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An improved line search filter algorithm for the system of nonlinear equations is presented. We
divide the equations into two groups, one contains the equations that are treated as equality
constraints and the square of other equations is regarded as objective function. Two groups of
equations are updated at every iteration in the works by Nie (2004, 2006, and 2006), by Nie et al.
(2008), and by Gu (2011), while we just update them at the iterations when it is needed indeed. As
a consequence, the scale of the calculation is decreased in a certain degree. Under some suitable
conditions the global convergence can be induced. In the end, numerical experiments show that
the method in this paper is effective.

1. Introduction

Many applied problems are reduced to solve the system of nonlinear equations, which is one
of the most basic problems in mathematics. This task has applications in many scientific fields
such as physics, chemistry, and economics. More formally, the problem to be solved is stated
as follows

ci(x) = 0, i = 1, 2, . . . , m, (1.1)

where each ci : Rn → R (i = 1, 2, . . . , m) is a smooth function.
A well-known method for solving nonlinear equations is the Newton method, an

iterative scheme which is locally quadratical convergent only if the initial iteration is
sufficiently close to the solution. To improve the global properties, some important algorithms
[1] for nonlinear equations proceed by minimizing a least square problem:

minh(x) = c(x)Tc(x), (1.2)
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which can be also handled by the Newton method, while Powell [2] gives a counterexample
to show a dissatisfactory fact that the iterates generated by the above least square problem
may converge to a nonstationary point of h(x).

Traditionally, a penalty or augmented Lagrange function is always used as a merit
function to test the acceptability of the iterates. However, as we all know, there are several
difficulties associated with the use of penalty function, and in particular the choice of the
penalty parameter. Too low a choice may result in an optimal solution that cannot be
obtained, on the other hand, too large a choice damps out the effect of the objective function.
Hence, filter method has been first introduced for constrained nonlinear optimization
problems in a sequential quadratic programming (SQP) trust-region algorithm by Fletcher
and Leyffer [3], offering an alternative to merit functions, as a tool to guarantee global
convergence in algorithms for nonlinear programming (NLP). The computational results
are very promising in [3]. Furthermore, Fletcher et al. [4, 5] give the global convergence of
the trust-region filter-SQP method, then Ulbrich [6] gets its superlinear local convergence.
Consequently, filter method has been actually applied in many optimization techniques [7–
13], for instance the pattern search method [7], the SLP method [8], the interior method
[9], the bundle approaches [10, 11], and so on. Also combined with the trust-region search
technique, Gould et al. extended the filter method to the system of nonlinear equations (1.1)
and nonlinear least squares in [14], and to the unconstrained optimization problem with
multidimensional filter technique in [15]. In addition, Wächter and Biegler [16, 17] presented
line search filter methods for nonlinear equality constrained programming and the global and
local convergence were given.

Recently, some other ways were given to attack the problem (1.1) (see [18–22]). There
are two common features in these papers, one is the filter approach that is utilized, and
the other is that at every iteration the system of nonlinear equations is transformed into a
constrained nonlinear programming problem and the equations are divided into two groups,
some equations are treated as constraints and the others act as the objective function. For
instance combined with the filter line search technique [16, 17], the system of nonlinear
equations in [21] at the kth iteration xk becomes the following optimization problem with
equality constraints:

min
∑

i∈Sk
1

c2i (x)

s.t. cj(x) = 0, j ∈ Sk
2 ,

(1.3)

where the sets Sk
1 and Sk

2 are defined as Sk
1 = {ij | j ≤ n0} and Sk

2 = {ij | j ≥ n0 + 1} for some
positive constant n0 > 0 such that c2i1(xk) ≥ c2i2(xk) ≥ · · · ≥ c2in(xk).

Motivated by the ideas and methods above, we propose an improved line search filter
method for the system of nonlinear equations. We also divide the equations into two groups,
one contains the equations that are treated as equality constraints and the square of other
equations is regarded as objective function. Two groups of equations are updated at every
iteration in those works [18–22], while we just update them at the iterations when it is needed
indeed. Specifically, using similar transformed optimization problem (1.3), the difference
between our method with [21] is that the sets Sk

1 and Sk
2 in (1.3) need not be updated at

every iteration. As a consequence, the scale of the calculation is decreased in a certain degree.
In our algorithm two groups of equations cannot be changed after a f -type iteration, thus in
the case that |A| < ∞, the two groups are fixed after finite number of iterations. In addition,
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the filter should not be updated after a f -type iteration, so naturally the global convergence
is discussed, respectively, according to whether the number of the updated filter is infinite
or not. And it is shown that every limit point of the sequence of iterates generated by the
algorithm is the ε solution to (1.1) or a local infeasible point when |A| < ∞. Furthermore,
the global convergent property is induced under mild assumptions. In the end, numerical
experiments show that the method in this paper is effective.

The paper is outlined as follows. In Section 2, the line search filter method is developed
and its key ingredients are described. In Section 3 we prove that under suitable conditions,
the method is well defined and globally convergent. Finally, some numerical results are given
in Section 4.

2. Description of the Algorithm

To solve the system of nonlinear Equation (1.1), we also transform it into the optimization
problem (1.3)where equations are divided into two groups as the one in [21], then letmk(x) =
‖cSk

1
(x)‖2

2
=
∑

i∈Sk
1
c2i (x) and θk(x) = ‖cSk

2
(x)‖2

2
=
∑

i∈Sk
2
c2i (x). The linearization of the KKT

condition of (1.3) at the kth iteration xk is as follows:

⎛
⎜⎝

Bk Ak
Sk
2(

Ak
Sk
2

)T

0

⎞
⎟⎠
(
sk
λ+k

)
= −

(
g(xk)
cSk

2
(xk)

)
, (2.1)

where Bk is the Hessian or approximate Hessian matrix of L(x, λ) = mk(x) + λTcSk
2
(x), Ak

Sk
2
=

∇cSk
2
(xk) and g(xk) = ∇mk(xk).
After a search direction sk has been computed, a step size αk,l ∈ (0, 1] is determined in

order to obtain the trial iteration

xk(αk,l) = xk + αk,lsk. (2.2)

More precisely, for fixed constants γm, γθ ∈ (0, 1), we say that a trial step size αk,l provides
sufficient reduction with respect to the current xk if

θk(xk(αk,l)) ≤
(
1 − γθ

)
θk(xk) or mk(xk(αk,l)) ≤ mk(xk) − γmθk(xk). (2.3)

For the sake of a simplified notation, we define the filter in this paper not as a list but
as a set Fk ⊆ [0,∞]× [0,∞] containing all (θ,m)-pairs which are prohibited in iteration k. We
say that a trial point xk(αk,l) is acceptable to the filter if its (θ,m)-pair does not lie in the taboo
region, that is, if

(θ(xk(αk,l)), m(xk(αk,l))) /∈ Fk. (2.4)



4 Journal of Applied Mathematics

At the beginning of the optimization, the filter is initialized to be empty: F0 = ∅. Throughout
the optimization the filter is then augmented in some iterations after the new iterate xk+1 has
been accepted. For this, the following updating formula is used:

Fk+1 = Fk ∪
{
(θ,m) ∈ R2 : θ ≥ (

1 − γθ
)
θk(xk), m ≥ mk(xk) − γmθk(xk)

}
. (2.5)

Similar to the traditional strategy of the filter method, to avoid obtaining a feasible
point but not an optimal solution, we consider the following f -type switching condition:

uk(αk,l) < 0, −uk(αk,l) > δ[θk(xk)]
sθ , (2.6)

where uk(αk,l) = αk,lg
T
k
sk, δ > 0 and sθ ∈ (0, 1).

When Condition (2.6) holds, the step sk is a descent direction for current objective
function. Then, instead of insisting on (2.3), the Armijo-type reduction condition is employed
as follows:

mk(xk(αk,l)) ≤ mk(xk) + τ3uk(αk,l), (2.7)

where τ3 ∈ (0, 1/2) is a fixed constant.
If (2.6) and (2.7) hold for the accepted trial step size, we may call it an f -type point,

and accordingly this iteration is called an f -type iteration. An f -type point should be accepted
as xk+1 with no updating of the filter, that is,

Fk+1 = Fk. (2.8)

While if a trial point xk(αk,l) does not satisfy the switching condition (2.6) but satisfies (2.3),
we call it an h-type point (or accordingly an h-type iteration). An h-type point should be
accepted as xk+1 with updating of the filter.

In the situation, where no admissible step size can be found, the method switches to a
feasibility restoration stage, whose purpose is to find a new iterate that satisfies (2.3) and is
also acceptable to the current filter by trying to decrease the constraint violation. In order to
detect the situation where no admissible step size can be found and the restoration phase has
to be invoked, we define that

αmin
k =

⎧
⎪⎨

⎪⎩
min

{
γθ,

γm[θk(xk)]
sθ

−gT
k sk

}
, if gT

k sk < 0,

γθ, otherwise.
(2.9)

We are now ready to formally state the overall algorithm for solving the the system of
nonlinear Equation (1.1).

Algorithm 2.1. We have the following steps.
Step 1. Initialization: Choose an initial point x0 ∈ Rn, 0 < ρ1 < ρ2 < 1 and ε > 0. Compute g0,
ci(x0), S0

1, S
0
2 and Ak for i ∈ S0

2. Set k = 0 and F0 = ∅.
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Step 2. If ‖c(xk)‖ ≤ ε then stop. Otherwise compute (2.1) to obtain sk. If there exists no
solution to (2.1), go to Step 6. If ‖sk‖ ≤ ε then stop.
Step 3. Let αk,l = 1 and l = 0. Compute αmin

k
by (2.9).

Step 3.1. If αk,l < αmin
k , go to Step 6. Otherwise compute xk(αk,l) = xk+αk,lsk. If xk(αk,l) ∈

Fk, go to Step 3.2.

Step 3.1.1. Case 1. The switching condition (2.6) holds. If the reduction condition
(2.7) holds, set xk+1 = xk(αk,l), Fk+1 = Fk, Sk+1

1 = Sk
1 , S

k+1
2 = Sk

2 and go to Step 5.
Otherwise, go to Step 3.2.

Step 3.1.2. Case 2. The switching condition (2.6) is not satisfied. If (2.3) holds, set
xk+1 = xk(αk,l), augment the filter using (2.5) and go to Step 4. Otherwise, go to Step
3.2.

Step 3.2. Choose αk,l+1 ∈ [ρ1αk,l, ρ2αk,l]. Set l = l + 1 and go to Step 3.1.
Step 4. Compute Sk+1

1 and Sk+1
2 by (1.3). If (θk+1(xk+1), mk+1(xk+1)) ∈ Fk+1, set Sk+1

1 = Sk
1 and

Sk+1
2 = Sk

2 .
Step 5. Compute gk+1, Bk+1 and Ak+1. Go to Step 2 with k replaced by k + 1.
Step 6. (Feasibility Restoration Stage) Find xr

k = xk +αr
ks

r
k such that xr

k is accepted by the filter
and the infeasibility θ is reduced. Go to Step 2.

3. Global Convergence of Algorithm

In the reminder of this paper we denote the set of indices of those iterations in which the
filter has been augmented by A ⊆ N. Let us now state the assumptions necessary for the
global convergence analysis.

Assumption 3.1. The sequence {xk} generated by Algorithm 2.1 is nonempty and bounded.

Assumption 3.2. The functions ci(x), j = 1, 2, . . . , m are all twice continuously differentiable
on an open set containing X.

Assumption 3.3. There exist two constants b ≥ a > 0 such that the matrices sequence {Bk}
satisfy a‖s‖2 ≤ sTBks ≤ b‖s‖2 for all k and s ∈ Rn.

Assumption 3.4. (Ak
sk2
)T has full column rank and ‖sk‖ ≤ γs for all k with a positive constant

γs.

By Assumption 3.1 we have Σn
i=1c

2
i (xk) ≤ Mmax. Since 0 ≤ mk(xk) ≤ mk(xk) + θk(xk) =

Σn
i=1c

2
i (xk) and 0 ≤ θk(xk) ≤ mk(xk)+θk(xk) = Σn

i=1c
2
i (xk), then (θ,m) associated with the filter

is restricted to

B = [0,Mmax] × [0,Mmax]. (3.1)

Theorem 3.5. If Algorithm 2.1 terminates at Step 2, then an ε solution to (1.1) is achieved or a local
infeasibility point is obtained.

Proof. The proof of this theorem can be found in [21].

Next we can assume that our algorithm does not terminate finitely and an infinite
sequence of points is generated.
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Lemma 3.6. Under the above assumptions, there exists a solution to (2.1) with exact (or inexact) line
search which satisfies the following descent conditions,

|θk(xk + αsk) − (1 − 2α)θk(xk)| ≤ τ1α
2‖sk‖2, (3.2)

|mk(xk + αsk) −mk(xk) − uk(α)| ≤ τ2α
2‖sk‖2, (3.3)

where α ∈ (0, 1), τ1, and τ2 are all positive constants independent of k.

Proof. By virtue of Taylor expansion of c2i (xk + αsk)with i ∈ S2, we obtain

∣∣∣c2i (xk + αsk) − c2i (xk) − 2αci(xk)∇ci(xk)Tsk
∣∣∣

=
∣∣∣c2i (xk + αsk) − c2i (xk) − 2ci(xk)∇ci(xk)T (αsk)

∣∣∣

=
∣∣∣∣
1
2
(αsk)T

[
2ci(xk + ζαsk)∇c2i (xk + ζαsk) + 2∇ci(xk + ζαsk)∇ci(xk + ζαsk)

T
]
(αsk)

∣∣∣∣

=
∣∣∣α2sTk

[
ci(xk + ζαsk)∇c2i (xk + ζαsk) +∇ci(xk + ζαsk)∇ci(xk + ζαsk)

T
]
sk
∣∣∣

≤ 1
m
τ1α

2‖sk‖2,
(3.4)

where the last inequality follows the above assumptions and ζ ∈ [0, 1]. Also, from (2.1) we
immediately get that ci(xk)+∇ci(xk)

Tsk = 0, that is, −2αc2i (xk)−2αci(xk)∇ci(xk)
Tsk = 0. With

|S2| ≤ m, thereby,

|θk(xk + αsk) − (1 − 2α)θk(xk)| =
∣∣∣∣∣
∑

i∈S2

(
c2i (xk + αsk) − (1 − 2α)c2i (xk)

)∣∣∣∣∣

≤
∑

i∈S2

∣∣∣c2i (xk + αsk) − (1 − 2α)c2i (xk)
∣∣∣

=
∑

i∈S2

∣∣∣c2i (xk + αsk) − c2i (xk) − 2αci(xk)∇ci(xk)Tsk
∣∣∣

≤ m · 1
m
τ1α

2‖sk‖2

≤ τ1α
2‖sk‖2,

(3.5)

then (3.2) consequently holds.
According to Taylor expansion of Σi∈S1(c

2
i (xk + αsk)) (i.e.,mk(xk + αsk)), we then have

∣∣∣∣∣
∑

i∈S1

(
c2i (xk + αsk)

)
−
∑

i∈S1

(
c2i (xk)

)
− αgT

k sk

∣∣∣∣∣ =

∣∣∣∣∣
1
2
α2(sk)T∇2

∑

i∈S1

(
c2i
(
xk + ραsk

))
sk

∣∣∣∣∣

≤ τ2α
2‖sk‖2,

(3.6)
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where the last inequality follows the first two assumptions and ρ ∈ [0, 1]. That is to say,

|mk(xk + αsk) −mk(xk) − uk(α)| ≤ τ2α
2‖sk‖2, (3.7)

which is just (3.3).

Theorem 3.7. If there are only finite or infinite number of iterates entering the filter, then

lim
k→∞

θ(xk) = 0. (3.8)

Proof. Consider the following.

Case 1 (if |A| = ∞). The proof is by contraction. Suppose that there exists an infinite
subsequence {ki} ofA such that

θki(xki) ≥ ε, (3.9)

for some ε > 0. At each iteration ki, (θki(xki), mki(xki)) is added to the filter which means that
no other (θ,m) can be added to the filter at a later stage within the area

[
θki(xki) − γθθki(xki), θki(xki)

] × [mki(xki) − γmθki(xki), mki

]
, (3.10)

and the area of each of these squares is at least γθγmε2.
Thus the B is completely covered by at most a finite number of such areas in

contraction to the infinite subsequence {ki} satisfying (3.9). This means that (3.8) is true.

Case 2 (if |A| < ∞). From |A| < ∞, we know the filter updates in a finite number, then
there exists K ∈ N, for k > K the filter does not update. As h-type iteration and restoration
algorithm all need the updating of the filter, then for k > K our algorithm only executes the
f -type iterations.

Because S1 and S2 do not change in the f -type iteration, then for k ≥ K + 1 we have
θk(x) = θK(x) and mk(x) = mK(x). Thus we obtain

∞∑

k=K+1

(mk(xk) −mk(xk+1)) =
∞∑

k=K+1

(mK(xk) −mK(xk+1)). (3.11)

From the switching condition (2.6) we know that

τ3uk(αk,l) = τ3αk,lg
T
k sk < −τ3δ[θk(xk)]

γθ , (3.12)

together with the reduction condition (2.7) we get

mk(xk(αk,l)) ≤ mk(xk) + τ3uk(αk,l) ≤ mk(xk) − τ3δ[θk(xk)]
γθ , (3.13)
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and since xk+1 = xk(αk,l) for k ≥ K + 1, this reduces to

mk(xk+1) = mk(xk(αk,l)) ≤ mk(xk) − τ3δ[θk(xk)]
γθ . (3.14)

Suppose to the contrary that there exists an infinite subsequence {ki} of A such that

θki(xki) ≥ ε, (3.15)

for some ε > 0. Choose an arbitrary subsequence {ki} of {ki} satisfying ki > K, we find that

+∞ >
∞∑

k=K+1

(mK(xk) −mK(xk+1)) ≥
∞∑

i=1

(
mK

(
xki

)
−mK

(
xki+1

))
≥

∞∑

i=1

τ3δ
[
θki

(
xki

)]γθ −→ +∞,

(3.16)

which is a contraction.

Lemma 3.8. Let {xki} be a subsequence of iterates for which (2.6) hold and have the same S1 and S2.
Then there exists a α̂ ∈ (0, 1] such that

mki(xki + α̂ski) ≤ mki(xki) + α̂τ3g
T
ki
ski . (3.17)

Proof. Because {xki} have the same S1 and S2, mki(x) are fixed. And dki is a decent direction
due to (2.6). Hence there exists a α̂ ∈ (0, 1] satisfying (3.17).

Lemma 3.9. If there exists K ∈ N such that for k > K it holds ‖sk‖ ≥ (1/2)ε1, where ε1 > 0, then
there exist K1 ∈ N and a constant ε0 > 0, for k > K1 such that

gT
k sk ≤ −ε0. (3.18)

Proof. From (2.1)we obtain gk +Ak
S2
λ+
k
+ Bksk = 0 and ckS2

+ (Ak
S2
)Tsk = 0, so

gT
k sk = −sTkBksk −

(
λ+k
)T
ckS2

≤ −a‖sk‖2 −
(
λ+k
)T
ckS2

≤ −a‖sk‖2 + c1
∥∥∥ckS2

∥∥∥. (3.19)

As limk→∞θ(xk) = 0 implies limk→∞‖ckS2
‖ = 0, then there exists K1 (∈ N) ≥ K, for k > K1

such that ‖ckS2
‖ ≤ (aε21)/(8c1). Thus

gT
k sk ≤ −a‖sk‖2 + c1

∥∥∥ckS2

∥∥∥ ≤ −a
(
1
2
ε1

)2

+ c1

(
aε21
8c1

)
= −ε0, (3.20)

with ε0 = (aε21)/(8c1).
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Theorem 3.10. Suppose that {xk} is an infinite sequence generated by Algorithm 2.1 and |A| < ∞,
one has

lim
k→∞

∥∥∥ck
Sk
2

∥∥∥ + ‖sk‖ = 0. (3.21)

Namely, every limit point is the ε solution to (1.1) or a local infeasible point. If the gradients of ci(xk)
are linear independent for all k and i = 1, 2, . . . , m, then the solution to (1.1) is obtained.

Proof. As was noted in the proof of the case 2 in Theorem 3.7, from |A| < ∞, the algorithm
only executes the f -type iterations. Now the proof is by contraction. If the result is false, there
should have been a constant ε1 > 0 and a subsequence {xki} of {xk} such that

∥∥∥∥c
ki

S
ki
2

∥∥∥∥ + ‖ski‖ > ε1, (3.22)

for all ki. Without loss of generality, we can suppose there are only f -type iterations for k ≥ k1.
Moreover, there exist the following results for sufficiently large ki.

As limk→∞θ(xk) = 0, it is apparent that ‖cki
S
ki
2

‖ ≤ (1/2)ε1 hold for large enough ki. It is

reasonable that we have ‖ski‖ ≥ (1/2)ε1 from (3.22), so similar to the Lemma 3.9, we can get
gT
ki
ski ≤ −ε0 for large enough ki. Without loss of generality, suppose gT

ki
ski ≤ −ε0 for all ki.

Because S1 and S2 do not change in the f -type iteration, then for all ki we have θki(x) =
θk1(x) and mki(x) = mk1(x). Since the f -type point satisfies the reduction condition (2.7), that
is, mk(xk) −mk(xk+1) > −τ3αgT

k
sk, then it holds that

∞∑

i=1

(mki(xki) −mki(xki+1)) =
∞∑

i=1

(mk1(xki) −mk1(xki+1)) >
∞∑

i=1

(
−τ3αgT

ki
ski

)
. (3.23)

Bymk(xk) is decreasing for k ≥ k1 and Lemma 3.8, we get

+∞ >
∞∑

k=k1

(mk(xk) −mk(xk+1)) >
∞∑

i=1

(mki(xki) −mki(xki+1)) >
∞∑

i=1

(
−α̂τ3gT

ki
ski

)

>
∞∑

i=1

α̂τ3ε0 −→ +∞,

(3.24)

which is a contraction.
If the gradients of ci(xk) are linear independent for all k and i = 1, 2, . . . , m, then the

solution to (1.1) is obtained by virtue of the result in [23]. Thus, the result is established.

Lemma 3.11. If gT
k
sk ≤ −ε0 for a positive constant ε0 independent of k, then there exists a constant

α > 0, for all k and α ≤ α such that

mk(xk + αsk) −mk(xk) ≤ τ3uk(α). (3.25)
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Proof. Let α = ((1 − τ3)ε0)/τ2γ2s . From (3.3), ‖sk‖ ≤ γs and α ≤ α, we obtain

mk(xk + αsk) −mk(xk) − uk(α) ≤ τ2α
2‖sk‖2 ≤ τ2ααγ

2
s = (1 − τ3)αε0 ≤ −(1 − τ3)αgT

k sk

= −(1 − τ3)uk(α),
(3.26)

which shows that (3.25) is true.

Lemma 3.12. Under all existing assumptions, if uk(α) ≤ −αε0 for a positive constant ε0 independent
of k and α ≥ αmin

k,l for all α ∈ (0, 1] with (θk(xk), mk(xk)) /∈ Fk, then there exist γ1, γ2 > 0 such that
(θk(xk + αsk), mk(xk + αsk)) /∈ Fk for all k and α ≤ min{γ1, γ2θk(xk)}.

Proof. Choose γ1 = ε0/τ2γ
2
s , then α ≤ γ1 implies that −αε0 + τ2α

2γ2s ≤ 0. So from (3.3), we
obtain

mk(xk + αsk) ≤ mk(xk) + uk(α) + τ2α
2‖sk‖2

≤ mk(xk) − αε0 + τ2α
2γ2s

≤ mk(xk).

(3.27)

And choose γ2 = 2/τ1γ2s , then α ≤ γ2θk(xk) implies that −2αθk(xk) + τ1α
2γ2s ≤ 0. It

follows from (3.2) that

θk(xk + αsk) ≤ θk(xk) − 2αθk(xk) + τ2α
2‖sk‖2

≤ θk(xk) − 2αθk(xk) + τ1α
2γ2s

≤ θk(xk).

(3.28)

We further point out a fact according to the definition of filter. If (θ,m) /∈ Fk and θ ≤ θ,
m ≤ m, we note that (θ,m) /∈ Fk. So from (θk(xk), mk(xk)) /∈ Fk, mk(xk + αsk) ≤ mk(xk) and
θk(xk + αsk) ≤ θk(xk), we get (θk(xk + αsk), mk(xk + αsk)) /∈ Fk.

Lemma 3.13. If there existsK ∈ N such that for k > K it holds ‖sk‖ ≥ (1/2)ε1 for a constant ε1 > 0,
then there exists K ∈ N so that for all k > K the f-type iterate is always satisfied.

Proof. By Lemma 3.9, there exists K1 ∈ N and a constant ε0 > 0, for k > K1 such
that gT

k
sk ≤ −ε0. From the definition of αmin

k
, when gT

k
sk ≤ 0, we have αmin

k
=

min{γθ, (δ[θk(xk)]
sθ)/(−gT

k sk)}. As limk→∞θ(xk) = 0, we have limk→∞(δ[θk(xk)]
sθ)/ε0 = 0.

So there exists K2 (> K1) ∈ N such that for k > K2 it holds

δ[θk(xk)]
sθ

−gT
k sk

<
δ[θk(xk)]

sθ

ε0
< γθ, (3.29)

which implies for k > K1 we have αmin
k = min{γθ, (δ[θk(xk)]

sθ)/(−gT
k sk)} = (γm[θk(xk)]

sθ)/
(−gT

k
sk).
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Because limk→∞θ(xk) = 0, there exists K (> K2) ∈ N such that for k > K it follows

θk(xk) < min

{
α

γ2
,
γ1
γ2
,

[
ρ1γ2ε0

δ

]1/(sθ−1)}
, (3.30)

which shows that

γ2θk(xk) ≤ min
{
α, γ1, γ2θk(xk)

}
,

δ[θk(xk)]
sθ

ε0
< ρ1γ2θk(xk).

(3.31)

Moreover, K > K2 > K1 implies gT
k sk ≤ −ε0 for all k > K.

Let βk = γ2θk(xk), by Lemmas 3.11 and 3.12, for α ≤ βk we obtain

mk(xk + αsk) −mk(xk) ≤ τ3uk(α),

(θk(xk + αsk), mk(xk + αsk)) /∈ Fk.
(3.32)

If we now denote with αk,L the first trial size satisfying (3.32), the backtracking line search
procedure then implies that for α ≥ αk,L

α ≥ ρ1βk = ρ1γ2θk(xk) >
δ[θk(xk)]

sθ

ε0
, (3.33)

from which it follows that

α >
δ[θk(xk)]

sθ

ε0
>

δ[θk(xk)]
sθ

−gT
k
sk

> min
{
γθ,

δ[θk(xk)]
sθ

ε0

}
= αmin

k ,

−uk(α) > αε0 > δ[θk(xk)]
sθ .

(3.34)

This means that αk,L and all previous trial step sizes are f -step sizes and larger than αmin
k

.
Therefore, αk,L is the accepted step size αk indeed. Since the trial point xk(αk,L) /∈ Fk satisfies
the switching condition (2.6) and the reduction condition (2.7), the iteration is a f -type
iteration for each k > K. The claim is true.

Theorem 3.14. Suppose that {xk} is an infinite sequence generated by Algorithm 2.1 and |A| = ∞,
then

lim
k→∞

inf
[∥∥∥ck

Sk
2

∥∥∥ + ‖sk‖
]
= 0. (3.35)

Namely, it has an accumulation which is the ε solution to (1.1) or a local infeasible point. If the
gradients of ci(xk) are linear independent for all k and i = 1, 2, . . . , m, then the solution to (1.1) is
obtained.



12 Journal of Applied Mathematics

Table 1: Numerical results of Example 4.1.

Starting point NIT NOF NOG
(3, 1) 6 12 10
(6, 2) 9 17 14
(9, 3) 12 24 21

Proof. Suppose by contraction that there should have been a constant ε1 > 0 such that
∥∥∥ck

Sk
2

∥∥∥ + ‖sk‖ > ε1, (3.36)

for all k. Furthermore, there exists the following results for sufficiently large k.
As limk→∞θ(xk) = 0, it is apparent that ‖ck

Sk
2
‖ ≤ (1/2)ε1 holds for large enough k. It is

reasonable that we have ‖sk‖ ≥ (1/2)ε1 for large enough k from (3.36). Therefore there exists
K ∈ N such that for k > K it holds ‖sk‖ ≥ (1/2)ε1 for a constant ε1 > 0, then by Lemma 3.13,
we know that there exists K ∈ N such that for all k > K the f -type iterate is always satisfied,
which is a contraction to |A| = ∞.

Similar to Theorem 3.10, if the gradients of ci(xk) are linear independent for all k and
i = 1, 2, . . . , m, then the solution to (1.1) is also obtained. The whole proof is completed.

4. Numerical Examples

In this section, we develop the implementation of Algorithm 2.1 in order to observe its
performance on some illustrative examples. In the whole process, the program is coded
in MatLab with exact line search. The first example is from [2], which converges to a
nonstationary point if the least squares approach is employed. The second example comes
from [24], which Newton method fails to solve, and the final problem is given from [25].
In the tables, the notations NIT, NOF, and NOG mean the number of iterates, number of
functions and number of gradients, respectively.

Example 4.1. Find a solution of the nonlinear equations system:

⎛

⎝
x

10x
x + 0.1

+ 2y2

⎞

⎠ =
(
0
0

)
. (4.1)

The unique solution is (x∗, y∗) = (0, 0). It has been proved in [2] that, under initial
point (x0, y0) = (3, 1), the iterates converge to the point z = (1.8016, 0.0000), which is not
a stationary point. Utilizing our algorithm, a sequence of points converging to (x∗, y∗) is
obtained. We assume the error tolerance ε in this paper is always 1.0e − 5. The detailed
numerical results for Example 4.1 are listed in Table 1.

Example 4.2. Find a solution of the nonlinear equations system as follows:

(
x + 3y2

(x − 1.0)y

)
=
(
0
0

)
. (4.2)
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Table 2: Numerical results of Example 4.2.

Starting point NIT NOF NOG
(1, 0) 2 4 8
(1, 2) 11 18 15

Table 3: Numerical results of Example 4.3.

Starting point (0.5, 0.5) (−0.5, 0.5) (0.5,−0.5)
NIT 5 9 7
NOF 10 12 14
NOG 9 15 10
Solution (1, 1) (−1, 1) (1,−1)

Table 4: Numerical results of Example 4.4.

N = 5 N = 10 N = 15 N = 30 N = 50
NIT 6 8 14 19 36
NOF 8 10 16 21 40
NOG 7 12 15 20 38

The only solution of Example 4.2 is (x∗, y∗) = (0, 0). Define the line Γ = {(1, y) : y ∈ R}.
If the starting point (x0, y0) ∈ Γ, the Newton method [24] is confined to Γ. We choose two
starting points which are belong to Γ in the experiments and then the (x∗, y∗) is obtained. The
numerical results of Example 4.2 are given in Table 2.

Example 4.3. Consider the following system of nonlinear equations:

f1(x) = x2
1 + x1x2 + 2x2

2 − x1 − x2 − 2,

f2(x) = 2x2
1 + x1x2 + 3x2

2 − x1 − x2 − 4.
(4.3)

There are three solutions of above example, (1, 1)T , (−1, 1)T , (1,−1)T . The numerical
results of Example 4.3 are given in Table 3.

Example 4.4. Consider the system of nonlinear equations:

fi(x) = −(N + 1) + 2xi +
N∑

j=1,j /= i

xj , i = 1, 2, . . . ,N − 1,

fN(x) = −1 +
N∏

j=1

xj ,

(4.4)

with the with the initial point x(0)
i = 0.5, i = 1, 2, . . . ,N. The solution to Example 4.4 is x∗ =

(1, 1, . . . , 1)T . The numerical results of Example 4.4 are given in Table 4.
All results summarized show that our proposed algorithm is practical and effective.
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