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This paper is concerned with the convergence, global superconvergence, local superconvergence,
and stability of collocation methods for u′(t) = au(t) + bu([t]). The optimal convergence order
and superconvergence order are obtained, and the stability regions for the collocation methods are
determined. The conditions that the analytic stability region is contained in the numerical stability
region are obtained, and some numerical experiments are given.

1. Introduction

This paper deals with the convergence, superconvergence, and stability of the collocation
methods of the following differential equation with piecewise continuous argument (EPCA):

u′(t) = au(t) + bu([t]), t ∈ [0, T],

u(0) = u0,
(1.1)

where T is an integer, a, b ∈ R, u0 ∈ C
d is a given initial value, u(t) ∈ C

d is an unknown
function, and [·] denotes the greatest integer function. The general form of EPCA is

u′(t) = f(t, u(t), u(α(t))), t ≥ 0,

u(0) = u0,
(1.2)
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where the argument α(t) has intervals of constancy. This kind of equations has been initiated
by Wiener [1, 2], Cooke and Wiener [3], and Shah and Wiener [4]. The general theory and
basic results for EPCA have by now been thoroughly investigated in the book of Wiener [5].

There are some authors who have considered the stability of numerical solutions for
this kind of equations (see [6–8]). Though (1.1) is a delay differential equation (see [9–11]),
the delay function t − [t] is discontinuous. In [12], the convergence and superconvergence of
collocation methods for a differential equation with piecewise linear delays is concerned.

Definition 1.1 (see Wiener [5]). A solution of (1.1) on [0,∞) is a function u(t) that satisfies the
following conditions.

(1) u(t) is continuous on [0,∞).

(2) The derivative u′(t) exists at each point t ∈ [0,∞), with the possible exception of
the point [t] ∈ [0,∞), where one-sided derivatives exist.

(3) (1.1) is satisfied on each interval [k, k + 1) ⊂ [0,∞) with integral endpoints.

Theorem 1.2 (see Wiener [5]). Equation (1.1) has on [0,∞) a unique solution

u(t) = m0({t})b[t]0 u0, (1.3)

where {t} is the fractional part of t and

m0(t) := eat +
(
eat − 1

)
a−1b, b0 := m0(1). (1.4)

Equation (1.1) is asymptotically stable (the solution of (1.1) tends to zero as t → ∞), for all u0, if
and only if the inequalities

−ae
a + 1

ea − 1
< −b < −a (1.5)

hold.

2. Existence and Uniqueness of Collocation Methods

Let h := 1/p be a given step size with integer p ≥ 1 and let the mesh on I be defined by

Ih := {tn : 0 = t0 < t1 < · · · < tN = T}. (2.1)

Accordingly, the collocation points are chosen as

Xh := {tn,i = tn + cih : 0 < c1 < · · · < cm ≤ 1(0 ≤ n ≤ N − 1)}, (2.2)

where {ci} denotes a given set of collocation parameters.
We approximate the solution by collocation in the piecewise polynomial spaces

S
(0)
m ([0, T]) :=

{
v ∈ C([0, T]) : v|[tn,tn+1] ∈ πm

}
, (2.3)
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where πm denotes the set of all real polynomials of degree not exceeding m. The collocation
solution uh is the element in this space that satisfies the collocation equation

u′
h(t) = auh(t) + buh([t]), t ∈ Xh,

uh(0) = u0.
(2.4)

Let Yn,j := u′
h
(tn + cjh). Then

u′
h(tn + vh) =

m∑

j=1

Lj(v)Yn,j , v ∈ (0, 1], (2.5)

where

Lj(v) :=
m∏

i=1,i /= j

v − ci
cj − ci

. (2.6)

Integrating the above equality, we can get that

uh(tn + vh) = uh(tn) + h
m∑

j=1

βj(v)Yn,j , (2.7)

where βj(v) :=
∫v
0 Lj(s)ds. So

Yn,i = auh(tn,i) + buh([tn,i]). (2.8)

Let n = kp + l, k ∈ Z, l = 0, 1, 2, . . . , p − 1. We have

Ykp+l,i = auh

(
tkp+l,i

)
+ buh

(
tkp
)
= a

⎛

⎝uh

(
tkp+l
)
+ h

m∑

j=1

aijYkp+l,j

⎞

⎠ + buh

(
tkp
)
, (2.9)

where aij := βj(ci).
Denote A = (aij)m×m, Yn = (Yn,1, Yn,2, . . . , Yn,m)

T , β = (β1, β2, . . . , βm)
T , e = (1, 1, . . . , 1)T

and for any xj ∈ R,
∑−1

j=0 xj = 0 if k = 0. We have

(Im×m − haA)Ykp+l = uh

(
tkp+l
)
ae + uh

(
tkp
)
be. (2.10)

When the solution Yn of (2.10) has been found, the collocation solution on the interval
[tn, tn+1] is determined by

uh(tn + vh) = uh(tn) + hβT (v)Yn. (2.11)



4 Journal of Applied Mathematics

So we can obtain the following theorem.

Theorem 2.1. Assume that the given functions in (1.1) satisfy a, b ∈ R, K ∈ C(D), where D :=
{(t, s) : 0 ≤ s ≤ t ≤ T}. Then there exists an h > 0 so that for the mesh Ih with mesh diameter h > 0
satisfying h < h, and each of the linear algebraic systems (2.10) has a unique solution Yn ∈ R

m. Hence
the collocation of (2.4) defines a unique collocation solution uh ∈ S

(0)
m (Ih) for the initial-value problem

(1.1), and its representation on the subinterval [tn, tn+1] is given by (2.11).

3. Global Convergence Results

In the following, unless otherwise specified, the derivatives of u and uh denote the left
derivatives.

Theorem 3.1. Assume the following:

(1) the given functions in (1.1) satisfy a, b ∈ R, K ∈ Cm(D);

(2) uh ∈ S
(0)
m (Ih) is the collocation solution to (1.1) defined by (2.10) and (2.11) with h ∈

(0, h).

Then the estimates

∥∥∥u(ν) − u
(ν)
h

∥∥∥
∞
:= max

t∈[0,T]

∣∣∣u(ν)(t) − u
(ν)
h (t)
∣∣∣ ≤ Cν

∥∥∥u(m+1)
∥∥∥
∞
hm (ν = 0, 1) (3.1)

hold for any set Xh(k = 1, 2, . . .) of collocation points with 0 < c1 < · · · < cm ≤ 1. The constants Cν

dependent on the collocation parameters {ci} and but not on h.

Proof. The collocation error eh := u − uh satisfies the equation

e′h(t) = aeh(t) + beh([t]), t ∈ Xh, (3.2)

with eh(0) = 0. Assumption (1) implies that u ∈ Cm+1([tn, tn+1]) (at tn, the derivative of u
denotes the right derivative and at tn+1, which denotes the left derivative) and hence u′ ∈
Cm([tn, tn+1]). Thus we have, using Peano’s Theorem for u′ on [tn, tn+1],

u′(tn + vh) =
m∑

j=1

Lj(v)u′(tn,j
)
+ hmR

(1)
m+1,n(v), v ∈ (0, 1], (3.3)

with the Peano remainder term, and Peano kernel are given by

R
(1)
m+1,n(v) :=

∫1

0
Km(v, z)u(m+1)(tn + zh)dz,

Km(v, z) :=
1

(m − 1)!

⎧
⎨

⎩
(v − z)m−1

+ −
m∑

j=1

Lj(v)
(
cj − z

)m−1
+

⎫
⎬

⎭
, v ∈ (0, 1].

(3.4)
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Integration of (3.3) leads to

u(tn + vh) = u(tn) + h
m∑

j=1

βj(v)u′(tn,j
)
+ hm+1Rm+1,n(v), v ∈ (0, 1], (3.5)

where

Rm+1,n(v) :=
∫v

0
R

(1)
m+1,n(s)ds. (3.6)

Recalling the local representation (2.5) of the collocation solution uh on (tn, tn+1] and setting
εn,j := u′(tn,j) − Yn,j , the collocation error eh := u − uh on (tn, tn+1] may be written as

eh(tn + vh) = eh(tn) + h
m∑

j=1

βj(v)εn,j + hm+1Rm+1,n(v), v ∈ (0, 1], (3.7)

while

e′h(tn + vh) =
m∑

j=1

Lj(v)εn,j + hmR
(1)
m+1,n(v), v ∈ (0, 1]. (3.8)

Since eh is continuous in [0, T], and hence at the mesh points, we also have the relation

eh(tn) = eh(tn−1 + h) = eh(tn−1) + h
m∑

j=1

bjεn−1,j + hm+1Rm+1,n−1(1), n = 1, . . . ,N − 1, (3.9)

with bj := βj(1). The fact that eh(0) = 0 yields

eh(tn) = h
m∑

j=1

bj
n−1∑

r=0

εr,j + hm+1
n−1∑

r=0

Rm+1,r(1), n = 1, . . . ,N − 1. (3.10)

We are now ready to establish the estimates in Theorem 3.1. Let n = kp + l (l = 0, 1, . . . , p − 1);
since the collocation error satisfies

e′h
(
tkp+l,i

)
= aeh

(
tkp+l,i

)
+ beh

(
tkp
)
, (3.11)

it follows from (3.7) and (3.8) that

εkp+l,i = e′h
(
tkp+l,i

)
= aeh

(
tkp+l,i

)
+ beh

(
tkp
)

= a

⎛

⎝eh
(
tkp+l
)
+ h

m∑

j=1

aijεkp+l,j + hm+1Rm+1,kp+l(ci)

⎞

⎠ + beh
(
tkp
)
.

(3.12)
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Denote

εn := (εn,1, εn,2, . . . , εn,m)T ,

Rm+1,n := (Rm+1,n(c1), Rm+1,n(c2), . . . , Rm+1,n(cm))T ,
(3.13)

we can get that

(Im×m − haA)εkp+l = eh
(
tkp+l
)
ae + eh

(
tkp
)
be + ahm+1Rm+1,kp+l. (3.14)

According to Theorem 2.1, this linear system has a unique solution whenever h ∈ (0, h),
and hence there exists a constant D0 < ∞ so that ‖(Im×m − hAn)

−1‖1 ≤ D0 uniformly for
0 ≤ n ≤ N − 1. Here, for B ∈ L(Rm), ‖B‖1 denotes the matrix (operator) norm induced by the
l1-norm in R

m. Denote Mm+1 := ‖u(m+1)‖∞, Km := maxv∈[0,1]
∫1
0 |Km(v, z)|dz, b := max1≤j≤m|bj |,

and β := max1≤i≤m,v∈[0,1]βi(v). So

|eh(tn)| ≤ hb
n−1∑

r=0
‖εr‖1 + hmTKmMm+1. (3.15)

Equation (3.14) now leads to the estimate

∥∥εkp+l
∥∥
1 ≤ D0

⎧
⎨

⎩
m|a|hb

kp+l−1∑

r=0
‖εr‖1 + |a|mhmTKmMm+1

+ |b|mhb
kp−1∑

r=0
‖εr‖1 + |b|mhmTKmMm+1 + |a|hm+1mMm+1Km

⎫
⎬

⎭

≤ γ0h
kp+l−1∑

r=0
‖εr‖1 + γ1Mm+1h

m,

(3.16)

with obvious meanings of γ0 and γ1. By using the discrete Gronwall inequality, its solution is
bounded by

‖εn‖1 ≤ γ1Mm+1h
m exp

(
γ0T
)
=: BMm+1h

m, (3.17)

and so (3.15) yields

|eh(tn)| ≤
(
bB +KmT

)
Mm+1h

m. (3.18)

Denote

Λm := max
1≤j≤m,v∈[0,1]

Lj(v), (3.19)
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we have

|eh(tn + vh)| ≤
(
bB +KmT

)
Mm+1h

m + hβBMm+1h
m + hm+1Mm+1Km =: C0Mm+1h

m,

∣
∣e′h(tn + vh)

∣
∣ ≤ Λm‖εn‖1 + hmKmMm+1 ≤ ΛmBMm+1h

m + hmKmMm+1 =: C1Mm+1h
m.

(3.20)

This concludes the proof of Theorem 3.1.

4. Global Superconvergence Results

Theorem 4.1. Assume that the assumptions (2) of Theorem 3.1 hold, and let (1) be replaced by a, b ∈
Cd(I) and K ∈ Cd(D), with d ≥ m + 1. If the m collocation parameters {ci} are subject to the
orthogonality condition

J0 :=
∫1

0

m∏

i=1

(s − ci)ds = 0, (4.1)

then the corresponding collocation solution uh ∈ S
(0)
m (Ih) satisfies, for h ∈ (0, h),

‖u − uh‖∞ ≤ C2h
m+1, (4.2)

with C2 depending on the collocation parameters and on ‖u(m+2)‖∞ but not on h. The exponentm + 1
cannot, in general, be replaced bym + 2. For the derivative u′

h
, we attain only ‖u′ − u′

h
‖∞ = O(hm).

Proof. Let

δh(t) := −u′
h(t) + auh(t) + buh([t]), t ∈ I, (4.3)

denote the defect (or: residual) associated with the collocation solution uh ∈ S
(0)
m (Ih) to the

initial-value problem (1.1). by definition of the collocation solution the defect δh vanishes on
the set Xh as follwos:

δh(t) = 0 ∀t ∈ Xh. (4.4)

Moreover, the uniform convergence of uh and u′
h established in Theorem 3.1 implies the

uniform boundedness (as h → 0) of δh on I, as well as that of its derivatives of order not
exceeding d (here the derivatives refer to the left derivatives).

It following from (4.3) that the collocation error eh = u − uh satisfies the equation

δh(t) = e′h(t) − aeh(t) − beh([t]), t ∈ I. (4.5)

By Theorem 3.1, there exists a constant D, such that

‖δh(t)‖∞ ≤ DhmMm+1, (4.6)
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and this holds for any choice of the {ci}. On the other hand, the collocation error eh solves the
initial-value problem

e′h(t) = aeh(t) + beh([t]) + δh(t), t ∈ I, eh(0) = 0. (4.7)

For t ∈ [k, k + 1], whose solution is given by

eh(t) =

[

r(t, k) +
∫ t

k

br(t, s)ds

]

eh(k) +
∫ t

k

r(t, s)δh(s)ds, t ∈ I. (4.8)

The function r = r(t, s) denotes the “resolvent” (or: resolvent kernel) of (1.1) as follows:

r(t, s) := ea(t−s), with r ∈ Cm+1(D). (4.9)

If k = 0, let t = tl + vh, v ∈ [0, 1], and 0 ≤ l ≤ p − 1; we have

eh(tl + vh) =
∫ tl+vh

0
r(tl + vh, s)δh(s)ds

=
l−1∑

j=0

∫ tj+1

tj

r(tl + vh, s)δh(s)ds +
∫ tl+hv

tl

r(tl + vh, s)δh(s)ds

= h
l−1∑

j=0

∫1

0
r
(
tl + vh, tj + hs

)
δh
(
tj + hs

)
ds + h

∫v

0
r(tl + vh, tl + hs)δh(tl + hs)ds.

(4.10)

Suppose now that each of the integrals over [0, 1] is approximated by the interpolatory m-
point quadrature formula with abscissas {ci}, then

∫1

0
r
(
tl + vh, tj + hs

)
δh
(
tj + hs

)
ds =

m∑

i=1

bjr
(
tl + vh, tj + hci

)
δh
(
tj + hci

)
+ Ej(v), v ∈ [0, 1].

(4.11)

Here, terms Ej(v) denote the quadrature errors induced by these quadrature approximations.
By assumption (4.1) each of these quadrature formulas has degree of precision m, and thus
the Peano Theorem for quadrature implies that the quadrature errors can be bounded by

∣∣Ej(v)
∣∣ ≤ Qhm+1, v ∈ [0, 1], (4.12)
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because the defect δh is in Cm+1 on each subinterval [tn, tn+1]. Due to the special choice of
the quadrature abscissas, we have

∑m
i=1 bjr(tl + vh, tj + hci)δh(tj + hci) = 0, because δh(t) = 0

whenever t ∈ Xh. Hence

eh(tl + vh) = h
l−1∑

j=0

Ej(v) + h

∫v

0
r(tl + vh, tl + hs)δh(tl + hs)ds, v ∈ [0, 1]. (4.13)

This leads to the estimate

|eh(tl + vh)| ≤ h
l−1∑

j=0

Qhm+1 + hr0‖δh‖∞ ≤ QThm+1 +Dr0h
m+1Mm+1 =: C0h

m+1, (4.14)

for 0 ≤ l ≤ p − 1 and v ∈ [0, 1], with r0 := maxt∈I
∫T
0 |r(t, s)|ds.

We assume for t ∈ [k − 1, k]

∣∣eh
(
t(k−1)p+l + vh

)∣∣ ≤ Ck−1hm+1, v ∈ [0, 1], 0 ≤ l ≤ p − 1. (4.15)

Then for t ∈ [k, k + 1], let t = tkp+l + vh, v ∈ [0, 1], and 0 ≤ l ≤ p − 1; we have

eh
(
tkp+l + vh

)
=

[

r
(
tkp+l + vh, k

)
+
∫ tkp+l+vh

k

br
(
tkp+l + vh, s

)
ds

]

eh(k)

+
∫ tkp+l+vh

k

r
(
tkp+l + vh, s

)
δh(s)ds

=

[

r
(
tkp+l + vh, k

)
+
∫ tkp+l+vh

k

br
(
tkp+l + vh, s

)
ds

]

eh(k)

+ h
kp+l−1∑

j=kp

∫1

0
r
(
tkp+l + vh, tj + hs

)
δh
(
tj + hs

)
ds

+ h

∫v

0
r
(
tkp+l + vh, tkp+l + hs

)
δh
(
tkp+l + hs

)
ds.

(4.16)

Similarly to the case of t ∈ [0, 1], we have

∣∣eh
(
tkp+l + vh

)∣∣ ≤ (r0 + r0|b|)Ck−1hm+1 + pQhm+2 + r0DMm+1h
m+1 =: Ckh

m+1. (4.17)

This completes the proof.
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5. The Local Superconvergence Results on Ih

Theorem 5.1. Assume the following:

(a) a, b ∈ Cm+κ(I) and K ∈ Cm+κ(D), for some κ with 1 ≤ κ ≤ m and value as specified in
(b) below,

(b) The m distinct collocation parameters {ci} are chosen so that the general orthogonality
condition

Jν :=
∫1

0
sν

m∏

i=1

(s − ci)ds = 0, ν = 0, . . . , κ − 1 (5.1)

holds, with Jκ /= 0.
Then, for all meshes Ih with h ∈ (0, h), the collocation solution uh ∈ S

(0)
m (Ih) corresponding to

the collocation points Xh based on these {ci} satisfies

max{|u(t) − uh(t)| : t ∈ Ih} ≤ C3h
m+κ, (5.2)

where C3 depends on the collocation parameters and on ‖u(m+κ+1)‖∞ but not on h.

Proof. If k = 0, for t = tl (0 ≤ l ≤ p − 1)

eh(tl) =
∫ tl

0
r(tl, s)δh(s)ds =

l−1∑

j=0

∫ tj+1

tj

r(tl + vh, s)δh(s)ds

= h
l−1∑

j=0

∫1

0
r
(
tl + vh, tj + hs

)
δh
(
tj + hs

)
ds

= h
l−1∑

j=0

(
m∑

i=1

bjr
(
tl + vh, tj + hci

)
δh
(
tj + hci

)
+ Ej(v)

)

,

(5.3)

with

∣∣Ej(v)
∣∣ ≤ Chm+κ, (5.4)

so

|eh(tl)| ≤ Chm+κ. (5.5)

By the induction method similarly to the proof of Theorem 4.1, the assertion of Theorem 5.1
follows.
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Table 1: The absolute values of absolute errors of uh for example (7.1) withm = 2.

N Gauss Radau IIA Lobatto IIIA (1/4, 1/2) (1/3, 2/3) (2/3, 1)
21 1.2551e − 03 3.1476e − 04 1.3124e − 03 2.9655e + 02 1.3113e − 03 9.3953e − 06
22 4.5928e − 06 1.4601e − 06 8.5094e − 04 1.2874e − 03 6.4778e − 05 8.1731e − 10
23 2.4209e − 10 7.8934e − 11 8.1731e − 10 8.5023e − 07 1.0324e − 08 9.3978e − 10
24 6.1162e − 12 2.8697e − 11 7.7079e − 11 5.7012e − 10 1.3715e − 10 1.8633e − 10
25 3.4588e − 13 4.5808e − 12 3.9746e − 11 4.1164e − 11 2.0163e − 11 4.3362e − 11
26 2.1210e − 14 6.2301e − 13 1.2117e − 11 7.6587e − 12 4.4835e − 12 1.1275e − 11
Ratio 1.6307e + 01 7.3526e + 00 3.2802e + 00 5.3747e + 00 4.4973e + 00 3.8460e + 00

Table 2: The absolute values of absolute errors of uh for example (7.1) withm = 3.

N Gauss Radau IIA Lobatto IIIA (1/3, 1/2, 2/3) (1/4, 1/3, 1/2) (1/2, 2/3, 1)
21 3.1476e − 04 9.9709e − 05 1.2551e − 03 1.2301e − 03 4.9431e + 04 4.8903e − 06
22 3.2248e − 11 1.6050e − 08 4.5928e − 06 2.6790e − 06 9.5944e − 04 3.2687e − 09
23 4.7508e − 12 2.0843e − 11 2.4209e − 10 6.7725e − 11 7.9577e − 11 1.1031e − 10
24 6.3943e − 14 5.8750e − 13 6.1162e − 12 6.7093e − 12 2.9944e − 11 1.6213e − 11
25 9.5085e − 16 1.9290e − 14 3.4588e − 13 4.1702e − 13 3.1783e − 12 2.5836e − 12
26 1.0192e − 17 6.3187e − 16 2.1210e − 14 2.5846e − 14 3.3739e − 13 3.7792e − 13
Ratio 9.3298e + 01 3.0528e + 01 1.6307e + 01 1.6135e + 01 9.4201 6.8363e + 00

6. Numerical Stability

In this section, we will discuss the stability of the collocation methods. We introduce the set
H consisting of all pairs (a, b) ∈ R

2 which satisfy the condition

H :=
{
(a, b) : −ae

a + 1
ea − 1

< b < −a
}
, (6.1)

and divide the region into three parts:

H0 := {(a, b) : (a, b) ∈ H, a = 0},
H1 := {(a, b) : (a, b) ∈ H, a < 0},
H2 := {(a, b) : (a, b) ∈ H, a > 0}.

(6.2)

By (2.9) and (2.10), we can obtain that

u
(
tkp+l+1

)
= R(x)u

(
tkp+l
)
+ α
(
x, y
)
u
(
tkp
)
, l = 0, 1, . . . , p − 1, (6.3)

where x := ha, y := hb, R(x) := 1 + bTx(I − Ax)−1e, and α(x, y) := y(1 + xbT (I − Ax)−1e) =
ybT (I −Ax)−1e.

Let Uk := (ukp, ukp+1, . . . , ukp+p)
T and B :=

∏p

i=1Bi. It is easy to see

Uk = BUk+1, k = 1, 2, . . . , (6.4)
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Table 3: The absolute values of absolute errors of uh for example (7.2) withm = 2.

N Gauss Radau IIA Lobatto IIIA (1/4, 1/2) (1/3, 2/3) (2/3, 1)
21 9.0789e − 01 9.1680e − 01 9.1647e − 01 9.0070e − 01 9.1460e − 01 9.1700e − 01
22 2.3033e − 01 8.6133e − 01 4.2429e − 01 5.4055e − 01 7.4023e − 01 9.1661e − 01
23 8.9360e − 03 1.2191e − 01 8.3085e − 02 1.3822e − 01 1.5563e − 01 7.6499e − 01
24 5.0981e − 04 9.9479e − 03 5.9089e − 02 3.4017e − 02 2.8752e − 02 1.5140e − 01
25 3.1272e − 05 1.0927e − 03 1.8134e − 02 8.7800e − 03 6.5674e − 03 2.5303e − 02
26 1.9458e − 06 1.2993e − 04 4.7169e − 03 2.2713e − 03 1.6041e − 03 5.3924e − 03
Ratio 1.6071e + 01 8.4098e + 00 3.8445e + 00 3.8656e + 00 4.0940e + 00 4.6924e + 00

Table 4: The absolute values of absolute errors of uh for example (7.2) withm = 3.

N Gauss Radau IIA Lobatto IIIA (1/3, 1/2, 2/3) (1/4, 1/3, 1/2) (1/2, 2/3, 1)
21 4.8459e − 02 9.0087e − 01 9.0789e − 01 9.0508e − 01 7.4280e − 02 9.1693e − 01
22 7.0515e − 03 5.0901e − 02 2.3033e − 01 8.2874e − 02 2.5303e − 02 8.3086e − 02
23 9.4311e − 05 1.3131e − 03 8.9360e − 03 9.9825e − 03 1.2122e − 02 6.3787e − 02
24 1.4090e − 06 3.5203e − 05 5.0981e − 04 6.1535e − 04 2.2659e − 03 7.4707e − 03
25 2.1766e − 08 1.0294e − 06 3.1272e − 05 3.8124e − 05 3.4308e − 04 7.9289e − 04
26 3.3592e − 10 3.1217e − 08 1.9458e − 06 2.3768e − 06 4.7157e − 05 9.0681e − 05
Ratio 6.4794e + 01 3.2977e + 01 1.6071e + 01 1.6040e + 01 7.2752e + 00 8.7437e + 00

where

B =

⎛

⎜⎜⎜⎜⎜
⎝

0 · · · 0 b1,p+1
0 · · · 0 b2,p+1
· · · · · · · · · · · ·
0 · · · 0 bp+1,p+1

⎞

⎟⎟⎟⎟⎟
⎠

,

bi,p+1 =

⎧
⎨

⎩
1 +
(
1 +

a

b

)[
R(x)i−1 − 1

]
, a /= 0,

1 + (i − 1)hb, a = 0.
i = 1, 2, . . . , p + 1.

(6.5)

Let ϕ(x) := bT (I − xA)−1e. Then there exists δ > 0 such that

ϕ(x) > 0 ∀x with |x| ≤ δ, (6.6)

since ϕ(0) = 1 and ϕ(x) is continuous in a neighborhood of zero. In the rest of the paper we
define

M :=

⎧
⎨

⎩

1, a ≤ 0,
a

δ
, a > 0.

(6.7)

Definition 6.1 (see [6]). Process (2.11) for (1.1) is called asymptotically stable at (a, b) if and
only if for all m ≥ M and h = 1/m.
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Figure 1: The Gauss collocation method withm = 2 and p = 50 for (7.1).
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Figure 2: The Radau IIA collocation method with m = 2 and p = 100 for (7.1).

(i) (I − xA) is invertible.

(ii) for any given ui (1 ≤ i ≤ m) relation (6.4) defines Uk (k = 1, 2, . . .) that satisfy
Uk → 0 for k → ∞.

Definition 6.2 (see [6]). The set of all pairs (a, b) at which the process (2.11) for (1.1) is
asymptotically stable is called asymptotical stability region denoted by S.

Theorem 6.3 (see [6]). Suppose that the collocation method isA0-stable and the stability function is
given by the (r, s)-Padé approximation to the exponential ex. ThenH1 ⊆ S if and only if r is even.

Theorem 6.4 (see [6]). Suppose that the stability function of the collocation method is given by the
(r, s)-Padé approximation to the exponential ez. Then H2 ⊆ S if and only if s is even.

Theorem 6.5 (see [6]). For all the collocation methods, we have H0 ⊆ S.



14 Journal of Applied Mathematics

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: The Gauss collocation method withm = 3 and p = 50 for (7.1).
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Figure 4: The Radau IIA collocation method with m = 3 and p = 1000 for (7.1).

Using the above theorems we can formulate the following result.

Theorem 6.6 (see [6]). Suppose that the collocation method isA0-stable and the stability function is
given by the (r, s)-Padé approximation to the exponential ex. Then H0 ⊆ S and H ⊆ S if and only if
both r and s are even,

H1 ⊆ S iff r,

H2 ⊆ S iff s is even.
(6.8)

Corollary 6.7. For the A-stable higher order collocation methods, it is easy to see from Theorem 6.6.

(i) For the ν-stage Gauss-Legendre method, H ⊆ S if and only if ν is even.

(ii) For the ν-stage Lobatto IIIA method, H ⊆ S if and only if ν is old.
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Figure 5: The Gauss collocation method withm = 2 and p = 50 for (7.2).
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Figure 6: The Radau IIA collocation method with m = 2 and p = 1000 for (7.2).

(iii) For the ν-stage Radau IIA method, H1 ⊆ S if and only if ν is old and H2 ⊆ S if and only if
ν is even.

7. Numerical Experiments

In order to give a numerical illustration to the conclusions in the paper, we consider the
following two problems ([6]):

u′
1(t) = −20u1(t) − 10.3u1([t]), u1(0) = 1, (7.1)

u′
2(t) = 10u2(t) − 10.0001u2([t]), u2(0) = 1. (7.2)

It can be checked that (−20,−10.3) ∈ H1 and (10,−10.0001) ∈ H2.
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Figure 7: The Gauss collocation method withm = 3 and p = 50 for (7.2).
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Figure 8: The Radau IIA collocation method with m = 3 and p = 1000 for (7.2).

For illustrating the convergence and superconvergence orders in this paper, we choose
m = 2 and m = 3 and use the Gauss collocation parameters: c1 = (3 − √

3)/6, c2 = (3 +√
3)/6, the Radau IIA collocation parameters: c1 = 1/3, c2 = 1, the Lobatto IIIA collocation

parameters: c1 = 0, c2 = 1, and three sets of random collocation parameters: c1 = 1/4, c2 = 1/2;
c1 = 1/3, c2 = 2/3; c1 = 2/3, c2 = 1, respectively, for m = 2; and we use the Gauss collocation
parameters: c1 = (5 − √

15)/10, c2 = 1/2, and c3 = (5 +
√
15)/10, the Radau IIA collocation

parameters: c1 = (4 − √
6)/10, c2 = (4 +

√
6)/10, and c3 = 1, the Lobatto IIIA collocation

parameters: c1 = 0, c2 = 1/2, and c3 = 1, and three sets of random collocation parameters:
c1 = 1/3, c2 = 1/2, c3 = 2/3; c1 = 1/4, c2 = 1/3, c3 = 1/2; c1 = 1/2, c2 = 2/3, c3 = 1,
respectively, for m = 3. In Tables 1, 2, 3, and 4 we list the absolute values of the absolute
errors of ut = 10 for the six collocation parameters and form = 2 andm = 3, respectively, and
the ratios of the absolute values of the errors of N = 100 over that of N = 200.

From the above tables, we can see that the convergence orders are consistent with our
theoretical analysis.
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In Figures 1, 2, 3, 4, 5, 6, 7, and 8, we draw the absolute values of the numerical solution
of collocation methods. It is easy to see that the numerical solution is asymptotically stable.
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