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We present a uniquely solvable boundary integral equation with the generalized Neumann
kernel for solving two-dimensional Laplace’s equation on multiply connected regions with mixed
boundary condition. Two numerical examples are presented to verify the accuracy of the proposed
method.

1. Introduction

The interplay of Riemann-Hilbert boundary value problem and integral equations with the
generalized Neumann kernel on bounded multiply connected regions has been investigated
in [1]. By reformulating the Dirichlet problem, the Neumann problem, and the conformal
mapping as Riemann-Hilbert problems, boundary integral equations with the generalized
Neumann kernel have been implemented successfully in [2] to solve the Dirichlet problem
and the Neumann problem and in [3–5] to compute the conformal mapping of multiply
connected regions onto the classical canonical slit domains. The mixed boundary value
problem also can be reformulated as a Riemann-Hilbert problem (see [6–8]). Based on
this reformulation, we present in this paper a new boundary integral equation method for
two-dimensional Laplace’s equation with mixed boundary condition in bounded multiply
connected regions. However, in this paper, we will consider only a certain class of mixed
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boundary condition where the boundary condition in each boundary component is either the
Dirichlet condition or the Neumann condition but not both. This class of mixed boundary
value problem has been considered in [9] for Laplace’s equation and in [10, page 78] for
biharmonic equation onmultiply connected regions. A similar class of mixed boundary value
problem has been considered in [11, page 317] for doubly connected regions.

The presented method is an extension of the method presented in [2] for Laplace’s
equation with the Dirichlet boundary conditions and Laplace’s equation with the Neumann
boundary conditions on multiply connected regions. The method is based on a uniquely
solvable boundary integral equation with the generalized Neumann kernel. The generalized
Neumann kernel which will be considered in this paper is slightly different from the
generalized Neumann kernel for integral equation associated with the Dirichlet problem and
the Neumann problem which has been considered in [2]. Thus, not all of the properties of
the generalized Neumann kernel which have been studied [2] are valid for the generalized
Neumann kernel which will be used in this paper. For example, it is still true that λ = 1
is not an eigenvalue of the generalized Neumann kernel which means that the presented
integral equation is uniquely solvable. However, it is no longer true that all eigenvalues of
the generalized Neumann kernel are real (see Figure 3 and [2, Theorem 8]).

2. Notations and Auxiliary Material

In this section we will review the definition and some properties of the generalized Neumann
kernel. For further details we refer the reader to [1–3, 5].

Let G be a bounded multiply connected region of connectivity m + 1 ≥ 1 with 0 ∈ G.
The boundary Γ := ∂G =

⋃m
j=0 Γj consists of m + 1 smooth closed Jordan curves Γ0,Γ1, . . . ,

Γm where Γ0 contains the other curves Γ1, . . . ,Γm (see Figure 1). The complement G− := C \G
of G with respect to C consists of m + 1 simply connected components G0, G1, . . . , Gm. The
components G1, . . . , Gm are bounded and the component G0 is unbounded where ∞ ∈ G0.
We assume that the orientation of the boundary Γ is such that G is always on the left
of Γ. Thus, the curves Γ1, . . . ,Γm always have clockwise orientations and the curve Γ0
has a counterclockwise orientation. The curve Γj is parametrized by a 2π-periodic twice
continuously differentiable complex function ηj(t)with nonvanishing first derivative

η̇j(t) =
dηj(t)
dt

/= 0, t ∈ Jj := [0, 2π], j = 0, 1, . . . , m. (2.1)

The total parameter domain J is the disjoint union of the intervals Jj . We define a
parametrization of the whole boundary Γ as the complex function η defined on J by

η(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

η0(t), t ∈ J0,
...
ηm(t), t ∈ Jm.

(2.2)
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Figure 1: A bounded multiply connected region G of connectivitym + 1.

LetH be the space of all real Hölder continuous functions on the boundary Γ. In view
of the smoothness of η, a function φ ∈ H can be interpreted via φ̂(t) := φ(η(t)), t ∈ J , as a real
Hölder continuous 2π-periodic functions φ̂(t) of the parameter t ∈ J , that is,

φ̂(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

φ̂0(t), t ∈ J0,
...
φ̂m(t), t ∈ Jm,

(2.3)

with real Hölder continuous 2π-periodic functions φ̂j defined on Jj , and vice versa. So, here
and in what follows, we will not distinguish between φ(η(t)) and φ(t).

The subspace ofH which consists of all piecewise constant functions defined on Γwill
be denoted by S, that is, a function h ∈ S has the representation

h(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

h0, t ∈ J0,
...
hm, t ∈ Jm,

(2.4)

where h0, . . . , hm are real constants. For simplicity, the function hwill be denoted by

h(t) = (h0, . . . , hm). (2.5)

In this paper we will assume that the function A is the continuously differentiable
complex function

A(t) := e−iθ(t) η(t), (2.6)

where θ is the real piecewise constant function

θ(t) = (θ0, . . . , θm), (2.7)

with either θj = 0 or θj = π/2, j = 0, 1, . . . , m. This function, A(t), is a special case of
the function A(t) in [5, Equation (4)] in connection with numerical conformal mapping of
multiply connected regions.
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The generalized Neumann kernel formed with A is defined by

N(s, t) :=
1
π

Im
(
A(s)
A(t)

η̇(t)
η(t) − η(s)

)

. (2.8)

We define also a real kernelM by

M(s, t) :=
1
π

Re
(
A(s)
A(t)

η̇(t)
η(t) − η(s)

)

. (2.9)

The kernel N is continuous and the kernel M has a cotangent singularity type (see [1] for
more details). Hence, the operator

Nμ(s) :=
∫

J

N(s, t)μ(t)dt, s ∈ J, (2.10)

is a Fredholm integral operator and the operator,

Mμ(s) :=
∫

J

M(s, t)μ(t)dt, s ∈ J, (2.11)

is a singular integral operator.
The solvability of boundary integral equations with the generalized Neumann kernel

is determined by the index (winding number in other terminology) of the functionA (see [1]).
For the function A given by (2.6), the index κj of A on the curve Γj and the index κ =

∑m
j=0 κj

of A on the whole boundary Γ are given by

κ0 = 1, κj = 0, j = 1, . . . , m, κ = 1. (2.12)

Although the function A(t) in (2.6) is different from the function A(t) in [2, Equation
(11)], both functions have the same indices. So by using the same approach used in
[2], we can prove that the properties of the generalized Neumann kernel proved in [2],
except Theorem 8, Theorem 10, and Corollary 2, are still valid for the generalized Neumann
kernel formed with the function A(t) in (2.6) (see [5]). Numerical evidence show that [2,
Theorem 8], which claims that the eigenvalues of the generalized Neumann kernel lies in
[−1, 1), is no longer true for the function A(t) in (2.6) (see Figure 3).

Theorem 2.1 (see [5]). For a given function γ ∈ H, there exist unique functions h ∈ S and μ ∈ H
such that

Af = γ + h + i μ (2.13)

is a boundary value of a unique analytic function f(z) in G. The function μ is the unique solution of
the integral equation

(I −N)μ = −Mγ (2.14)
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and the function h is given by

h =

[
Mμ − (I −N)γ

]

2
. (2.15)

3. The Mixed Boundary Value Problem

Let Sd and Sn be two subsets of the set {0, 1, . . . , m} such that

Sd /= ∅, Sn /= ∅, Sd ∪ Sn = {0, 1, . . . , m}, Sd ∩ Sn = ∅. (3.1)

We will consider the following class of mixed boundary value problems. Find a real function
u in G such that

Δu = 0, on G, (3.2a)

u = φj, on Γj for j ∈ Sd, (3.2b)

∂u

∂n
= φj, on Γj for j ∈ Sn, (3.2c)

where n is the unit exterior normal to Γ.
The problem (3.2a), (3.2b), and (3.2c) reduces to the Dirichlet problem for Sn = ∅ and

to the Neumann problem for Sd = ∅. Both problems have been considered in [2]. So we
have assumed in this paper that Sn /= ∅ and Sd /= ∅. The mixed boundary value problem (3.2a),
(3.2b), and (3.2c) is uniquely solvable. Its unique solution u can be regarded as a real part of
an analytic function F in G which is not necessairly single-valued. However, the function F
can be written as

F(z) = f(z) −
m∑

j=1

aj log
(
z − zj

)
, (3.3)

where f is a single-valued analytic function in G, each zj is a fixed point in Gj , j = 1, 2, . . . , m;
and a1, . . . , am are real constants uniquely determined by φ (see [12, page 145] and [13,
page 174]). Without los of generality, we assume that Im f(0) = 0. The constants a1, . . . , am
are chosen to ensure that (see [14, page 222] and [15, page 88])

∫

Γk
f ′(η

)
dη = 0, k = 1, 2, . . . , m, (3.4)

that is, aj are given by (see [2])

aj =
1

2πi

∫

Γj
F ′(η

)
dη, j = 1, 2, . . . , m. (3.5)
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We define a real constant a0 by

a0 := −
m∑

j=1

aj . (3.6)

Hence, we have

a0 = −
m∑

j=1

aj = −
m∑

j=1

1
2πi

∫

Γj
F ′(η

)
dη = − 1

2πi

∫

Γ
F ′(η

)
dη +

1
2πi

∫

Γ0
F ′(η

)
dη. (3.7)

Since (1/2πi)
∫

Γ F
′(η)dη = 0, we obtain

a0 =
1

2πi

∫

Γ0
F ′(η

)
dη. (3.8)

The Dirichlet boundary condition is a special case of the Riemann-Hilbert boundary
condition. The Neumann boundary condition also can be reduced to a Riemann-Hilbert
boundary condition by using the Cauchy-Riemann equations and integrating along the
boundary Γj for j ∈ Sn. Let T(ζ) be the unit tangent vector and n(ζ) be the unit external
normal vector to Γ at ζ ∈ Γ. Let also ν(ζ) be the angle between the normal vector n(ζ) and the
positive real axis, that is, n(ζ) = eiν(ζ). Then,

eiν(η(t)) = −iT(η(t)) = −i η̇(t)∣
∣η̇(t)

∣
∣
. (3.9)

Thus

∂u

∂n
= ∇u · n = cos ν

∂u

∂x
+ sin ν

∂u

∂y
= Re

[

eiν
(
∂u

∂x
− i

∂u

∂y

)]

. (3.10)

Since u(z) = ReF(z), then by the Cauchy-Riemann equation, we have

F ′(z) =
∂u(z)
∂x

− i
∂u(z)
∂y

. (3.11)

Thus (3.10) becomes

Re
[−iη̇F ′] =

∣
∣η̇
∣
∣∂u

∂n
. (3.12)

Let the boundary value of the multivalued analytic function F be given by

F = ψ + iϕ. (3.13)
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Then the function F ′(z) is a single-valued analytic function and has the boundary value

η̇F ′ = ψ ′ + iϕ′. (3.14)

Let θ(t) be the real piecewise constant function

θ(t) =

⎧
⎨

⎩

0, t ∈ Jj , j ∈ Sd,
π

2
, t ∈ Jj , j ∈ Sn.

(3.15)

Hence, the boundary values of the function F(z) satisfy on the boundary Γ

Re
[
e−iθ(t)F

(
η(t)

)]
= φ̂(t), (3.16)

where

φ̂(t) =

⎧
⎨

⎩

φj(t), t ∈ Jj , j ∈ Sd,

ϕj(t), t ∈ Jj , j ∈ Sn,
(3.17)

and for t ∈ Jj and j ∈ Sn, the function ϕ′
j(t) is known and is given by

ϕ′
j(t) = Re

[−iη̇j(t)F ′(ηj(t)
)]

= φj(t)
∣
∣η̇j(t)

∣
∣, t ∈ Jj , j ∈ Sn. (3.18)

The functions φj(t) for j ∈ Sd∪Sn are given by (3.2b) and (3.2c). The function ϕj(t) can be then
computed for t ∈ Jj and j ∈ Sn by integrating the function ϕ′

j(t). Then, it follows from (3.3),
(3.16), and (3.17) that the the function f(z) is a solution of the Riemann-Hilbert problem

Re
[
e−iθ(t)f

(
η(t)

)]
= φ̂(t) +

m∑

k=1

akRe
[
e−iθ(t) log

(
η(t) − zk

)]
. (3.19)

Since

log
(
η(t) − zk

)
= logη(t) + log

(

1 − zk
η(t)

)

, (3.20)

then, in view of (3.6), the boundary condition (3.19) can be written as

Re
[
e−iθ(t)f

(
η(t)

)]
= φ̂(t) +

m∑

k=0

akγ
[k](t), (3.21)
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where

γ [0](t) = −Re
[
e−iθ(t) logη(t)

]
, γ [k](t) = Re

[

e−iθ(t) log
(

1 − zk
η(t)

)]

, (3.22)

for k = 1, 2, . . . , m.
In view of (3.5), (3.8), and (3.18), the constants ak are known for k ∈ Sn and are given

by

ak =
1
2π

∫

Jk

φk(t)
∣
∣η̇k(t)

∣
∣dt, k ∈ Sn. (3.23)

For k ∈ Sd, the real constants ak are unknown. Thus, the boundary condition (3.19) can be
written as

Re
[
e−iθ(t)f

(
η(t)

)]
= ψ̂(t) +

∑

k∈Sd

akγ
[k](t), t ∈ J, (3.24)

where the function ψ̂(t) is known and is given by

ψ̂(t) =

⎧
⎪⎨

⎪⎩

φj(t) +
∑

k∈Sn

akγ
[k]
j (t), t ∈ Jj , j ∈ Sd,

ϕj(t) +
∑

k∈Sn

akγ
[k]
j (t), t ∈ Jj , j ∈ Sn.

(3.25)

It is clear that the function ψ̂j(t) is known explicitly for t ∈ Jj with j ∈ Sd. However, for t ∈ Jj
with j ∈ Sn it is required to integrate ϕ′

j(t) to obtain ϕj(t).
The function ϕj(t) is not necessary 2π-periodic. Numerically, we prefer to deal with

periodic functions. So we will not compute ϕj(t) directly by integrating the function ϕ′
j(t).

Instead, we will integrate the function

ψ̂ ′
j(t) = φj(t)

∣
∣η̇j(t)

∣
∣ +

∑

k∈Sn

ak
d

dt
γ
[k]
j (t). (3.26)

By the definitions of the constants ak and the functions γ [k], we have

∫2π

0
ψ̂ ′
j(t)dt = 0, (3.27)

which implies that the function ψ̂j(t) = ϕj(t) +
∑

k∈Sn
akγ

[k]
j (t) is always 2π-periodic. So, for

t ∈ Jj with j ∈ Sn, we write the function ψ̂ ′
j(t) using the Fourier series as

ψ̂ ′
j(t) =

∞∑

i=1

a
[j]
i cos it +

∞∑

i=1

b
[j]
i sin it. (3.28)
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Then the function ψ̂j(t) is given for t ∈ Jj with j ∈ Sn by

ψ̂j(t) = ψ̃j(t) + cj , (3.29)

where cj is undetermined real constant and the function ψ̃j(t) is given by

ψ̃j(t) =
∞∑

i=1

a
[j]
i

i
sin it −

∞∑

i=1

b
[j]
i

i
cos it, t ∈ Jj , j ∈ Sn. (3.30)

Hence, the boundary condition (3.24) can be then written as

Re
[
e−iθ(t)f

(
η(t)

)]
= γ̂(t) + h̃(t) +

∑

k∈Sd

akγ
[k](t), t ∈ J, (3.31)

where h̃(t) is the real piecewise constant function

h̃(t) =

{
0, t ∈ Jj , j ∈ Sd,

cj , t ∈ Jj , j ∈ Sn,
(3.32)

and the function γ̂(t) is given by

γ̂(t) =

⎧
⎨

⎩

φj(t) +
∑

k∈Sn

akγ
[k]
j (t), t ∈ Jj , j ∈ Sd,

ψ̃j(t), t ∈ Jj , j ∈ Sn.
(3.33)

Let c := f(0) (unknown real constant) and g(z) be the analytic function defined on G
by

g(z) :=
f(z) − c

z
, z ∈ G. (3.34)

Thus the function g(z) is a solution of the Riemann-Hilbert problem

Re
[
A(t)g

(
η(t)

)]
= γ̂(t) + h(t) +

∑

j∈Sd

ajγ
[j](t), t ∈ J, (3.35)

where the function A(t) is given by (2.6) and the function h(t) is defined by

h(t) = h̃(t) − c cos θ(t), t ∈ J. (3.36)
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Let μ(t) := Im[A(t)g(η(t))], then the boundary value of the function g(z) is given on the
boundary Γ by

A(t)g
(
η(t)

)
= γ̂(t) + h(t) +

∑

j∈Sd

ajγ
[j](t) + iμ(t), t ∈ J, (3.37)

where γ̂ , γ [j] are knowns and h, μ are unknowns.

4. The Solution of the Mixed Boundary Value Problem

Let μ̂ and let μ[j] for j ∈ Sd be the unique solutions of the integral equations

(I −N)μ̂ = −Mγ̂ , (I −N)μ[j] = −Mγ [j], (4.1)

and ĥ, h[j] be given by

ĥ =

[
Mμ̂ − (I −N)γ̂

]

2
, h[j] =

[
Mμ[j] − (I −N)γ [j]

]

2
. (4.2)

Then, it follows from Theorem 2.1 that

A(t)ĝ
(
η(t)

)
= γ̂ + ĥ + iμ̂ +

∑

j∈Sd

aj
(
γ [j] + h[j] + iμ[j]

)

(4.3)

is the boundary value of an analytic function ĝ(z). Since the unknown functions μ and h in
(3.37) are uniquely determined by the known functions γ̂ and γ [j] for j ∈ Sd, it follows from
(3.37) and (4.3) that

μ(t) = μ̂(t) +
∑

j∈Sd

ajμ
[j](t), (4.4)

h(t) = ĥ(t) +
∑

j∈Sd

ajh
[j](t). (4.5)

In view of (3.15), (3.32), and (3.36), the function h(t) is given by

h(t) =

{
−c, t ∈ Jj , j ∈ Sd,

cj , t ∈ Jj , j ∈ Sn.
(4.6)
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Thus, we have from (4.5), (3.23), and (3.6) the linear system

h(t) −
∑

j∈Sd

ajh
[j](t) = ĥ(t), (4.7a)

∑

j∈Sd

aj = −
∑

j∈Sn

aj , (4.7b)

ofm + 2 equations inm + 2 unknowns c, aj for j ∈ Sd and cj for j ∈ Sn.
By solving the linear system (4.7a) and (4.7b), we obtain the values of the constants aj

and the function h(t). Then, we obtain the function μ from (4.4). Consequently, the boundary
value of the function g is given by

A(t)g
(
η(t)

)
= γ(t) + h(t) + iμ(t), t ∈ J, (4.8)

where

γ(t) = γ̂(t) +
∑

j∈Sd

ajγ
[j](t), t ∈ J. (4.9)

The function g(z) can be computed for z ∈ G by the Cauchy integral formula. Then the
function f(z) is given by

f(z) = c + zg(z). (4.10)

Finally, the solution of the mixed boundary value problem can be computed from u(z) =
ReF(z)where F(z) is given by (3.3).

5. Numerical Implementations

Since the functions Aj and ηj are 2π-periodic, the integrands in the integral equations (4.1)
are 2π-periodic. Hence, the most efficient numerical method for solving (4.1) is generally
the Nyström method with the trapezoidal rule (see e.g., [16, page 321]). We will use
the trapezoidal rule with n (an even positive integer) equidistant node points on each
boundary component to discretize the integrals in (4.1). If the integrands in (4.1) are k times
continuously differentiable, then the rate of convergence of the trapezoidal rule is O(1/nk).
For analytic integrands, the rate of convergence is better than 1/nk for any positive integer
k (see e.g., [17, page 83]). The obtained approximate solutions of the integral equations
converge to the exact solutions with a similarly rapid rate of convergence (see e.g., [16,
page 322]). Since the smoothness of the integrands in (4.1) depends on the smoothness of
the function η(t), results of high accuracy can be obtained for very smooth boundaries.

By using the Nyström method with the trapezoidal rule, the integral equations (4.1)
reduce to (m + 1)n by (m + 1)n linear systems. Since the integral equations (4.1) are uniquely
solvable, then for sufficiently large values of n the obtained linear systems are also uniquely
solvable [16]. The linear systems are solved using the Gauss elimination method. The
computational details are similar to previous works in [2–5].
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By solving the linear systems, we obtain approximations to μ̂ and μ[j] for j ∈ Sd which
give approximations to ĥ and h[j] for j ∈ Sd through (4.2). By solving (4.7a) and (4.7b)we get
approximations to the constants c, aj for j ∈ Sd and cj for j ∈ Sn. These approximations allow
us to obtain approximations to the boundary value of the function g(z) from (4.8). The values
of g(z) for z ∈ G will be calculated by the Cauchy integral formula. The approximate values
of the function f(z) are then computed from (4.10). Finally, in view of (3.3), the solution of
the mixed boundary value problem can be computed from

u(z) = ReF(z) = Re f(z) −
m∑

j=1

aj log
∣
∣z − zj

∣
∣. (5.1)

In this paper, we have considered regions with smooth boundaries. For some ideas on
how to solve numerically boundary integral equations with the generalized Neumann kernel
on regions with piecewise smooth boundaries, see [18].

6. Numerical Examples

In this section, the proposed method will be used to solve two mixed boundary value
problems in bounded multiply connected regions with smooth boundaries.

Example 6.1. In this example we consider a bounded multiply connected region of
connectivity 4 bounded by the four circles (see Figure 2(a))

Γ0 : η0(t) = 1 + 2eit,

Γ1 : η1(t) = 1 + 0.25e−it,

Γ2 : η2(t) = 1 + i + 0.25e−it,

Γ3 : η2(t) = 1 − i + 0.25e−it,

(6.1)

where 0 ≤ t ≤ 2π .

We assume that the condition on the boundaries Γ0,Γ1 is the Neumann condition and
the condition on the boundaries Γ2,Γ3 is the Dirichlet condition. The functions φj in (3.2a),
(3.2b), and (3.2c) are obtained based on choosing an exact solution of the form

u(z) = Re(z − 1)3. (6.2)

This example has been considered in [9, page 894] using the regularized meshless method.
The domain here is shifted by one unit to the right to ensure that 0 ∈ G. To compare our
method with the method presented in [9], we use the same error norm used in [9], namely,

∫2π

0

∣
∣
∣u
(
1 + 0.5eis

)
− un

(
1 + 0.5eis

)∣
∣
∣
2
ds, (6.3)
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Figure 2: The regions of Example 6.1 (a) and Example 2 (b).
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Figure 3: The eigenvalues of the coefficient matrix of the linear systems obtained by discretizing the
integral equations (4.1) with n = 128 for Example 6.1 (a) and with n = 256 for Example 6.2 (b).

where u(z) is the exact solution of the mixed boundary value problem and un(z) is the
approximate solution obtained with n node points on each boundary component. The error
norm versus the total number of calculation points 4n by using the presented method is
shown in Figure 4(a) where the integral in (6.3) is discretized by the trapezoidal rule. By
using only n = 16 (64 calculation points on the whole boundary), we obtain error norm less
than 10−9. In [9], the error norm is only less than 10−3 when 200 boundary points are used. The
absolute errors |u(z)−un(z)| for selected points in the entire domain are plotted in Figure 5(a)
(compare the results with [9, Figure 10]).
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Figure 4: The error norm (6.3) for Example 1 (a) and the error norm (6.6) for Example 6.2 (b) versus the
total number of node points.
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Figure 5: The absolute error |u(z) − un(z)| for the entire domain obtained with n = 64 for Example 6.1 (a)
and with n = 256 for Example 6.2 (b).

Example 6.2. In this example we consider a bounded multiply connected region of
connectivity 7 (see Figure 2(b)). The boundary Γ = ∂G is parametrized by

ηj(t) = zj + eiσj
(
αj cos t + iβj sin t

)
, j = 0, 1, . . . , 6, (6.4)

where the values of the complex constants zj and the real constants αj , βj , σj are as in Table 1.

The region in this example has been considered in [2, 19, 20] for the Dirichlet problem
and the Neumann problem. In this example, we will consider a mixed boundary value
problem where we assume that the condition on the boundaries Γ0, Γ1, Γ2, and Γ3 is the
Dirichlet condition and the condition on the boundaries Γ4, Γ5, and Γ6 is the Neumann
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Table 1: The values of constants αj , βj , zj ,σj , and ζj in (6.4).

j αj βj zj σj ζj

0 4.0000 3.0000 −0.5000 − 0.5000i 1.0000 5.00 + 5.00i

1 0.3626 −0.1881 0.1621 + 0.5940i 3.3108 0.10 + 0.50i

2 0.5061 −0.6053 −1.7059 + 0.3423i 0.5778 −1.60 + 0.40i

3 0.6051 −0.7078 0.3577 − 0.9846i 4.1087 0.30 − 0.90i

4 0.7928 −0.3182 1.0000 + 1.2668i 2.6138 0.95 + 1.20i

5 0.3923 −0.4491 −1.9306 − 1.0663i 4.4057 −1.85 − 1.00i

6 0.2976 −0.6132 −0.8330 − 2.1650i 5.7197 −0.80 − 2.10i

condition. The functions φj in (3.2a), (3.2b), and (3.2c) are obtained based on choosing an
exact solution of the form

u(z) = 1 + 2Re
(

1
z − ζ0

)

+
6∑

j=1

(
j − 7/2

)
log

(∣
∣z − ζj

∣
∣2
)
, (6.5)

where the values of the complex constants ζj are as in Table 1. For the error, we use the error
norm (see Figure 4(b)):

∫2π

0

∣
∣
∣u
(
−0.35 − 0.35i + 2.7eis

)
− un

(
−0.35 − 0.35i + 2.7eis

)∣
∣
∣
2
ds. (6.6)

The absolute errors |u(z) − un(z)| for selected points in the entire domain are plotted in
Figure 5(b).

7. Conclusions

A new uniquely solvable boundary integral equation with the generalized Neumann kernel
has been presented in this paper for solving a certain class of mixed boundary value problem
on multiply connected regions. Two numerical examples are presented to illustrate the
accuracy of the presented method.

The presented method can be applied to mixed boundary value problem with both
the Dirichlet condition and the Neumann condition on the same boundary component
Γk. For this case, the function A(t) is discontinuous on Jk, where A(t) = ηk(t) on the
part of Γk corresponding to the Dirichlet condition and A(t) = −iηk(t) on the part of Γk
corresponding to the Neumann condition. Hence, the Riemann-Hilbert problem (3.35)will be
a problem with discontinuous coefficient A(t). The solvability of Riemann-Hilbert problems
with discontinuous coefficients is different from the ones with continuous coefficients (see
e.g., [6, page 449] and [13, page 271]). Furthermore, the discontinuity of the function A(t)
implies that we cannot apply the theory of the generalized Neumann kernel developed in
[21] for simply connected regions and in [1] for multiply connected regions. Hence, further
investigations are required. This will be considered in future work.
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