z2 + Z2Z4 = M.

(E) Z3 = M−1Z2N.

hold simultaneously, where P and M,N are defined by the relation (2.4) and (2.8), respectively.

Proof. The proof is similar to that of Theorem 3.5; see [14].

3.3. Square Roots of Hermitian k-Circulant Matrices

In fact, if G−1BG = B, then A = B2 implies G−1AG = A. That means Hermitian k-circulant
matrices may have square roots which are still Hermitian k-circulant. Although it is unknown
whether it is true, if it has a Hermitian k-circulant square root, we have the following.

Theorem 3.6. LetA be a nonsingular Hermitian k-circulant matrix, assume thatA has a Hermitian
k-circulant square matrix. (i) If n/2 is even, then each M and N in (2.7) admits a square root,
respectively. (ii) If n/2 is odd, then A’s reduced form RA ∈ R

n×n in (2.12) has a real square root.

Proof. (i) If n/2 is even, the case is similar to Theorem 3.2.
(ii) If n/2 is odd, let Y be a Hermitian k-circulant matrix and Y 2 = A. Then, by

Lemma 2.5, we have that RY = Q−1YQ and RA = Q−1AQ are real and R2
Y = RA, where Q

is defined in (2.10). This means that RA has a real square root.

In the following, we give a classification of the square roots of a nonsingular Hermitian
k-circulant matrix A. Assume that A is a nonsingular Hermitian k-circulant matrix, λ is an
eigenvalue ofA, and x is a eigenvector corresponding to λ, that is,Ax = λx. BecauseG−1AG =
A, we have that AG−1x = λG−1x, which means the complex eigenvalues of A must appear in
conjugate pairs, and A has a Jordan decomposition of the following form:

A = Sdiag
(
JR, JC, JC

)
S−1 (3.9)

with

JR = diag(J1, J2, . . . , Jl), JC = diag
(
Ĵ1, Ĵ2, . . . , Ĵr

)
, (3.10)
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where Jk is the real Jordan block corresponding to real eigenvalues λk for k = 1, . . . , l; Ĵk is the
Jordan block corresponding to complex eigenvalues λl+k, k = 1, . . . , r.

Theorem 3.7. Let the nonsingular Hermitian k-circulant matrix A ∈ C
n×n have the Jordan

decomposition (3.9). Assume that s ≤ l be the number of distinct real eigenvalues of JR, and t ≤ r be
the number of distinct complex conjugate eigenvalue pairs.

If s ≤ l or t ≤ r, then A has 2s+2t square roots which are primary functions of A.
If s + t < l + r, then A has square roots which are nonprimary functions of A; they form

2l+2r − 2s+2t parameterized families.

Proof. The proof is similar to that of Theorem 3.4.

It is showed in Theorem 3.1 that all the primary square roots of a nonsingular k-
circulant matrix A are k-circulant. But for nonsingular Hermitian k-circulant matrices, this
conclusion does not hold anymore in general. However, if a square root of a nonsingular
Hermitian k-circulant matrix A is a real coefficient polynomial in A, then this conclusion
holds.

Theorem 3.8. LetA be a nonsingular Hermitian k-circulant matrix, then all square roots ofA which
are polynomials in A with real coefficients (if exist) are Hermitian k-circulant matrices.

Proof. Using the fact that the sum and product of two Hermitian k-circulant matrices are also
Hermitian k-circulant, we complete the proof.

4. Algorithms

In this section we will propose algorithms for computing the primary square roots of the
circulant matrix A in Section 3, which are primary functions of A.

Algorithm 4.1. Computes a primary square root of a nonsingular k-circulant matrixA ∈ C
n×n.

Step 1. Compute the eigenvalues λj =
∑n−1

i=0 ai(ωj)
i(j = 0, n − 1) of A.

Step 2. Compute the square roots λ1/21 , λ1/22 , . . . , λ1/2n .

Step 3. Compute bj = (1/n)
∑n−1

i=0 λ1/2i (ωi)
−j , j = 0, n − 1.

Then, we obtain B =
√
A = Circk(b0, b1, . . . , bn−1).

The cost of Step 1 is about O(nlog2n) flops by discrete Fourier transform. The cost
of Step 2 is O(n). The cost of Step 3 is about O(nlog2n) flops by inverse discrete Fourier
transform. So, it needs about O(nlog2n) flops in total if we use the fast Fourier transform
to compute a primary square root of a k-circulant matrix A (see Table 1).

Algorithm 4.2. Computes a primary square root of a nonsingular skew k-circulant matrixA ∈
C

n×n (n/2 is even).

Step 1. Compute the reduced form P−1AP = diag(M,N) in (2.7).

Step 2. Compute the Schur decompositions TM = UH
MMUM and TN = UH

NNUN , respectively,
where TM and TN are two upper triangular matrices.
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Table 1: Flops of Algorithm 4.1.

Step Flops
1 O(nlog2n)
2 O(n)
3 O(nlog2n)
Sum O(nlog2n)

Table 2: Flops of Algorithm 4.2.

Step Flops
1 O(n2)
2 (25/4)n3 +O(n2)
3 (1/12)n3 +O(n2)
4 (3/4)n3 +O(n2)
5 O(n2)
Sum 7(1/12)n3 +O(n2)

Step 3. Compute the upper triangular square roots SM = f(TM) and SN = f(TN), where TM
has n/2 distinct eigenvalues and so does TN , here f = λ1/2 is defined on λ ∈ σ(diag(TM, TN)).

Step 4. Compute XM = UMSMUH
M and XN = UNSNUH

N .

Step 5. Obtain X = P diag(XM,XN)P−1.

The costs of Steps 1 and 5 in Algorithm 4.2 are about O(n2) flops. The main costs arise
in the implementation of Steps 2–4. Those are about 7(1/12)n3 flops (see Table 2). It needs
about 28(1/3)n3 flops in total if we use the Schur method (Algorithm 6.3 in [10]) to compute
a primary square root of A directly, that means Algorithm 4.2 is about four times cheaper
than the standard Schur method.

Algorithm 4.3. Computes a primary square root of a nonsingular skew k-circulant matrixA ∈
C

n×n (n/2 is odd).

Step 1. Compute the reduced form P−1AP =
(

M
N

)
in (2.8).

Step 2. Compute the Schur decomposition T = UH(−(1/4)MN)U, where T is upper
triangular.

Step 3. Compute the upper triangular fourth root S = f(T), where f = λ1/4 is defined on λ(T),
then compute Z1 = USUH .

Step 4. Solve the Sylvester equation SẐ2 + Ẑ2S = I.

Step 5. Compute Z̃2 = UẐ2U
H .

Step 6. Compute Z2 = Z̃2M and Z3 = NZ̃2.

Step 7. Compute Z4 = M−1Z1M.
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Table 3: Flops of Algorithm 4.3.

Step Flops
1 O(n2)
2 3(3/8)n3 +O(n2)
3 (11/24)n3 +O(n2)
4 (1/4)n3 +O(n2)
5 (1/2)n3 +O(n2)
6 (1/2)n3 +O(n2)
7 (7/12)n3 +O(n2)
8
9 O(n2)
Sum 5(2/3)n3 +O(n2)

Step 8. Form Z according to (3.8).

Step 9. Obtain X = PZP−1.

The costs of Steps 1 and 9 in Algorithm 4.3 are about O(n2) flops. The main costs are
to implement Steps 2–8. In Step 2, it takes about (1/4)n3 flops for computing matrix-matrix
multiplication and 3(1/8)n3 for computing the Schur decomposition of −(1/4)MN. In Step 3,
it takes about (1/12)n3 flops to compute the upper triangular fourth root S = f(T) (use
Step 3 in Algorithm 4.2 twice) and (3/8)n3 to form Z1. The cost of Step 4 amounts to about
(1/4)n3 flops, see Bartels-Stewart Algorithm in [17]. In Steps 5 and 6, it needs to compute 4
matrix-matrix multiplications, which requires about n3 flops. Step 7 involves a matrix-matrix
multiplication and a solution of a linear system of equations with multiple right-hand sides,
which needs about (7/12)n3 flops. Thus, the whole sum is about 5(2/3)n3 flops (see Table 3),
which means Algorithm 4.3 is about 5 times cheaper than the standard Schur method.

Let n/2 be odd (when n/2 is even, we can use Algorithm 4.2 to compute a primary
square root of a nonsingular Hermitian k-circulant matrix).

Algorithm 4.4. Computes a primary square root of a nonsingular Hermitian k-circulant matrix
A ∈ C

n×n.

Step 1. Compute the reduced form RA = Q−1AQ in (2.12).

Step 2. Compute the real Schur decomposition T = V TRAV , where T is a upper quasitrian-
gular matrix.

Step 3. Compute S = f(T) (see [8] for more details), where T is upper quasitriangular with
distinct eigenvalues and f = λ1/2 is defined on λ(T).

Step 4. Compute S̃ = VSV T .

Step 5. Compute X = QS̃Q−1.

The costs of Steps 1 and 5 in Algorithm 4.4 are about O(n2) flops. The main costs
are to implement Steps 2–4. In Step 2, it takes about 25n3 real flops for computing the real
Schur decomposition of RA. In Step 3, it takes about (1/3)n3 real flops for S. The cost of
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Table 4: Real flops of Algorithm 4.4.

Step Flops
1 O(n2)
2 25n3 +O(n2)
3 (1/3)n3 +O(n2)
4 3n3 +O(n2)
5 O(n2)
Sum 28(1/3)n3 +O(n2)
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Figure 1: CPU time for Algorithm 4.1 and the standard Schur method in logarithmic scale.

Step 4 amounts to about 3n3 to form S̃. Thus, the whole sum is about 28(1/3)n3 real flops
(see Table 4). Note the fact that a complex addition is equivalent to two real additions and a
complex multiplication is equivalent to four real multiplications and plus two real additions.
So Algorithm 4.4 is approximately eight times cheaper than the standard Schur method.

5. Numerical Experiments

We present numerical experiments for the comparison of the algorithms presented in this
paper and the standard Schur method with respect to execution time.

All of our computations have been done using MATLAB 7.6.0(R2008a) with unit
roundoff u = 2−53 ≈ 1.1 × 10−16 and executed in an Intel Pentium M Processor 740, 1.73GHz
with 1GB of RAM.

The execution (CPU) time for square roots with respect to n (order of matrix) for
Algorithm 4.1 and the standard Schur method is shown in Figure 1.

The execution (CPU) time for square roots with respect to n for Algorithm 4.2 and the
standard Schur method is shown in Figure 2.
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Figure 2: CPU time with for Algorithm 4.2 and the standard Schur method in logarithmic scale.
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Figure 3: CPU time with for Algorithm 4.3 and the standard Schur method.

The execution (CPU) time for square roots with respect to n for Algorithm 4.3 and the
standard Schur method is shown in Figure 3.

The execution (CPU) time for square roots with respect to n for Algorithm 4.4 and the
standard Schur method is shown in Figure 4.

It is evident by the statements of Figures 1–4, the algorithms are clearly faster than the
standard Schur methods for computing the circulant matrices in this paper.
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Figure 4: CPU time with for Algorithm 4.4 and the standard Schur method in logarithmic scale.
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