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In order to solve initial value problems of differential equations with oscillatory solutions, this
paper improves traditional Runge-Kutta (RK) methods by introducing frequency-depending
weights in the update. New practical RK integrators are obtained with the phase-fitting and
amplification-fitting conditions and algebraic order conditions. Two of the new methods have
updates that are also phase-fitted and amplification-fitted. The linear stability and phase properties
of the newmethods are examined. The results of numerical experiments on physical and biological
problems show the robustness and competence of the new methods compared to some highly
efficient integrators in the literature.

1. Introduction

A vast of problems in applied fields, such as elastics, mechanics, astrophysics, electronics,
molecular dynamics, ecology, and biochemistry, can be cast into the form of an initial value
problem of the system of first-order ordinary differential equations as follows:

y′ = f
(
x, y
)
, y(x0) = y0, (1.1)

where y ∈ R
d, f : R × R

d → R
d is a sufficiently smooth function. Traditionally, the problem

(1.1) has been solved numerically by Runge-Kutta methods (RK) or linear multistep methods
(LMMs) (see [1–3]). In many applications, the solution to the problem (1.1) is oscillatory or
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periodic. But the general-purpose methods do not take into account the oscillatory feature of
the problem and the numerical results they produce are generally not satisfactory.

Recently, some authors have proposed to adapt traditional integrators to the
oscillatory character of the solution to the problem (1.1) (see [4–7]). Bettis [8] constructs a
three-stage method and a four-stage method which solve the equation y′ = iωy (i2 = −1)
without truncation error. Paternoster [9] develops a class of implicit methods of Runge-
Kutta (RK) and Runge-Kutta-Nyström (RKN) types by the trigonometric fitting technique.
For oscillatory problems which can be put in the form of a second-order equation y′′ =
f(x, y), Franco [10] improves the update of the classical RKN methods and proposes a
family of explicit RKN methods adapted to perturbed oscillators (ARKN) and a class
of explicit adapted RK methods in [11]. Anastassi and Simos [12] construct a phase-
fitted and amplification-fitted RK method of “almost” order five. Van de Vyver [13]
investigates phase-fitted and amplification-fitted two step hybrid methods (FTSH). For other
important work on frequency dependent integrators for general second-order oscillatory
equations, the reader is referred to [14–18]. Many authors focus on effective numerical
integration of specific categories of oscillatory problems. For example, Vigo-Aguiar and
Simos [18] construct an exponentially fitted and trigonometrically fitted method for orbital
problems. The papers [19–21] have designed highly efficient integrators for the Schrödinger
equation.

Based on the previous work, we consider, in this paper, phase-fitted and amplification-
fitted RK type integrators whose coefficients in the update depend on the product of the
fitting frequency and the step size. In Section 2, we present a result on order conditions for
frequency-depending modified Runge-Kutta type methods. Section 3 introduces the notion
of phase-fitted and amplification-fitted RK type methods (FRK) and derives the phase-fitting
and amplification-fitting conditions. In Section 4 two FRK methods of order four and two
FRK methods of order five are constructed. Their error coefficients and error constants
are also calculated. The linear stability and phase properties of the new FRK methods are
analyzed in Section 5. In Section 6, numerical experiments are carried out to illustrate the
effectiveness and superiority of our new methods compared to two well-known highly effi-
cient integrators we have chosen from the recent literature. Section 7 is devoted to conclusive
comments.

2. Order Conditions for RK Type Methods with
Frequency-Dependent Weights

Assume that the principal frequency of the problem (1.1) is known or can be accu-
rately estimated in advance. This estimated frequency is denoted by ω, which is also
called the fitting frequency. We consider the following s-stage modified Runge-Kutta
method:

ki = f

⎛

⎝x0 + cih, y0 + h
s∑

j=1

aijkj

⎞

⎠, i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

bi(ν)ki,

(2.1)
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where h is the step size, ci, aij , i, j = 1, . . . , s are real numbers, and bi(ν), i = 1, . . . , s are even
functions of ν = hω. The scheme (2.1) can be represented by the Butcher tableau as follows:

c A

bT
=

c1 a11 . . . a1s
...

...
. . .

...
cs as1 . . . ass

b1(ν) . . . bs(ν)

, (2.2)

or simply by (A, b, c). Conventionally, we assume that

s∑

j=1

aij = ci, i = 1, . . . , s. (2.3)

As explained in [3], the order conditions for the modified RK method (2.1) can be
derived by just considering the autonomous equation y′ = f(y). Using Butcher’s rooted tree
theory in [1], the exact solution to the problem (1.1) and the numerical solution produced by
the modified RK type method (2.1) have the B-series expressions as follows:

y(x0 + h) =
∞∑

j=0

hj

j!

∑

ρ(t)=j

α(t)F(t)(y0
)
,

y1 =
∞∑

j=0

hj

j!

∑

ρ(t)=j

α(t)γ(t)bTΦ(t)F(t)(y0
)
,

(2.4)

where the trees t, the functions ρ(t) (order), α(t) (number of equivalent trees), γ(t) (density),
Φ(t) = (Φ1(t), . . . ,Φs(t))

T (the s × 1 vector of elementary weights), and the elementary
differentials F(t)(y0) are defined in [3]. Then the local truncation error has the following
series expansion:

LTE =
∞∑

j=0

hj

j!

∑

ρ(t)=j

α(t)
(
1 − γ(t)bTΦ(t)

)
F(t)(y0

)
. (2.5)

If for any (p + 1)th differentiable function f(y), when the scheme (2.1) is applied to the
problem (1.1), the local truncation error LTE = y(x0 + h) − y1 = O(hp+1), then the method
(2.1) is said to have (algebraic) order p.

Theorem 2.1 (see Franco [11]). The modified RK type method (2.1) has order p if and only if the
following conditions are satisfied:

bTΦ(t) =
1

γ(t)
+O
(
νp−ρ(t)+1

)
, ρ(t) = 1, 2, . . . , p. (2.6)
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If the method (2.1) is of order p, then we have

LTE =
hp+1
(
p + 1

)
!

∑

ρ(t)=p+1

α(t)
(
1 − γ(t)bTΦ(t)

)
F(t)(y0

)
+O
(
νp+2
)

:=
hp+1
(
p + 1

)
!

∑

ρ(t)=p+1

α(t)ε(t)F(t)(y0
)
+O
(
νp+2
)
,

(2.7)

where ε(t) = 1− γ(t)bTΦ(t) is called the error coefficient associated with the tree t of order p+ 1
which is involved in the leading term of the local truncation error. Denote

ECp+1(ν) =

⎛

⎝
∑

ρ(t)=p+1

ε(t)2
⎞

⎠

1/2

. (2.8)

The positive number

ECp+1 = lim
ν→ 0

ECp+1(ν) (2.9)

is called the error constant of the method.

3. Phase-Fitted and Amplification-Fitted Conditions

For oscillatory problems, as suggested by Paternoster [9] and Van der Houwen and
Sommeijer [22], apart from the algebraic order, the analysis of phase lag and dissipation is
important. To this end, we consider the following linear scalar equation:

y′ = iωy. (3.1)

The exact solution of this equation with the initial value y(x0) = y0 satisfies

y(x0 + h) = R0(z)y0, (3.2)

where R0(z) = exp(z), z = iν. This means that after a period of time h, the exact solution
experiences a phase advance ν = hω and the amplification remains constant.

An application of the modified RK method (2.1) to (3.1) yields

y1 = R(z)y0, (3.3)

where

R(z) = 1 + zbT (I − zA)−1e, z = iν, e = (1, . . . , 1)T . (3.4)
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Thus, after a time step h, the numerical solution obtains a phase advance argR(z) and the
amplification factor |R(iν)|. R(z) is called the stability function of the method (2.1). Denote the
real and imaginary part of R(z) by U(ν) and V (ν), respectively. Then, for small h, we have

U(ν) = 1 − ν2
(
bTAe

)
+ ν4
(
bTA3e

)
− ν6
(
bTA5e

)
+ ν8
(
bTA7e

)
− · · · ,

V (ν) = ν
(
bTe
)
− ν3
(
bTA2e

)
+ ν5
(
bTA4e

)
− ν7
(
bTA6e

)
+ · · · .

(3.5)

For small h, argR(z) = tan−1(V (ν)/U(ν)) and |R(z)| =
√
U2(ν) + V 2(ν). The above analysis

leads to the following definition.

Definition 3.1 (see [22]). The quantities

P(ν) = ν − argR(iν), D(ν) = 1 − |R(iν)| (3.6)

are called the phase lag (or dispersion) and the error of amplification factor (or dissipation)
of the method, respectively. If

P(ν) = O
(
νq+1
)
, D(ν) = O

(
νp+1
)
, (3.7)

then the method is called dispersive of order q and dissipative of order p, respectively. If

P(ν) = 0, D(ν) = 0, (3.8)

the method is called phase-fitted (or zero-dispersive) and amplification-fitted (or zero-dissipative),
respectively. A modified RK method which is phase-fitted and amplification-fitted is called
in short an FRK method.

It is interesting to consider the phase properties of the update of the scheme (2.1).
Suppose that the internal stages have been exact for the linear equation (3.1), that is, Yi =
exp(iciν)y0, then the update gives

y1 = Ru(z)y0, (3.9)

where

Ru(z) = 1 + z
s∑

i=1

bi(ν) exp(ciz), z = iν. (3.10)
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Denote the real and imaginary part of Ru(z) by Uu(ν) and Vu(ν), respectively. Then, for
small h,

Uu(ν) = 1 − ν
s∑

i=1

bi(ν) sin(ciν),

Vu(ν) = ν
s∑

i=1

bi(ν) cos(ciν).

(3.11)

Definition 3.2. The quantities

Pu(ν) = ν − argRu(iν), Du(ν) = 1 − |Ru(iν)| (3.12)

are called the phase lag (or dispersion) and the error of amplification factor (or dissipation) of the
update of the method, respectively. If

Pu(ν) = O
(
νq+1
)
, Du(ν) = O

(
νp+1
)
, (3.13)

then the update of the method is called dispersive of order q and dissipative of order p,
respectively. If

Pu(ν) = 0, Du(ν) = 0, (3.14)

the update of the method is called phase-fitted (or zero-dispersive) and amplification-fitted
(or zero-dissipative) in the update, respectively.

Generally speaking, a traditional RK method with constant coefficients inevitably
carries a nonzero phase lag and a nonzero error of amplification factor when applied to the
linear oscillatory equation (3.1). Therefore, they are neither phase-fitted nor amplification-
fitted. So does the update. For example, the classical RK method of order four with constant
coefficients (denoted as RK4, see [3]) given by

0
1/2 1/2
1/2 1/2
1 1

1/6 2/6 2/6 1/6

(3.15)

has a phase lag and an error of amplification factor as follows:

P(ν) =
1
120

ν5 +O
(
ν7
)
, D(ν) =

1
144

ν6 +O
(
ν8
)
. (3.16)
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For the update,

Pu(ν) = − 1
2880

ν5 +O
(
ν7
)
, Du(ν) = − 1

5760
ν6 +O

(
ν8
)
. (3.17)

Therefore, both the method and its update are dispersive of order four and dissipative of
order five.

The following theorem gives the necessary and sufficient conditions for a modified RK
method and its update to be phase-fitted and amplification-fitted, respectively.

Theorem 3.3. (i) The method (2.1) is phase-fitted and amplification-fitted if and only if

U(ν) = cos(ν), V (ν) = sin(ν). (3.18)

(ii) The update of the method (2.1) is phase-fitted and amplification-fitted if and only if

Uu(ν) = cos(ν), Vu(ν) = sin(ν). (3.19)

The proof of this theorem is immediate.

4. Construction of New Methods

Now we proceed to construct modified RK type methods that are both phase-fitted and
amplification-fitted based on the internal coefficients of two classical RK methods. For
convenience we restrict ourselves to explicit methods.

4.1. Fourth-Order Methods

Consider a four-stage modified RK method with the following Butcher tableau:

0
1/2 1/2
1/2 1/2
1 1

b1 b2 b3 b4

. (4.1)

For s = 4, the phase-fitting and amplification-fitting conditions (3.18) have the following
form:

1 −
(
1
2
b2(ν) +

1
2
b3(ν) + b4(ν)

)
ν2 +

1
4
b4(ν)ν4 = cos(ν),

(b1(ν) + b2(ν) + b3(ν) + b4(ν))ν −
(
1
4
b3(ν) +

1
2
b4(ν)

)
ν3 = sin(ν).

(4.2)
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On the other hand, the first-order and second-order conditions become

bTe = b1(ν) + b2(ν) + b3(ν) + b4(ν) = 1,

bTc =
1
2
b2(ν) +

1
2
b3(ν) + b4(ν) =

1
2
.

(4.3)

Here, for the purpose of deriving the weights of the method, the higher order terms in the
order conditions are omitted. We will follow this convention in the sequel. Solving (4.2) and
(4.3), we obtain

b1(ν) =
2
(−2 + ν2 + 2 cos(ν)

)

ν4
, b2(ν) =

ν3 − 4ν + 4 sin(ν)
ν3

,

b3(ν) =
−4(−2 + 2 cos(ν) + ν sin(ν))

ν4
, b4(ν) = b1(ν).

(4.4)

As ν → 0, bi(ν) have the following Taylor expansions:

b1(ν) =
1
6
− 1
180

ν2 +
1

10080
ν4 − 1

907200
ν6 +

1
119750400

ν8 + · · · ,

b2(ν) =
1
3
+

1
30

ν2 − 1
1260

ν4 +
1

907200
ν6 − 1

9979200
ν8 + · · · ,

b3(ν) =
1
3
− 1
45

ν2 +
1

1680
ν4 − 1

134400
ν6 +

1
11975040

ν8 + · · · ,

b4(ν) =
1
6
− 1
180

ν2 +
1

10080
ν4 − 1

907200
ν6 +

1
119750400

ν8 + · · · .

(4.5)

By direct calculation, we obtain the following expansions:

bTc2 =
−8 + 4ν2 + ν4 + 8 cos(ν)

4ν4
=

1
3
+O
(
ν2
)
,

bTAc =
ν − sin(ν)

ν3
=

1
6
+O
(
ν2
)
,

bTc3 =
−24 + 12ν2 + ν4 + 24 cos(ν)

8ν4
=

1
4
+O(ν),

bT (c ·Ac) =
−2 + 2ν2 + 2 cos(ν) − ν sin(ν)

2ν4
=

1
8
+O(ν),

bT
(
Ac2
)
=

ν − sin(ν)
2ν3

=
1
12

+O(ν),

bTA2c =
−2 + ν2 + 2 cos(ν)

2ν4
=

1
24

+O(ν),

(4.6)

where the dot “·” between two vectors indicates componentwise product, and c2 and c3

indicate the componentwise square of the vector. We will follow the convention in the sequel.
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Thus, the coefficients given by (4.1) and (4.4) satisfy all the conditions of order four in
Theorem 2.1. But they cannot satisfy all the conditions of order five. For instance,

bTc4 =
5
24

− 7
1440

ν2 +
1

11520
ν4 − 1

1036800
ν6 /=

1
5
+O(ν). (4.7)

Therefore, this method is of order four. The method was originally obtained by Simos [23]
and we denote it by Simos4.

Corresponding to the nine fifth-order rooted trees t5j , j = 1, . . . , 9, the error coefficients
of Simos4 are given by

e(t51) =
280 − 140ν2 + 11ν4 − 280 cos(ν)

16ν4
, e(t52) =

30 − 20ν2 + 2ν4 − 30 cos(ν) + 5ν sin(ν)
2ν4

,

e(t53) =
30 − 30ν2 + 4ν4 − 30 cos(ν) + 15ν sin(ν)

4ν4
, e(t54) = 1 − 15

(−2 + ν2 + 2 cos(ν)
)

ν4
,

e(t55) =
10 − 10ν2 + ν4 − 10 cos(ν) + 5ν sin(ν)

ν4
, e(t56) =

−5ν + ν3 + 5 sin(ν)
ν3

,

e(t57) = 1 − 10
(−2 + ν2 + 2 cos(ν)

)

ν4
, e(t58) = 1 − 15

(−2 + ν2 + 2 cos(ν)
)

ν4
, e(t59) = 1.

(4.8)

Then for Simos4,

EC5(ν) =

√
K

16ν4
, (4.9)

where

K = 739200 − 798400ν2 + 296160ν4 − 40200ν6 + 2169ν8 + 739200cos2(ν)

+ 320ν
(
185 − 205ν2 + 26ν4

)
sin(ν) + 18000ν2sin2(ν)

− 80 cos(ν)
(
18480 − 9980ν2 + 797ν4 + 740ν sin(ν)

)
.

(4.10)

Now we require that the update of the method (4.1) is phase-fitted and amplification-
fitted. By Theorem 3.3 (ii), we have

b1(ν) + b2(ν) cos
(
1
2
ν

)
+ b3(ν) cos

(
1
2
ν

)
+ b4(ν) cos(ν) =

sin(ν)
ν

,

b2(ν) sin
(
1
2
ν

)
+ b3(ν) sin

(
1
2
ν

)
+ b4(ν) sin(ν) =

1 − cos(ν)
ν

.

(4.11)
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Solving (4.2) and (4.11), we obtain

b1(ν) =
4(ν − 2 sin(ν/2)) sin(ν/2)
ν2(−4 + ν2 + 4 cos(ν/2))

,

b2(ν) =
L

ν4(−4 + ν2 + 4 cos(ν/2))
,

b3(ν) = −8(ν cos(ν/2) − 2 sin(ν/2)) sin(ν/2)
ν4

,

b4(ν) = b1(ν),

(4.12)

where

L = 2 sin
(ν
2

)(
8ν − 4ν3 + ν5 + 4ν

(
−4 + ν2

)
cos
(ν
2

)
+ 8ν cos(ν)

+32 sin
(ν
2

)
− 8ν2 sin

(ν
2

)
− 16 sin(ν) + 4ν2 sin(ν)

)
.

(4.13)

It can be verified that the method given by (4.1) and (4.12) is of order four. We denote the
method by FRK4.

The error coefficients of FRK4 are given by

e(t51) =
W

8ν2Q
,

e(t52) = 1 + 5 sin(ν/2)
(
ν
(
−4 + ν2

)
cos(ν/2)

+2
(
ν − 2ν3 + ν cos(ν) +

(
4 + 3ν2

)
sin(ν/2) − 2 sin(ν)

))
/
(
ν4Q
)
,

e(t53) = 1 − 15 sin(ν/2)
(−ν cos(ν/2)Q + 2

(
ν3 − (4 + ν2

)
sin(ν/2) + 2 sin(ν)

))

2ν4Q
,

e(t54) = 1 − 30(ν − 2 sin(ν/2)) sin(ν/2)
ν2Q

,

e(t55) = 1 + 10 sin(ν/2)
(
ν
(
−4 + ν2

)
cos(ν/2)

+2
(
ν − ν3 + ν cos(ν) +

(
4 + ν2

)
sin(ν/2) − 2 sin(ν)

))
/
(
ν4Q
)
,

e(t56) = 1 − 40 cos(ν/4)sin3(ν/4)
(
ν3 + 4ν cos(ν/2) − 8 sin(ν/2)

)

ν4Q
,

e(t57) = 1 − 20(ν − 2 sin(ν/2)) sin(ν/2)
ν2Q

,

e(t58) = 1 − 30(ν − 2 sin(ν/2)) sin(ν/2)
ν2Q

,

e(t59) = 1,

(4.14)
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where

W = 160 − 32ν2 + 8ν4 + 2
(
−5 + 16ν2

)
cos
(ν
2

)
− 160 cos(ν) + 10 cos

(
3ν
2

)

− 140ν sin
(ν
2

)
− 5ν3 sin

(ν
2

)
,

Q = − 4 + ν2 + 4 cos
(ν
2

)
.

(4.15)

Then for FRK4, we have

EC5(ν) =
√
2881
48

− 697

288
√
2881

ν2 +
1290137687

1115154432
√
2881

ν4

− 13289682175603

385531190231040
√
2881

ν6 +O
(
ν8
)
.

(4.16)

It can be seen that as ν → 0, both the methods Simos4 and FRK4 reduce to a classical
RK method of order four (on page 138 of [3]), which we denote by RK4. The method RK4 is
called the prototype method or the limit method of the methods Simos4 and FRK4. Moreover, as
ν → 0, both Simos4 and FRK4 have the same error constant as that of RK4: EC5 =

√
2881/48.

4.2. Fifth-Order Methods

Consider the following modified RK type method with FSAL property, the prototype of
which can be found on page 167 of [2] or on page 178 of [3],

0

1/5 1/5

3/10 3/40 9/40
4/5 44/45 −56/15 32/9

8/9 19372/6561 −25360/2187 64448/6561 −212/729
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656
1 b1 b2 b3 b4 b5 b6 0

b1 b2 b3 b4 b5 b6 0

. (4.17)

For the method (4.17), the phase-fitting and amplification-fitting conditions (3.18)
become

1 −
(
1
5
b2(ν) +

3
10

b3(ν) +
4
5
b4(ν) +

8
9
b5(ν) + b6(ν)

)
ν2

+
(

4
25

b4(ν) +
424
1215

b5(ν) +
21
55

b6(ν)
)
ν4 − 7

550
b6(ν)ν6 = cos(ν),
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(b1(ν) + b2(ν) + b3(ν) + b4(ν) + b5(ν) + b6(ν))ν

−
(

9
200

b3(ν) +
8
25

b4(ν) +
32
81

b5(ν) +
1
2
b6(ν)

)
ν3

−
(

848
18225

b5(ν) +
14
275

b6(ν)
)
ν5 = sin(ν).

(4.18)

Combining these two equations and the following sufficient conditions in Theorem 2.1
corresponding the trees of orders one, two, and three, we have

bTe = b1(ν) + b2(ν) + b3(ν) + b4(ν) + b5(ν) + b6(ν) = 1,

bTc =
1
5
b2(ν) +

3
10

b3(ν) +
4
5
b4(ν) +

8
9
b5(ν) + b6(ν) =

1
2
,

bTc2 =
1
25

b2(ν) +
9

100
b3(ν) +

16
25

b4(ν) +
64
81

b5(ν) + b6(ν) =
1
3
,

bTAc =
9

200
b3(ν) +

8
25

b4(ν) +
32
81

b5(ν) +
1
2
b6(ν) =

1
6
.

(4.19)

Solving (4.18) and (4.19), we obtain

b1(ν) =
28ν7 − 235ν5 + 28800 sin(ν) − 36600ν + 7350ν3 + 7800ν cos(ν) + 1350ν2 sin(ν)

288(4 + ν2)ν5
,

b2(ν) = 0,

b3(ν) = 4
(
3550ν5 + 371ν7 − 186750 sin(ν) + 236400ν − 46500ν3

−49650ν cos(ν) − 9450ν2 sin(ν)
)
/
(
3339

(
4 + ν2

)
ν5
)
,

b4(ν) =
225ν5 + 22ν7 + 9000 sin(ν) − 10200ν + 750ν3 + 1200ν cos(ν) + 1350ν2 sin(ν)

48(4 + ν2)ν5
,

b5(ν) = − 243
(
1800ν − 1200 sin(ν) − 650ν3 − 600ν cos(ν) + 69ν5 + 150ν2 sin(ν)

)

1696(4 + ν2)ν5
,

b6(ν) =
11
(
600ν − 450 sin(ν) − 150ν3 − 150ν cos(ν) + 11ν5

)

21(4 + ν2)ν5
.

(4.20)

As ν → 0, we obtain the following expansions:

b1(ν) =
35
384

− 149
48384

ν2 +
899

1161216
ν4 − 2111

10948608
ν6 +

52379
1086898176

ν8 + · · · ,

b2(ν) = 0,



Journal of Applied Mathematics 13

b3(ν) =
500
1113

+
977

140238
ν2 − 1433

841428
ν4 +

94067
222136992

ν6 − 333413
3150306432

ν8 + · · · ,

b4(ν) =
125
192

− 61
8064

ν2 +
151

193536
ν4 − 2281

12773376
ν6 +

8059
181149696

ν8 + · · · ,

b5(ν) = −2187
6784

− 243
94976

ν2 +
1791
759808

ν4 − 10215
16715776

ν6 +
12087

79020032
ν8 + · · · ,

b6(ν) =
11
84

+
11

1764
ν2 − 187

84672
ν4 +

71
127008

ν6 − 1385
9906624

ν8 + · · · .
(4.21)

By simple computation, we have

bTc3 =
ν
(
4800 − 1000ν2 + 200ν4 + 37ν6

) − 1050ν cos(ν) − 150
(
25 + ν2

)
sin(ν)

150ν5(4 + ν2)
=

1
4
+O
(
ν2
)
,

bT (c ·Ac) =
1
2
bTc3 =

1
8
+O
(
ν2
)
, bTAc2 =

1
3
bTc3 =

1
12

+O
(
ν2
)
,

bTA2c =
−600 + 750ν2 − 75ν4 + 11ν6 + 600 cos(ν) − 450ν sin(ν)

150ν4(4 + ν2)
=

1
24

+O
(
ν2
)
,

bTc4 =
ν
(
925200 − 195500ν2 + 20850ν4 + 2583ν6

) − 204450ν cos(ν) − 150
(
4805 + 179ν2

)
sin(ν)

13500ν5(4 + ν2)

=
1
5
+O(ν),

bT
(
c2 ·Ac

)
=

1
2
bTc4 =

1
10

+O(ν), bT
(
c ·
(
Ac2
))

=
1
3
bTc4 =

1
15

+O(ν),

bT
(
c ·A2c

)
= −2

(−ν(7200 + 500ν2 − 150ν4 + 33ν6
)
+ 75ν cos(ν) + 75

(
95 + 23ν2

)
sin(ν)

)

1125ν5(4 + ν2)

=
1
30

+O(ν),

bT (Ac ·Ac) =
1
4
bTc4 =

1
20

+O(ν),

bTAc3 =
ν
(
3000 − 1150ν2 + 155ν4 + 7ν6

) − 1050ν cos(ν) + 150
(−13 + 2ν2

)
sin(ν)

225ν5(4 + ν2)
=

1
20

+O(ν),

bTA(c ·Ac) =
ν
(
7200 − 2000ν2 + 300ν4 + 33ν6

) − 1950ν cos(ν) + 150
(−35 + ν2

)
sin(ν)

1500ν5(4 + ν2)

=
1
40

+O(ν),

bTA2c2 =
2
3
bTA(c ·Ac) =

1
60

+O(ν),

bTA3c =
−6ν + ν3 + 6 sin(ν)

6ν5
=

1
120

+O(ν).

(4.22)
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By Theorem 2.1, the coefficients given by (4.17) and (4.20) satisfy all the conditions of
order five. But it cannot satisfy all the conditions of order six. For example,

bTc5 =
899
5400

+
22883

9720000
ν2 +O

(
ν4
)
/=
1
6
+O(ν). (4.23)

Therefore, this method is of order five and we denote it as FRK5a.
Corresponding to the twenty sixth-order rooted trees t6j , j = 1, . . . , 20, the error

coefficients of FRK5a are given by

e(t61) =
(
ν
(
−124203600 + 26615500ν2 − 1403850ν4 + 18711ν6

)

+27724350ν cos(ν) + 150
(
643195 + 22177ν2

)
sin(ν)

)
/
(
202500ν5

(
4 + ν2

))
,

e(t62) = e(t63) = e(t65) = e(t6,10) = e(t61),

e(t64) =
(
−5493600ν + 551000ν3 + 31800ν5 − 3879ν7 + 756600ν cos(ν)

+600
(
7895 + 1028ν2

)
sin(ν)

)
/
(
5625ν5

(
4 + ν2

))
,

e(t66) =
(
ν
(
−6667200 + 2224000ν2 − 194700ν4 + 6957ν6

)
+ 2084700ν cos(ν)

−300
(
−15275 + 1393ν2

)
sin(ν)

)
/
(
16875ν5

(
4 + ν2

))
,

e(t67) =
(
ν
(
−2296800 + 563000ν2 − 36600ν4 + 873ν6

)
+ 565800ν cos(ν)

+600
(
2885 + 14ν2

)
sin(ν)

)
/
(
5625ν5

(
4 + ν2

))
,

e(t68) = e(t67),

e(t69) =
(
ν
(
57600 − 1600ν2 − 948ν4 + 75ν6

)
− 4800ν cos(ν)

−4800
(
11 + 2ν2

)
sin(ν)

)
/
(
75ν5

(
4 + ν2

))

e(t6,11) = e(t64),

e(t6,12) =
(
ν
(
−652800 + 333000ν2 − 36400ν4 + 1533ν6

)
+ 290550ν cos(ν)

−450
(
−805 + 283ν2

)
sin(ν)

)
/
(
2250ν5

(
4 + ν2

))
,

e(t6,13) =
(
ν
(
−602400 + 300000ν2 − 32500ν4 + 1359ν6

)
+ 262650ν cos(ν)

−450
(
−755 + 249ν2

)
sin(ν)

)
/
(
2250ν5

(
4 + ν2

))
,

e(t6,14) = e(t6,16) = e(t6,13),

e(t6,15) =
ν
(
5280 − 360ν2 − 56ν4 + 5ν6

) − 600ν cos(ν) − 360
(
13 + 2ν2

)
sin(ν)

5ν5(4 + ν2)
,
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e(t6,17) =
(
ν
(
−352800 + 101000ν2 − 7800ν4 + 243ν6

)
+ 97800ν cos(ν)

−600
(
−425 + 16ν2

)
sin(ν)

)
/
(
375ν5

(
4 + ν2

))
,

e(t6,18) =
ν
(−3360 + 1320ν2 − 128ν4 + 5ν6

)
+ 1200ν cos(ν) − 360

(−6 + ν2
)
sin(ν)

5ν5(4 + ν2)
,

e(t6,19) = e(t6,18),

e(t6,20) = 1 +
24
(−600ν + 150ν3 − 11ν5 + 150ν cos(ν) + 450 sin(ν)

)

5ν5(4 + ν2)
(4.24)

Then for FRK5a, we have

EC6(ν) =

√
N

202500ν5(4 + ν2)
, (4.25)

where

N = 200598105893906250 + 704003855089083750ν2 − 297809752687323750ν4

+ 56298277495370000ν6 − 5785233488749200ν8 + 376641824701500ν10

− 15770219564700ν12 + 335861285301ν14

+ 300ν2
(
−1028483389544400 + 258042555395500ν2

−17441989606650ν4 + 394861660839ν6
)
cos(ν)

− 11250
(
17830942746125 − 509988761071ν2 + 154551250229ν4

)
cos(2ν)

− 1033593801921000000ν sin(ν) + 195145999800990000ν3 sin(ν)

− 14464008183675000ν5 sin(ν) + 1060750694812500ν7 sin(ν)

− 58620919851900ν9 sin(ν) + 115600689172687500ν sin(2ν)

− 103692151057500ν3 sin(2ν).

(4.26)

Nowwe require that the update of the method (4.17) is phase-fitted and amplification-
fitted. By Theorem 3.3 (ii), we have

b1(ν) + b2(ν) cos
(
1
5
ν

)
+ b3(ν) cos

(
3
10

ν

)
+ b4(ν) cos

(
4
5
ν

)
+ cos

(
8
9
ν

)
+ cos(ν) =

sin(ν)
ν

,

b2(ν) sin
(
1
5
ν

)
+ b3(ν) sin

(
3
10

ν

)
+ b4(ν) sin

(
4
5
ν

)
+ sin

(
8
9
ν

)
+ sin(ν) =

1 − cos(ν)
ν

.

(4.27)
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We can solve the algebraic systems (4.18), (4.27), and the last two equations in (4.19) for
bi(ν). The closed expressions for bi(ν) is too complicated. As ν → 0, they have the series
expressions as follows:

b1(ν) =
35
384

− 20437583
11904122880

ν2 − 119367195208354081
968707998823219200000

ν4

+
95011884964518844932145979

2252269346255956397260800000000
ν6

− 2870157856674050512150034054708268901
403216681907224475027036857958400000000000

ν8 + · · · ,

b2(v) = 0,

b3(ν) =
500
1113

+
33964523

8625839040
ν2 − 7661109532360639

140386979516958720000
ν4

− 22790810005346940380832667
326403096664437431009280000000

ν6

+
172880608491993732432855997019686657

11686983514654709393361771429888000000000
ν8 + · · · ,

b4(ν) =
125
192

− 10830931
1984020480

ν2 +
468823699409543

32290266627440640000
ν4

+
1736990439801521504752259

75075644875198546575360000000
ν6

− 11178170615372984995156901626580537
2688111212714829833513579053056000000000

ν8 + · · · ,

b5(ν) = − 2187
6784

+
1224279

2596372480
ν2 +

18753211139151121
23475776834764800000

ν4

− 1958127900513001510763993
18193914853157398118400000000

ν6

+
126793156608794251730624145537232661

9771597686823455499054848409600000000000
ν8 + · · · ,

b6(ν) =
11
84

+
2401663

868008960
ν2 − 44892540738708751

70634958247526400000
ν4

+
12565766033461779855286229

164227973164496820633600000000
ν6

− 23848033853016506130445461060833921
2672837853551677391277706444800000000000

ν8 + · · · .

(4.28)

It can be verified that the method given by (4.17) and (4.28) is of order five. We denote
the method by FRK5b.
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The error coefficients of FRK5b are given by

e(t61) =
1

900
− 15684728327
2092521600000

ν2 +
7668220591385576111

6811228116725760000000
ν4

− 3832599437422925637715480451
26393781401436989030400000000000

ν6

+
37040225493178191951169407554740296497

2025083781900122921452752076800000000000000
ν8 + · · · ,

e(t62) = e(t63) = e(t65) = e(t6,10) = e(t61),

e(t64) = − 1312943077
58125600000

ν2 +
101770174398983783

135143415014400000000
ν4

− 50361593135536115530775449
733160594484360806400000000000

ν6

+
722243608228427223857425462329823121

78753258185004780278718136320000000000000
ν8 + · · · ,

e(t66) = − 55576679
174376800000

ν2 +
3349151183983384651

2838011715302400000000
ν4

− 10489794742946357634833857
62842336670088069120000000000

ν6

+
24830088427729996581426427673789858999

1181298872775071704180772044800000000000000
ν8 + · · · ,

e(t67) = − 220019101
58125600000

ν2 +
854131951646627753

946003905100800000000
ν4

− 92480070367754551230905137
733160594484360806400000000000

ν6

+
1287242651211484482736127020303275113

78753258185004780278718136320000000000000
ν8 + · · · ,

e(t68) = e(t67),

e(t69) =
1
25

+
2237059
96876000

ν2 +
776161673904173

7883365875840000000
ν4

− 489228700990972151904469
6109671620703006720000000000

ν6

+
38954008540439948287239141526960033

3281385757708532511613255680000000000000
ν8 + · · · ,

e(t6,11) = e(t64),

e(t6,12) = − 1
180

+
217019083
46500480000

ν2 +
1020783650901433441
756803124080640000000

ν4

− 349391329566451655705258747
1759585426762465935360000000000

ν6

+
223430128326558463436293654635080087

9000372364000546317567787008000000000000
ν8 + · · · ,
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e(t6,13) = − 1
180

+
185846539
46500480000

ν2 +
930238779819453217

756803124080640000000
ν4

− 322126891973817461296228667
1759585426762465935360000000000

ν6

+
7281345860082294443565287484305877349

315013032740019121114872545280000000000000
ν8 + · · · ,

e(t6,14) = e(t6,16) = e(t6,13),

e(t6,15) =
7147843

258336000
ν2 − 5833795112598163

21022309002240000000
ν4

− 2118373575562062120724543
48877372965624053760000000000

ν6

+
69165957915286832600826502459212257

8750362020556086697635348480000000000000
ν8 + · · · ,

e(t6,17) = − 1495267
298080000

ν2 +
1575285628973489

693043153920000000
ν4

− 221743464671062174816067
751959584086523904000000000

ν6

+
71862921159172247356437619228883827

2019314312436020007146618880000000000000
ν8 + · · · ,

e(t6,18) =
844759

258336000
ν2 +

6871050469020383
3003187000320000000

ν4

− 15338466371260326350460259
48877372965624053760000000000

ν6

+
332683402120349742930981514490030141

8750362020556086697635348480000000000000
ν8 + · · · ,

e(t6,19) = e(t6,18),

e(t6,20) = − 1
5
− 218333
8611200

ν2 +
4081140067155341

700743633408000000
ν4

− 1142342366678343623207839
1629245765520801792000000000

ν6

+
23848033853016506130445461060833921

291678734018536223254511616000000000000
ν8 + · · · .

(4.29)

Then for FRK5b, we have

EC6(ν) =
√
33801
900

+
2207344629853

418504320000
√
33801

ν2 +
103509564749048121419103379

1151131607867237068800000000
√
33801

ν4

− 6966049072156991602676200983147072646121

90465287610822576869356860211200000000000
√
33801

ν6
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+
24352927165428290711932956191142918847286589328298244559

547431372665305140913187085379096747809177600000000000000
√
33801

ν8

+ · · · .
(4.30)

It can be seen that as ν → 0, both the methods FRK5a and FRK5b reduce to a classical
RK method of order five (on page 178 of [3]), which we denote by RK5. The method RK5
is called the prototype method or the limit method of the methods FRK5a and FRK5b.
Moreover, as ν → 0, both FRK5a and FRK5b have the same error constant as that of RK5:
EC6 =

√
33801/900.

5. Analysis of Stability and Phase Properties

In order to investigate the linear stability of the methods (2.1) or any other frequency-
depending method, we applied it to the linear test equation as

y′ = iλy, λ > 0. (5.1)

One step of computation yields

y1 = M
(
iμ, iν

)
y0, μ = hλ, (5.2)

where

M
(
iμ, iν

)
= 1 + iμbT

(
I − iμA

)−1
e

=
(
1 − μ2

(
bT (ν)Ae

)
+ μ4

(
bT (ν)A3e

)
− μ6

(
bT (ν)A5e

)
+ μ8

(
bT (ν)A7e

)
− · · ·

)

+ i
(
μ
(
bT (ν)e

)
− μ3

(
bT (ν)A2e

)
+ μ5

(
bT (ν)A4e

)
− μ7

(
bT (ν)A6e

)
+ · · ·

)

(5.3)

is called the stability matrix of the method (2.1).

Definition 5.1. The region in the μ-ν plane Ω = {(μ, ν) | μ > 0, ν > 0, |R(iμ, iν) :≤ 1} is called
the imaginary stability region of the method (2.1) and the closed curve defined by |R(iμ, iν)| = 1
is called the stability boundary of the method.

The imaginary stability regions of the methods Simos4, FRK4, FRK5a and FRK5b are
depicted in Figures 1 and 2.

Definition 5.2. The quantities

φ
(
μ, ν
)
= μ − arg

(
M
(
iμ, iν

))
, d

(
μ, ν
)
= 1 − ∣∣M(iμ, iν)∣∣ (5.4)
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Figure 1: The imaginary stability region of Simos4 (a) and FRK4a (b).
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Figure 2: The imaginary stability region of FRK5a (a) and FRK5b (b).

are called the phase lag and the error of amplification factor of the method (2.1), respectively. If
φ(μ, ν) = O(μq+1), and d(μ, ν) = O(μp+1), then the method (2.1) is said to be dispersive of order
q and dissipative of order p, respectively (see Ozawa [24] and Van de Vyver [25]).

By definition, an FRK method has zero phase lag and zero dissipation when applied
to the standard linear oscillator (5.1) whose frequency λ coincides with the fitting frequency
ω. That is to say, φ(μ, μ) = 0, d(μ, μ) = 0.

Suppose that the internal stages have been exact for the linear equation (5.1), that is,
Yi = exp(iciμ)y0, then the update gives

y1 = Mu

(
iμ, iν

)
y0, (5.5)

where

Mu

(
iμ, iν

)
= 1 + iμ

s∑

i=1

bi(ν) exp
(
ciμ
)
=

(

1 + μ
s∑

i=1

bi(ν) sin
(
ciμ
)
)

+ iμ
s∑

i=1

bi(ν) cos
(
ciμ
)
. (5.6)
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Accordingly, the quantities

φu

(
μ, ν
)
= μ − arg

(
Mu

(
iμ, iν

))
, du

(
μ, ν
)
= 1 − ∣∣Mu

(
iμ, iν

)∣∣ (5.7)

are called the phase lag and the dissipation of the update of the method (2.1), respectively. If
φu(μ, ν) = O(μq+1), and du(μ, ν) = O(μp+1), then the update of the method (2.1) is said to be
dispersive of order q and dissipative of order p, respectively.

Letting ν = rμ, we obtain the phase lags and dissipations of the four FRK methods
derived in Section 4.

(i) Simos4:

φ
(
μ, ν
)
=

1 − r2

120
μ5 +O

(
μ7
)
, d

(
μ, ν
)
=

1 − r2

144
μ6 +O

(
μ8
)
,

φu

(
μ, ν
)
= −1 + 4r2

2880
μ5 +O

(
μ7
)
, du

(
μ, ν
)
= −1 + 4r2

5760
μ6 +O

(
μ8
)
,

φu

(
μ, μ
)
= − 1

576
μ5 +O

(
μ7
)
, du

(
μ, μ
)
= − 1

1152
μ6 +O

(
μ8
)
.

(5.8)

(ii) FRK4:

φ
(
μ, ν
)
=

12 − 17r2 + 5r4

1440
μ5 +O

(
μ7
)
, d

(
μ, ν
)
=

4 − 5r2 + r4

576
μ6 +O

(
μ8
)
,

φu

(
μ, ν
)
=

−1 − 9r2 + 10r4

2880
μ5 +O

(
μ7
)
, du

(
μ, ν
)
=

−1 − 9r2 + 10r4

5760
μ6 +O

(
μ8
)
,

φu

(
μ, μ
)
= 0, du

(
μ, μ
)
= 0.

(5.9)

(iii) FRK5a:

φ
(
μ, ν
)
=

r2 − 1
2100

μ7 +O
(
μ9
)
, d

(
μ, ν
)
=

1 − r2

3600
μ6 +O

(
μ8
)
,

φu

(
μ, ν
)
=

4021 + 144855r2

2449440000
μ7 +O

(
μ9
)
, du

(
μ, ν
)
= −7 + 570r2

4536000
μ6 +O

(
μ8
)
,

φu

(
μ, μ
)
=

5317
87480000

μ7 +O
(
μ9
)
, du

(
μ, μ
)
= − 577

4536000
μ6 +O

(
μ8
)
.

(5.10)
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(iv) FRK5b:

φ
(
μ, ν
)
=

−20666880 + 22148840r2 − 3027619r4 + 1545659r6

43400448000
μ7 +O

(
μ9
)
,

d
(
μ, ν
)
=

1722240 − 2154757r2 + 432517r4

6200064000
μ6 +O

(
μ8
)
,

φu

(
μ, ν
)
=

9618232 + 190446368r2 − 408728565r4 + 208663965r6

5859060480000
μ7 +O

(
μ9
)
,

du

(
μ, ν
)
=

−9568 − 422949r2 + 432517r4

6200064000
μ6 +O

(
μ8
)
,

φu

(
μ, μ
)
= 0, du

(
μ, μ
)
= 0.

(5.11)

Therefore, when integrating the test equation (5.1), the methods Simos4 and FRK4 are
dispersive of order four and dissipative of order five, and FRK5a and FRK5b are dispersive
of order six and dissipative of order five. Similar conclusions for their updates can be drawn
from the above analysis.

Note that if the update of (2.1) is phase-fitted and amplification-fitted, it must be true
that φu(μ, μ) = 0 and du(μ, μ) = 0, as is verified above for the two methods FRK4 and FRK5b.

6. Numerical Experiments

In order to examine the effectiveness of the new FRK methods proposed in this paper, we
apply them to four test problems. We also employ several highly efficient integrators from the
literature for comparison. The numerical methods we choose for experiments are as follow:

(i) FRK5a: the seven-stage RK method of order five given by (4.17) and (4.20) in
Section 4 of this paper;

(ii) FRK5b: the seven-stage RK method of order five given by (4.17) and (4.28) in
Section 4 of this paper;

(iii) Simos4: the RK method of order four presented in [23], that is, the four-stage FRK
method of order four given by (4.1) and (4.12) in Section 4 of this paper;

(iv) FRK4: the four-stage RK method of order four given by (4.1) and (4.12) in Section 4
of this paper;

(v) ARK4: the second four-stage adapted RK method of order four given in the
Subsection 3.2 of Franco [11];

(vi) EFRK4: the four-stage exponentially fitted RK method of order four given in [26];

(vii) RK4: the classical RK method of order four presented in [3] (the prototype method
of Simos4 and FRK4);

(viii) RK5: the classical RK method of order five presented in [3] (the prototype method
of FRK5a and FRK5b).

In the figures showing the efficiency of these integrators, the horizontal axis stands
for the number of function evaluations required and the vertical axis stands for the digital
logarithm of the maximal global error (MGE).
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Figure 3: Efficiency curves of Problem 1 (a) and Problem 2 (b).

Problem 1. Consider the following orbit problem studied in [27]:

p′ = −q + 0.001 cos(t), q′ = p,

p(0) = 0, q(0) = 1.
(6.1)

This equation is the real part of the “almost” periodic orbit problem as

y′′ + y = 0.001eit, y(0) = 1, y′(0) = 0.9995i, y ∈ C. (6.2)

The exact solution to this problem is q(t) = cos(t) + 0.0005t sin(t). We select the fitting
frequency ω = 1.0007 and integrate the equation on the interval [0,1000] with step sizes
h = 1/2i, i = 0, 1, 2, 3. The numerical results are presented in Figure 3(a).

Problem 2. Consider the following linear problem studied in [9]:

y′′ +ω2y =
(
ω2 − 1

)
sin(t),

y(0) = 1, y′(0) = ω + 1.
(6.3)

The exact solution to this problem is y(t) = cos(ωt) + sin(ωt) + sin(t). In this experiment, we
take the parameter ω = 20 and integrate the equation on the interval [0, 100] with the step
sizes h = 1/(8i), i = 2, 3, 4, 5. The numerical results are presented in Figure 3(b).
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Figure 4: Efficiency curves of Problem 3 (a) and Problem 4 (b).

Problem 3. Consider the prey-predator system in ecology (see [28]) as

u̇ = u
(
α − βv

)
,

v̇ = v
(
γu − δ

)
,

(6.4)

where u(t) is the number of prey at time t, v(t) is the number of predators at time t, u̇ and v̇
are first derivatives with respect to time, and α, β, γ, δ are positive constants. For given initial
values u(0) = u0, v(0) = v0, the system has unique solution, but analytical solution is not
available. However, the system has an invariant I(u, v) = δ lnu + α lnu − γu − βv in the sense
that (d/dt)I(u(t), v(t)) ≡ 0. The efficient of the methods will be tested by measuring the error
growth of the invariant I(u(t), v(t)) against the number of function evaluations required.

In this experiment, we take the values of parameters α = 2, β = γ = δ = 1 and take
initial data u0 = 1.6, v0 = 2.2. We select the fitting frequency ω = 1.0075 and integrate the
equation on the interval [0,30]with step sizes h = 1/2i, i = 2, 3, 4, 5. The numerical results are
presented in Figure 4(a).

Problem 4. We consider the following two-gene regulatory system without self-regulation
(see Widder et al. [29] and Polynikis et al. [30]):

ṙ1 = m1H
+(p2; θ2, n2

) − γ1r1,

ṙ2 = m2H
−(p1; θ1, n1

) − γ2r2,

ṗ1 = k1r1 − δ1p1,

ṗ2 = k2r2 − δ2p2,

(6.5)
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where i = 1, 2, ri is the concentration of mRNA Ri produced by geneGi, pi is the concentration
of protein Pi,mi is the maximal transcription rate of Gi, ki is the translation rate of Ri, γi is the
degradation rate of Ri, and δi is the degradation rate of Pi. The two functions

H+(p2; θ2, n2
)
=

pn2
2

pn2
2 + θn2

2

, H−(p1; θ1, n1
)
=

θn1
1

pn1
1 + θn1

1

(6.6)

are the Hill functions of activation and repression, respectively. The parameters n1, n2 are the
Hill coefficients, θ1, θ2 are the expression thresholds.

The solution (r∗1 , r
∗
2 , p

∗
1, p

∗
2) of the system ṙ1 = ṙ2 = ṗ1 = ṗ2 = 0 is an equilibrium of the

system (6.5). Now we take the values of parameters as follows:

n1 = n2 = 3, m1 = 1.15, m2 = 2.35, k1 = k2 = 1, γ1 = γ2 = 1,

δ1 = δ2 = 1, θ1 = θ2 = 0.21.
(6.7)

For any initial point (r1(0), r2(0), p1(0), p2(0)) near the equilibrium, the system (6.5) has a
stable limit cycle.

In this experiment, we take initial data (0.6, 0.8, 0.4, 0.6) and select the fitting frequency
ω = 1.48. The problem is integrated on the interval [0,20]with step sizes h = 1/2i, i = 1, 2, 3, 4.
The numerical results are presented in Figure 4(b).

It can be seen from Figures 3 and 4 that the FRK methods are more efficient than their
prototype RK methods and are more efficient than the other frequency depending methods
of the same algebraic order.

7. Conclusions

In this paper, classical Runge-Kutta methods are adapted to the time integration of
initial value problems of first order differential equations whose solutions have oscillatory
properties. The newly developed phase-fitted and amplification-fitted Runge-Kutta methods
(FRK) adopt functions of the product ν = ωh of the fitting frequency ω and the step size
h as weight coefficients in the update. FRK methods have zero dispersion error and zero
dissipation error when applied to the standard linear oscillator y′ = iωy. That is to say, they
preserve initial phase and amplification with time. Therefore, FRK integrators are a kind of
integrators which preserve the oscillation structure of the problem.

As the fitting frequency tends to zero, FRKmethods reduce to their classical prototypes
methods. Furthermore, an FRK method has the same algebraic order and the same error
constant with its prototypes method. Numerical experiments illustrate the high efficiency of
FRK methods compared with their prototype methods and some other frequency depending
methods like exponentially fitted RK type methods.

Theorem 3.3 gives a pair of sufficient conditions for modified RK type methods to be
phase-fitted and amplification-fitted. The coefficients of the methods Simos4 and FRK5a are
obtained with these conditions combined with an appropriate number of order conditions
associated to low order trees. Since the updates of the methods FRK4 and FRK5b are also
phase-fitted and amplification-fitted, they may be more efficient than those methods whose
updates do not have this property.
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In practical computations of oscillatory problems, the true frequency is, in general, not
available. The fitting frequency contained in an FRK method is just an estimate of the true
frequency. Sometimes the choice of the value of the fitting frequency ω for the FRK method
affects their effectiveness to some extent. For instance, in the experiment of Problem 1, we
find that the value of ω = 1.0007 is superior to the usual choice ω = 1. For approaches to
estimating principal frequencies we refer to the papers [31–36].

This paper provides a convenient approach to constructing FRK methods. Other
effective approaches are possible. For example, the fitting frequency can also be incorporated
into internal coefficients aij or into nodes ci just as in [12]. Or frequency-dependent
coefficients may be introduced to the terms yn in the modified (2.1) as in [26]. In these cases,
the internal stages can also be made phase-fitted and amplification-fitted.
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