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This paper treats the dynamical behavior of eco-epidemiological model with nonlinear incidence
rate. A Holling type-II prey-predator model with SI- type of disease in prey has been proposed and
analyzed. The existence, uniqueness, and boundedness of the solution of the system are studied.
The local and global dynamical behaviors are investigated. The conditions, which guarantee the
occurring of Hopf bifurcation of the system, are established. Finally, further investigations for the
global dynamics of the proposed system are carried out with the help of numerical simulations.

1. Introduction

In the beginning of the twentieth century a number of attempts have been made to predict
the evolution and existence of species mathematically. Indeed, the first major attempt in this
direction was due to the well-known classical Lotka-Volterra model in 1927, since then many
complicated model for two or more interacting species has been proposed according to the
Lotka-Volterra model by taking into account the effect of competition, time delay, functional
response, and so forth, see for example [1, 2] and the references theirin. On the other hand,
over the last few decades, mathematics has been used to understand and predict the spread
of disease relating important public-health questions to basic transmission parameters, for
the detailed history of mathematical epidemiology and basics for SIR epidemic models (or
Kermack-McKendrick model) may be found in the classical books [3–5]. However, recently
Haque and Venturino [6] have been discussed mathematical models of diseases spreading in
symbiotic communities.

During the last three decades, there has been growing interest in the study of infectious
disease coupled with prey-predator interaction model. In many ecological studies of prey-
predator systems with disease, it is reported that the predators take a disproportionately



2 Journal of Applied Mathematics

high number of parasite-infected prey. Some studies have even shown that parasite could
change the external features or behavior of the prey so that infected prey are more vulnerable
to predation, see [7–13] and the references theirin.

Later on, many authors have been proposed and studied eco-epidemiological
mathematical models incorporating ratio-dependent functional response, toxicant, external
sources of disease, predator switching, and infected prey refuge [14–23]. In all these models,
the authors assumed that the infection affects the prey only and the disease transmission
follows the simple law of mass action with a constant rate of transmission, also they assumed
that the predator consumes either the susceptible prey or the infected prey. Recently, Haque
and Greenhalgh in 2010 [24] have proposed and studied a predator-prey model with logistic
growth in the prey population, where a disease spreads among the prey according to a
susceptible-infected-susceptible (SIS) epidemic model. They assumed that the predator do
not consume infected prey.

On the other hand, there is another category papers in literature, in which the authors
consider the eco-epidemiological models where the disease spreads in predator population
[25–27]. The authors in [25] have proposed a ratio-dependent demographic predator-prey
model in which a disease spreads among predators via homogeneous mixing, while the
author in [26] proposed a predator-prey model with logistic growth in the prey population
that includes an SIS parasitic infection in the predator population, with the assumption that
the predator has an alternative source of food. Finally, in [27] the authors considered a system
of delay differential equations modeling the predator-prey eco-epidemic dynamics with a
transmissible disease in the predator population.

Keeping the above in view, we combine a prey-predator model with an epidemio-
logical model where the disease in prey is modeled by a susceptible-infected (SI) epidemic
system. The eco-epidemiological prey-predator model proposed here differs from previous
models; it uses the nonlinear incidence rate [28] and assume that the predator consumes the
susceptible as well as the infected prey according to the modified Holling type II functional
response. Finally, the formulation of this model and the local as well as the global stability
analysis of the proposed model are described in the following sections.

2. The Mathematical Model

An eco-epidemiological model consisting of prey, which is divided into two classes:
susceptible prey and infected prey, interacting with a predator is proposed according to the
following assumptions.

(1) In the absence of disease, the prey population grows logistically with carrying
capacity K > 0 and an intrinsic growth rate constant r > 0.

(2) In the presence of disease, the prey population is divided into two classes, namely
the susceptible prey S(t) and infected prey I(t), and hence the total prey population
at time twill be S(t) + I(t). Further, it is assumed that only the susceptible prey can
reproduce reaching to its carrying capacity. However, the infected prey does not
grow, recover, reproduce, or compete.

(3) It is assumed that the disease is transmitted from infected prey to susceptible prey
by contact according to the nonlinear incidence rate of the form λIS/(1 + I), which
was proposed by Gumel and Moghadas 2003 [28] and used by many authors,
where λI measures the infection force of the disease and 1/(1 + I) measures
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the inhibition effect from the crowding effect of the infected individuals. This
incidence rate seems more reasonable than that depends on simple law of mass
action λSI because it includes the crowding effect of the infected individuals and
prevents the unboundedness of the contact rate by choosing suitable parameters.

(4) Finally, it is assumed that the predator species consumes the prey species
(susceptible as well as infected) according to themodifiedHolling type II functional
response. However, in the absence of prey population the predator population
decays exponentially.

Then the dynamics of such a model can be represented in the following set of differential
equations:

dS

dt
= rS

(
1 − S

K

)
− λI

1 + I
S − α1SY

β + S +mI
= f(S, I, Y ); S(0) ≥ 0,

dI

dt
=

λI

1 + I
S − α2IY

β + S +mI
− μ1I = g(S, I, Y ); I(0) ≥ 0,

dY

dt
=

θ1S + θ2I

β + S +mI
Y − μ2Y = h(S, I, Y ); Y (0) ≥ 0.

(2.1)

Here, all the parameters are assumed to be positive constants. Moreover, the parameter λ
represents the infected rate; α1 and α2 represent the maximum predation rates of S and
I, respectively; β is the half saturation constant; the parameter m represents the predator
preference rate between S and I. The parameters θ1 and θ2 are the conversion rates of S and
I, respectively; μ1 represents the death rate if I due to the disease, while μ2 represents the
natural death rate of Y . In addition, since the density of population cannot be negative then,
the state space of the system (2.1) is R3

+ = {(S, I, Y ) ∈ R3 : S ≥ 0, I ≥ 0, Y ≥ 0}.
Note that system (2.1) can be separated into two independent subsystems. The first

system is obtained by assuming the absence of the predators and can be written in the
following form:

dS

dt
= rS

(
1 − S

K

)
− λI

1 + I
S = f1(S, I),

dI

dt
=

λI

1 + I
S − μ1I = g1(S, I).

(2.2a)

However, the second subsystem is obtained in the absence of the infected prey and takes the
form:

dS

dt
= rS

(
1 − S

K

)
− α1SY

β + S
= f2(S, Y ),

dY

dt
=

θ1S

β + S
Y − μ2Y = h2(S, Y ).

(2.2b)

Obviously, the interaction functions f , g, and h of the system (2.1) are continuous
and have continuous partial derivatives on the state space R3

+; therefore these functions
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are Lipschitzian on R3
+ and then the solution of the system (2.1) with non negative initial

condition exists and is unique. In addition, all the solutions of the system (2.1)which initiate
in nonnegative octant are uniformly bounded as shown in the following theorem.

Theorem 2.1. All solutions of system (2.1) that initiate in the state space R3
+ are uniformly bounded

in the regionΨ = {(S, I, Y ) ∈ R3
+ : 0 ≤ S + I + Y ≤ θ/μ}, where μ = min(μ1, μ2) and θ = (r + μ)K.

Proof. Let (S(t), I(t), Y (t)) be any solution of the system with the nonnegative initial condi-
tions. From the first equation, we get

dS

dt
≤ rS

(
1 − S

K

)
. (2.3)

Then by solving the above differential inequality, we obtain

Lim
t→∞

SupS(t) ≤ K. (2.4)

Let W = S + I + Y , then from the model we get

dW

dt
= rS

(
1 − S

K

)
− (α1 − θ1)

SY

β + S +mI
− (α2 − θ2)

SY

β + S +mI
− μ1I − μ2Y. (2.5)

Now, since the conversion rate constant from prey population to predator population
cannot be exceeding the maximum predation rate constant of predator population to prey
population. Hence from biological a point of view, we have always θi ≤ αi; i = 1, 2. Hence, we
obtain that

dW

dt
≤ rS − μ1I − μ2Y ≤ θ − μW. (2.6)

So again by solving the above linear differential inequality, we get that

Lim
t→∞

W(t) ≤ θ

μ
. (2.7)

So the proof is completed.

Now since the dynamical system (2.1) is said to be dissipative if all populations
initiating in R3

+ are uniformly limited by their environment. Accordingly, system (2.1) is a
dissipative system.

3. Stability Analysis of Subsystems

In this section, the local stability of the subsystems (2.2a) and (2.2b) is discussed and the
obtained results are summarized below.
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The first subsystem (2.2a) has at most three nonnegative equilibrium points. The
equilibrium points p1 = (0, 0) and p2 = (K, 0) always exist. However, the positive equilibrium
point p3 = (Ŝ, Î) where

Ŝ =
μ1

λ

(
1 + Î

)
; Î =

−A2

2A1
+

1
2A1

√
A2

2 − 4A1A3 (3.1)

with A1 = rμ1 > 0, A2 = rμ1 + λ2K − r(λK − μ1) and A3 = −r(λK − μ1) exists in the interior of
the positive quadrant of the SI-plane if and only if

λK > μ1, (3.2)

otherwise p3 does not exist. Further, it is observed that since

dI

dt
= I

(
λ

1 + I
S − μ1

)
≤ I
(
λK − μ1

)
. (3.3)

So if λK < μ1, then the right-hand side will be negative and then I species become extinct.
Therefore, condition (3.2) represents the necessary condition for survival of infected species.

Moreover, the variational matrices of subsystem (2.2a) about the equilibrium points p1
and p2 can be written as

V
(
p1
)
=
(
r 0
0 −μ1

)
, V

(
p2
)
=
(−r −Kλ

0 Kλ − μ1

)
. (3.4)

Thus, the eigenvalues of V (p1) are λ11 = r > 0 and λ21 = −μ1 < 0, then p1 is a saddle point
with locally stable manifold in the I-direction and with locally unstable manifold in the S-
direction. While the eigenvalues of V (p2) are λ12 = −r < 0 and λ22 = λK − μ1. So, p2 is locally
asymptotically stable point if and only if

λK < μ1, (3.5)

and it is a saddle point with locally stable manifold in the S-direction and with locally
unstable manifold in the I-direction provided that condition (3.2) holds.

In addition to the above, the variational matrix about the positive equilibrium point p3
can be written as follows V (p3) = (aij)2×2, where

a11 =
−rŜ
K

< 0, a12 =
−λŜ(
1 + Î

)2 < 0, a21 =
λÎ

1 + Î
> 0, a22 =

−λŜÎ(
1 + Î

)2 < 0. (3.6)

Obviously, the characteristic equation of V (p3) can be written in the following form:

λ2 +Aλ + B = 0 (3.7)
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with A = −(a11 + a22) = (rŜ)/K + (λŜÎ)/(1 + Î)2 > 0

B = a11a22 − a12a21 =
rλŜ2Î

K
(
1 + Î

)2 +
λ2ŜÎ(
1 + Î

)3 > 0, (3.8)

Consequently, the eigenvalues of V (p3) are given by

λ13 = −A
2
+
1
2

√
A2 − 4B; λ23 = −A

2
− 1
2

√
A2 − 4B. (3.9)

Clearly both eigenvalues λ13 and λ23 have negative real parts, and hence p3 = (Ŝ, Î) is locally
asymptotically stable in the interior of SI-plane whenever it exists.

Similarly, the second subsystem (2.2b) has three nonnegative equilibrium points q1 =
(0, 0), q2 = (K, 0), and q3 = (S, Y ), where

S =
βμ2

θ1 − μ2
; Y =

r

α1K

(
K − S

)(
β + S

)
=

rβθ1

α1K
(
θ1 − μ2

)2
[
K
(
θ1 − μ2

) − βμ2
]
. (3.10)

Clearly, q3 exists in the interior of positive quadrant of SY -plane under the following
conditions:

θ1 > μ2, S < K. (3.11)

Now the variational matrices of the subsystem (2.2b) at q1 and q2 can be written as

V
(
q1
)
=
(
r 0
0 −μ2

)
, V

(
q2
)
=

⎛
⎜⎜⎝

−r −λK
β +K

0

(
θ1 − μ2

)
K − βμ2

β +K

⎞
⎟⎟⎠. (3.12)

So, the eigenvalues of V (q1) are γ11 = r > 0 and γ21 = −μ2 < 0; hence, q1 is a saddle point with
locally stable manifold in Y -direction and with locally unstable manifold in the S-direction.

Also the eigenvalues of V (q2) are γ12 = −r < 0 and γ22 = (K(θ1 − μ2) − βμ2)/(β +K).
So, q2 is locally asymptotically stable if and only if

θ1 < μ2 or K <
βμ2

θ1 − μ2
. (3.13)

However, it is a saddle point with locally stable manifold in the S-direction and with locally
unstable manifold in the Y -direction provided that condition (3.11) holds.
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Finally, the variational matrix of the subsystem (2.2b) at the positive equilibrium point
q3 can be written in the form V (q3) = (bij)2×2, where

b11 =
r

K
S

[
−1 + K − S

β + S

]
, b12 = − α1S

β + S
< 0, b21 =

βθ1Y(
β + S

)2 > 0, b22 = 0. (3.14)

Therefore, it is easy to verify that the eigenvalues of V (q3) satisfy the following relations:

γ13 + γ23 =
r

K
S

[
−1 + K − S

β + S

]
; γ13γ23 =

βα1θ1YS(
β + S

)3 > 0. (3.15)

Thus, if the following condition holds: then both eigenvalues have negative real parts and
hence q3 is locally asymptotically stable in the interior of the positive quadrant of SY -plane:

[
−1 + K − S

β + S

]
< 0. (3.16a)

Further, both eigenvalues have positive real parts and hence q3 will be unstable point if the
following condition holds:

[
−1 + K − S

β + S

]
> 0. (3.16b)

4. Stability Analysis of System (2.1)

In this section, system (2.1) has been analyzed locally as well as globally. An investigation of
system (2.1) shows that there are at most five possible nonnegative equilibrium points. The
existence conditions for these points are discussed in the following.

The trivial equilibrium point E0 = (0, 0, 0) and the axial equilibrium point E1 = (K, 0, 0)
always exist.

The disease-free equilibrium point E2 = (S, 0, Y ), where S and Y are given by (3.10),
exists under condition (3.11).

The predator-free equilibrium point E3 = (Ŝ, Î, 0), where Ŝ and Î are given by (3.1),
exists under condition (3.2).
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The positive-equilibrium point E4 = (S̃, Ĩ, Ỹ ) exists in the Int. R3
+ if and only if S̃, Ĩ, and

Ỹ represent the positive solution of the following algebraic set of nonlinear equations:

r

α1

(
1 − S

K

)
− λI

α1(1 + I)
=

Y

β + S +mI
, (4.1a)

λ

α2(1 + I)
S − μ1

α2
=

Y

β + S +mI
, (4.1b)

θ1S + θ2I

β + S +mI
− μ2 = 0. (4.1c)

Now, from (4.1c) we get

S =
Ã1 + B̃1I

C̃1

(4.1d)

with Ã1 = μ2β > 0; B̃1 = mμ2 − θ2 and C̃1 = θ1 − μ2. So, by combining (4.1a) with (4.1b) and
then substituting (4.1d) in the resulting equation we get that

D̃1I
2 + D̃2I + D̃3 = 0, (4.1e)

where D̃1 = rα2B̃1, D̃2 = rα2Ã1 + (rα2 + λα1K)B̃1 + (λα2 − rα2 − α1μ1)KC̃1, and D̃3 = (rα2 +
λα1K)Ã1 − (rα2 + α1μ1)KC̃1.

Obviously, (4.1e) has a unique positive root, say Ĩ, if and only if D̃1 and D̃3 has opposite
signs and hence S̃ = S(Ĩ) follows directly from (4.1d). Finally, substituting the value of (S̃, Ĩ)
in (4.1a) gives

Ỹ =
(
β + S̃ +mĨ

)
⎡
⎢⎣
r
(
K − S̃

)(
1 + Ĩ

)
− λKĨ

α1K
(
1 + Ĩ

)
⎤
⎥⎦. (4.1f)

Clearly, Ỹ is positive if and only if the following condition holds:

r >
λKĨ(

K − S̃
)(

1 + Ĩ
) . (4.2a)
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Therefore, the positive equilibrium point E4 = (S̃, Ĩ, Ỹ ) exists uniquely in the Int. R3
+ if and

only if in addition to condition (4.2a) one set of the following sets of conditions is satisfied.

C̃1 > 0, B̃1 > 0, D̃3 < 0 (4.2b)

C̃1 > 0, B̃1 < 0, D̃3 > 0 Ĩ <
βμ2

θ2 −mμ2
(4.2c)

C̃1 < 0, B̃1 < 0, Ĩ >
βμ2

θ2 −mμ2
. (4.2d)

Now in order to study the local stability of system (2.1), the variational matrix of
system (2.1) is computed at each of the above equilibrium points and then the eigenvalues
are determined as shown in the following.

The Variational matrix at the trivial equilibrium point is determined as

V (E0) =

⎛
⎝r 0 0

0 −μ1 0
0 0 −μ2

⎞
⎠. (4.3)

So, the eigenvalues of V (E0) are λ1 = r > 0, λ2 = −μ1 < 0 and λ3 = −μ2 < 0; hence, E0 = (0, 0, 0)
is a saddle point with locally stable manifold in IY -plane and with locally unstable manifold
in the S-direction.

The variational matrix at the axial equilibrium point can be written as

V (E1) =

⎛
⎜⎜⎜⎜⎝

−r −λK −α1K

β +K
0 λK − μ1 0

0 0

(
θ1 − μ2

)
K − βμ2

β +K

⎞
⎟⎟⎟⎟⎠. (4.4)

Hence, the eigenvalues of V (E1) are λ1 = −r < 0, λ2 = λK − μ1, and λ3 = ((θ1 − μ2)K −
μ2β)/(β +K). Therefore, E1 = (K, 0, 0) is locally asymptotically stable if and only if

λK < μ1 with θ1 < μ2 or K < min
{
μ1

λ
,

μ2β

θ1 − μ2

}
. (4.5a)

However, it is a saddle point provided that

λK > μ1 and/or K >
μ2β

θ1 − μ2
> 0. (4.5b)
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Now, the variational matrix of system (2.1) at the disease-free equilibrium point E2 = (S, 0, Y )
is written as

V (E2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

K
S

[
−1 + K − S

β + S

]
S

⎡
⎢⎣−λ +

mr
(
K − S

)

K
(
β + S

)
⎤
⎥⎦ −α1S

β + S

0 λS − α2Y

β + S
− μ1 0

θ1βY(
β + S

)2 Y

⎡
⎢⎣θ2β + S(θ2 −mθ1)(

β + S
)2

⎤
⎥⎦ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Then, the eigenvalues of V (E2) satisfy the following relations λS + λY = γ13 + γ23 and λSλY =
γ13 · γ23, where γ13 and γ23 represent the eigenvalues of V (q3) and satisfy (3.15). However,

λI = λS − α2Y

β + S
− μ1, (4.7)

here λS, λI , and λY represent the eigenvalues of V (E2) in the S-, I-, and Y -directions,
respectively. Therefore, it is clear that the eigenvalues λS and λY have negative real parts
if and only if condition (3.16a) holds. However the eigenvalue λI is negative or positive if
and only if the following conditions hold respectively:

S <
K
(
α1μ1 + α2r

)
α1Kλ + α2r

, (4.8a)

S >
K
(
α1μ1 + α2r

)
α1Kλ + α2r

. (4.8b)

Consequently, E2 = (S, 0, Y ) is locally asymptotically stable if and only if conditions (3.16a)
and (4.8a) hold. However it is a saddle point with non empty stable and unstable manifolds
if at least one of conditions (3.16b) and (4.8b) hold.

The variational matrix of system (2.1) at the predator-free equilibrium point E3 =
(Ŝ, Î, 0) can be written as

V (E3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− r

K
Ŝ

−λŜ(
1 + Î

)2 −α1Ŝ

β + Ŝ +mÎ

λÎ

1 + Î

−λŜÎ(
1 + Î

)2 −α2Î

β + Ŝ +mÎ

0 0
Ŝ
(
θ1 − μ2

)
+ Î
(
θ2 −mμ2

) − βμ2

β + Ŝ +mÎ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.9)
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Straightforward computation shows that, the eigenvalues of V (E3) can be written as λ̂S = λ13;
λ̂I = λ23, where λ13 and λ23 are given by (3.9), and the eigenvalue in the Y -direction is written
as

λ̂Y =
Ŝ
(
θ1 − μ2

)
+ Î
(
θ2 −mμ2

) − βμ2

β + Ŝ +mÎ
. (4.10)

According to (3.9), both eigenvalues λ̂S and λ̂I have negative real parts, while the eigenvalue
λ̂Y will be negative or positive if and only if the following conditions hold respectively:

Ŝ
(
θ1 − μ2

)
+ Î
(
θ2 −mμ2

)
< μ2β, (4.11a)

Ŝ
(
θ1 − μ2

)
+ Î
(
θ2 −mμ2

)
> μ2β. (4.11b)

Therefore, E3 = (Ŝ, Î, 0) is locally asymptotically stable provided that condition (4.11a) holds.
However, it will be a saddle point with locally stable manifold in SI-plane and with locally
unstable manifold in the Y -direction provided that condition (4.11b) holds.

Finally, the local stability conditions for the positive equilibrium point are established
in the following theorem.

Theorem 4.1. The positive equilibrium point E4 = (S̃, Ĩ, Ỹ ) is locally asymptotically stable in the
Int. R3

+ provided that the following conditions hold:

Ỹ < min

{
r

α1K
H̃2,

λS̃

mα2G̃2
H̃2,

λ

mα1G̃2
H̃2

}
, (4.12a)

mθ1S̃

β + S̃
< θ2 < mθ1 or

θ2Ĩ

β +mĨ
< θ1 <

θ2
m

, (4.12b)

Γ >
K

G̃2

(
λH̃2 −mα1G̃

2Ỹ

rH̃2 − α1KỸ

)
, (4.12c)

λH̃2S̃ −mα2G̃
2Ỹ

G̃
(
λH̃2 + α2G̃Ỹ

) >
α1S̃

α2Ĩ
, (4.12d)

where G̃ = 1 + Ĩ, H̃ = β + S̃ +mĨ, and Γ = (βθ2 + (θ2 −mθ1)S̃)/(βθ1 + (mθ1 − θ2)Ĩ).
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Proof. Straightforward computation shows that the variational matrix near E4 = (S̃, Ĩ, Ỹ ) can
be written as V (E4) = (cij)3×3 with i, j = 1, 2, 3 where

c11 =
−rS̃
K

+
α1S̃Ỹ

H̃2
, c12 =

−λS̃
G̃2

+
α1mỸS̃

H̃2
, c13 =

−α1S̃

H̃
< 0,

c21 =
λĨ

G̃
+
α2ĨỸ

H̃2
> 0, c22 =

−λS̃Ĩ
G̃2

+
mα2ĨỸ

H̃2
, c23 =

−α2Ĩ

H̃
< 0,

c31 =
Ỹβθ1 + Ỹ Ĩ(mθ1 − θ2)

H̃2
, c32 =

Ỹβθ2 + Ỹ S̃(θ2 −mθ1)

H̃2
, c33 = 0.

(4.13)

Then, the characteristic equation of V (E4) can be written as follows:

λ̃3 +D1λ̃
2 +D2λ̃ +D3 = 0, (4.14)

where

D1 = −(c11 + c22),

D2 = (c11c22 − c12c21) − (c13c31 + c23c32),

D3 = c23(c11c32 − c12c31) + c13(c22c31 − c21c32),

Δ = D1D2 −D3 = D1(c11c22 − c21c12) + c31(c11c13 + c12c23) + c32(c22c23 + c21c13).

(4.15)

Note that according to Routh-Hurwitz criterion E4 is locally asymptotically stable if D1 >
0, D3 > 0, and D1D2 −D3 > 0.

Clearly from the condition (4.12a) we obtain that c11 < 0, c22 < 0 with c12 > 0, and
hence D1 > 0. Also due to condition (4.12b), we obtain that c31 > 0 and c32 > 0. Therefore, the
second term ofD3 will be positive provided that conditions (4.12a) and (4.12b) hold. Further,
it is easy to verify that the first term of D3 will be positive and hence D3 > 0 if the (sufficient)
condition (4.12c) holds.

Now, according to the above set of conditions we have that the first and second terms
ofΔ are positive. However the third term ofΔwill be positive too if the following (sufficient)
condition holds c22c23 + c13c21 > 0, which is satisfied provided that condition (4.12d) holds.
This completes the proof.

Furthermore, in the following theorem the global stability conditions of E1 are
established.

Theorem 4.2. Assume that E1 = (K, 0, 0) is locally asymptotically stable inR3
+. Then, if the following

condition holds

α1

β
K < μ2, (4.16)

the equilibrium point E1 is globally asymptotically stable.
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Proof. Consider the following function:

V (S, I, Y ) =
[
S −K −K ln

(
S

K

)]
+ I + Y, (4.17)

it is easy to see that V (S, I, Y ) ∈ C1 (R3
+, R), in addition V (K, 0, 0) = 0, while V (S, I, Y ) > 0 for

all (S, I, Y ) ∈ R3
+ and (S, I, Y )/= (K, 0, 0). Further,

dV

dt
= (S −K)

[
r

(
1 − S

K

)
− λI

1 + I
− α1Y

β + S +mI

]

+
[

λS

1 + I
I − α2YI

β + S +mI
− μ1I

]
+
[
θ1S + θ2I

β + S +mI
Y − μ2Y

]
.

(4.18)

Now due to the fact θi ≤ αi; i = 1, 2 that is mentioned in Theorem 2.1, then we get

dV

dt
≤ − r

K
(S −K)2 −

[
μ1 − λK

1 + I

]
I −
[
μ2 − Kα1

β + S +mI

]
Y. (4.19)

Clearly, μ1 −λK/(1+ I) > 0 under the local stability condition (4.5a). However, μ2 −Kα1/(β+
S +mI) > 0 under the condition (4.16). Therefore, dV/dt is negative definite, and hence the
proof is complete.

Theorem 4.3. Suppose that the disease-free equilibrium point E2 = (S, 0, Y ) is locally asymptotically
stable in the Int. R2

+ of the SY -plane and let the following condition holds:

α1

β2
<

r

KYmax
. (4.20)

Then, the equilibrium point E2 = (S, 0, Y ) is globally asymptotically stable in the Int. R2
+ of the SY -

plane.

Proof. Obviously, system (2.1) will be reduced to disease-free subsystem (2.2b) in case of
absence of the infected species (I = 0). Also, it has been shown that (S, Y ) represents the
unique positive equilibrium point of the subsystem (2.2b).

Consider now the function F2(S, Y ) = 1/SY , clearly F2 : Int. R2
+ → R which is a

continuously differentiable function. Further, since

Δ1(S, Y ) =
∂

∂S

(
F2 f2

)
+

∂

∂Y
(F2 h2) = − r

KY
+

α1(
β + S

)2 < − r

KYmax
+
α1

β2
. (4.21)

Here, f2 and h2 are given in subsystem (2.2b). Also, since the system (2.1) is bounded
as shown in Theorem 2.1, Ymax represents the upper bound constant for the variable Y .
Therefore, under the condition (4.20) it is observed that Δ1(S, Y ) does not change sign and
is not identically zero. So, by Bendixson-Dulac criterion, there is no periodic curve in the
Int. R2

+ of the SY -plane. Hence, the equilibrium point (S, Y ) of subsystem (2.2b) and then the
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associated disease-free equilibrium point (S, 0, Y ) of system (2.1) is globally asymptotically
in the Int. R2

+ of the SI-plane.

Theorem 4.4. Assume that the positive equilibrium point E4 = (S̃, Ĩ, Ỹ ) of system (2.1) is locally
asymptotically stable in the Int. R3

+. Then, it is a globally asymptotically stable on the subregion of the
Int. R3

+ that satisfies the following conditions:

Ỹ < min

{
rHH̃

α1K
,
λS̃HH̃

mGG̃

}
(4.22a)

[
(C1mα1 + C2α2)Ỹ1

HH̃
+
(C2G̃ − C1)λ

GG̃

]2
< 4C1C2

[
r

K
− α1Ỹ

HH̃

] [
λS̃

GG̃
− mα2Ỹ

HH̃

]
, (4.22b)

where G = (1 + I) and H = (β + S +mI), while G̃ and H̃ are given in Theorem 4.2. Further, C1 and
C2 are positive constants to be determined later on.

Proof. Consider the following function:

V1(S, I, Y ) = C1

[
S − S̃ − S̃ ln

(
S

S̃

)]
+ C2

[
I − Ĩ − Ĩ ln

(
I

Ĩ

)]
+
[
Y − Ỹ − Ỹ ln

(
Y

Ỹ

)]
, (4.23)

where C1 and C2 are positive constants to be determined. Note that it is easy to see that
V1(S, I, Y ) ∈ C1(R3

+, R) with V1(S̃, Ĩ, Ỹ ) = 0 and V1(S, I, Y ) > 0, for all (S, I, Y ) ∈ R3
+ with

(S, I, Y )/= (S̃, Ĩ, Ỹ ). Further,

dV1

dt
= C1

(
S − S̃

)[
r

(
1 − S

K

)
− λI

G
− α1Y

H

]

+ C2

(
I − Ĩ

)[λS
G

− α2Y

H
− μ1

]
+
(
Y − Ỹ

)[Q1S +Q2I

H
− μ2

]

dV1

dt
= − C1

[
r

K
− α1Ỹ

HH̃

](
S − S̃

)2 − C2

[
λS̃

GG̃
− mα2Ỹ

HH̃

](
I − Ĩ

)2

+

⎡
⎢⎣(C1mα1 + C2α2)Ỹ1

HH̃
+

(
C2G̃ − C1

)
λ

GG̃

⎤
⎥⎦
(
S − S̃

)(
I − Ĩ

)

+

⎡
⎢⎣
−C1α1H̃ +

(
βθ1 − (θ2 −mθ1)Ĩ

)

HH̃

⎤
⎥⎦
(
S − S̃

)(
Y − Ỹ

)

+

⎡
⎢⎣
−C2α2H̃ +

(
βθ2 + (θ2 −mθ1)S̃

)

HH̃

⎤
⎥⎦
(
I − Ĩ

)(
Y − Ỹ

)
.

(4.24)
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So by choosing the constants Ci; i = 1, 2 as follows:

C1 =
βθ1 − (θ2 −mθ1)Ĩ

α1H̃
, C2 =

βθ2 − (θ2 −mθ1)S̃

α2H̃
. (4.25)

Then, we get

dV1

dt
= − C1

[
r

K
− α1Ỹ

HH̃

](
S − S̃

)2 − C2

[
λS̃

GG̃
− mα2Ỹ

HH̃

](
I − Ĩ

)2

+

⎡
⎢⎣(C1mα1 + C2α2)Ỹ1

HH̃
+

(
C2G̃ − C1

)
λ

GG̃

⎤
⎥⎦
(
S − S̃

)(
I − Ĩ

)
.

(4.26)

Clearly, Ci; i = 1, 2 are positive under the local stability condition (4.12b). Further, r/K −
α1Ỹ/HH̃ > 0 and λS̃/GG̃ − mα2Ỹ/HH̃ > 0 under the condition (4.22a). Therefore using
condition (4.22b), we obtain that

dV1

dt
< −

⎡
⎣
√√√√C1

[
r

K
− α1Ỹ

HH̃

](
S − S̃

)
+

√√√√C2

[
λS̃

GG̃
− mα2Ỹ

HH̃

](
I − Ĩ

)⎤⎦
2

. (4.27)

Therefore, dV1/dt is negative and hence V1 is Lyapunov function with respect to E4, so E4 is
globally asymptotically stable and the proof is complete.

5. Hopf Bifurcation

In this section, the occurrence of Hopf bifurcation in system (2.1) near the equilibrium points
is studied.

Theorem 5.1. Assume that condition (4.8a) holds, then system (2.1) has a Hopf bifurcation near
the disease-free equilibrium point E2 = (S, 0, Y ) as the parameter value K passes through the value
K = β + 2S.

Proof. According to the variational matrix of system (2.1) at the disease-free equilibrium point
E2 = (S, 0, Y ), it is easy to verify that the eigenvalues can be written as

λS,Y =
T

2
± 1
2

√
T2 − 4D, λI = λS − α2Y

β + S
− μ1, (5.1)

where T = (r/K)S[−1 + (K − S)/(β + S)] and D = α1θ1YβS/(β + S)3 > 0.
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Clearly, as shown above, the eigenvalue λI < 0 if and only if condition (4.8a) holds.
However, the eigenvalues λS and λY are pure imaginary complex numbers for T = 0 orK = K,
so there is a neighborhood around K = β + 2S such that λS and λY can be written as

λS = ω(K) + i	(K), λY = ω(K) − i	(K), (5.2)

where ω(K) = (r/2K)S[−1 + (K − S)/(β + S)] represents the real part of λS and λY .
Now, since

[
dω(K)
dK

]
K=K

=
rS

2
(
β + 2S

)2 +
rS

2

2
(
β + 2S

)2(
β + S

) /= 0. (5.3)

Therefore, system (2.1) has a Hopf bifurcation near the disease-free equilibrium point at K =
K, and hence the proof is complete.

Now since the variational matrix around the predator-free equilibrium point has two
eigenvalues, given by (3.9), with negative real parts while the third that given by (4.10) is
real and is negative or positive depending on conditions (4.11a) or (4.11b), respectively, then
there is no possibility to have a Hopf bifurcation near this point.

Finally, the conditions that guarantee the occurring of Hopf bifurcation near the
positive equilibrium point are established in the following theorem.

Theorem 5.2. Assume that the conditions (4.12a)–(4.12c) hold. Then, system (2.1) exhibits a Hopf
bifurcation near the positive equilibrium point E4 as the parameter K passes through the value

K1 =
−2rc22S̃H̃2

H̃2
[
N1 +

√
N2

1 + 4c22N2

]
− 2α1c22S̃Ỹ

, (5.4)

whereN1 = c13c31 +c12c21 −c222,N2 = c12(c21c22 +c23c31)+c32(c22c23 +c21c13), and cij ; i, j = 1, 2, 3
represent the elements of V (E4): provided that the following condition holds

[
λ2S̃2Ĩ2

G̃4
+
α1α2m

2S̃Ĩ2Ỹ 2

H̃4

]
Π1 +

α2λS̃ĨỸ
(
1 + Ĩ

)

G̃2H̃3
Π2

<

(
α2 + α1S̃

)
mλS̃Ĩ2Ỹ

G̃2H̃2
Π1 +

α1α2mS̃ĨỸ 2

H̃5
Π2

+
ĨỸ

H̃3

⎡
⎢⎣
α2Ỹ

(
mĨ + α1S̃

)

H̃2
+
α1λS̃

G̃

⎤
⎥⎦Π3.

(5.5)

Here,Π1 = λ/G̃ + (α2Ỹ )/H̃2, Π2 = βθ1 + (mθ1 − θ2)Ĩ, and Π3 = βθ2 + (θ2 −mθ1)S̃.
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Proof. Recall that the characteristic equation of V (E4) is given by

λ̃3 +D1λ̃
2 +D2λ̃ +D3 = 0, (5.6a)

where Dj ; j = 1, 2, 3 are given in Theorem 4.1. It had been observed that the conditions
(4.12a)–(4.12c) guarantee that Dj > 0; j = 1, 2, 3 for all values of K.

Now since the Hopf bifurcation near the positive equilibrium point E4 of system (2.1)
occurs if and only if V (E4) have two complex conjugate eigenvalues with the third eigen
value real and negative such that there exists a constant parameter value, say K1, satisfying:

(1) Re(λ̃(K))|K=K1
= 0.

(2) (d/dK)(Re(λ̃(K)))|K=K1 /= 0; where λ̃ is a complex eigenvalue of V (E4).

So, by simplifying Δ = D1D2 − D3 and then equating to the zero we get c22(c11)
2 −

N1c11 −N2 = 0.
Obviously, conditions (4.12a)-(4.12b) guarantee that N1 < 0, while condition (5.5)

guarantees that N2 < 0. Therefore, by solving the above second order equation we get the

c11 = N1/2c22 + (1/2c22)
√
N1

2 + 4c22N2 (The other root is omitted because c11 < 0).
Substituting the value of c11 in this equation and then solving forKwe get thatK = K1.

Accordingly, for K = K1, we have D1D2 = D3 and then the above characteristic equation
(5.6a) can be written as

(
λ̃2 +D2

)(
λ̃ +D1

)
= 0, (5.6b)

which has the following three roots:

λ̃1 = i
√
D2(K1), λ̃2 = −i

√
D2(K1), λ̃3 = −D1(K1). (5.7)

However, for all values of K in the neighborhood of K1, these roots can be written in general
as

λ̃1(K) = a(K) + ib(K), λ̃2(K) = a(K) − ib(K), λ̃3(K) = −D1(K). (5.8)

Clearly, a(K1) = 0 which means that the first condition of Hopf bifurcation holds. Now,
the proof will follows, if we can verify the above second condition (known as transversality
condition) of Hopf bifurcation when Re(λ̃(K)) = a(K).

Thus, by substituting λ̃1(K) = a(K) + ib(K) in (5.6b) and calculating the derivative
with respect to the K, it is obtained that

A(K)a′(K) − B(K)b′(K) + E(K) = 0,

B(K)a′(K) +A(K)b′(K) + R(K) = 0,
(5.9)
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where

A(K) = 3[a(K)]2 + 2D1(K)a(K) +D2(K) − 3[b(K)]2,

B(K) = 6a(K)b(K) + 2D1(K)b(K),

E(K) = [a(K)]2D′
1(K) +D′

2(K)a(K) +D′
3(K) −D′

1(K)[b(K)]2,

R(K) = 2a(K)b(K)D′
1(K) +D′

2(K)b(K).

(5.10)

Thus, by solving the linear system (5.9) for the unknown a′(K) we get that

a′(K) =
d

dK
Re
(
λ̃(K)

)
= −B(K)R(K) +A(K)E(K)

[A(K)]2 + [B(K)]2
. (5.11)

So for K = K1, it is easy to verify that

d

dK
Re(λ̃(K))

∣∣∣∣
K=K1

= −B(K1)R(K1) +A(K1)E(K1)

[A(K1)]2 + [B(K1)]2
/= 0. (5.12)

Also, we have that λ̃3(K1) = −D1(K1) < 0. Hence the proof is complete.

6. Numerical Simulation

To visualize the above analytical findings and understand the effect of varying the parameters
on the global dynamics of system (2.1), numerical simulation is done in this section. The
system (2.1) is integrated using six-order Runge-Kutta method alongwith predictor-corrector
method under different sets of initial values and different sets of parameter values.

For the following set of hypothetical, biologically feasible set of parameters, system
(2.1) is solved numerically starting at different initial points as shown in the following figures:

r = 1, K = 500, λ = 1, α1 = 1, α2 = 1, β = 50, m = 0.75,

θ1 = 0.75, θ2 = 0.5, μ1 = 0.3, μ2 = 0.1.
(6.1)

According to Figures 1 and 2, system (2.1) has a unique globally asymptotically stable
positive equilibrium point in the Int. R3

+. For the parameters values (6.1) with the infective
rates λ = 0.5, λ = 0.01, and λ = 1.25, system (2.1) is solved numerically and the trajectories
are drawn in Figures 3, 4, and 5 respectively.

Clearly, Figure 3 shows that system (2.1) losses its stability and approaches to periodic
attractor as the infective rate decreases to λ = 0.5, keeping the rest of parameters as in (6.1).
While the disease will disappear and system (2.1) approaches periodic attractor in the Int. R2

+
of the SY -plane as the infective rate decreases further reaching λ = 0.01 as shown in Figure 4.
Moreover, the predator will faces extinction as the infective rate increases reaching to λ =
1.25, and hence the system will approach asymptotically stable point in the Int. R2

+ of the SI-
plane. In fact, it is observed that for 0 < λ ≤ 0.02 the trajectories of system (2.1) approach
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Figure 1: System (2.1) approaches globally asymptotically stable point under the parameters values (6.1).
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Figure 2: Time series for the point attractor in Figure 1. (a) The trajectories starting at (10, 10, 10). (b) The
trajectories starting at (1, 1, 1). (c) The trajectories starting at (20, 20, 20).

periodic attractor in the Int. R2
+ of the SY -plane and for 0.02 < λ < 0.62 they approach the

periodic attractor in the Int. R3
+. However, increasing the infective rate farther, 0.62 ≤ λ < 1.12,

stabilizes the system (2.1) at positive equilibrium point. Finally, for 1.12 ≤ λ, the system
approaches asymptotically stable point in the Int. R2

+ of the SI-plane.
Now, the effect of varying the intrinsic growth rate of the susceptible prey on the

global dynamics of system (2.1) is investigated. It is observed that for r ≤ 0.89 system
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Figure 3: (a) System (2.1) approaches periodic attractor in Int. R3
+ for λ = 0.5 with the rest of parameters

are given by (6.1). (b) Time series of the trajectory in (a).
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Figure 4: (a) System (2.1) approaches periodic attractor in Int. R2
+ of the SY -plane for λ = 0.01 with the rest

of parameters are given by (6.1). (b) Time series of the trajectory in (a).

(2.1) approaches asymptotically stable point in the Int. R2
+ of the SI-plane; however, for

0.89 < r < 1.55, system (2.1) has a globally stable point in the Int. R3
+. Finally, for 1.55 ≤ r

system (2.1) has a periodic attractor in the Int. R3
+ as shown in Figure 6.

Now, for the following set of parameters values, it is observed that the system (2.1)
has also periodic attractor in the Int. R3

+.

r = 1, K = 500, λ = 0.5, α1 = 0.5, α2 = 1, β = 50, m = 0.75,

θ1 = 0.25, θ2 = 0.5, μ1 = 0.3, μ2 = 0.1.
(6.2)

However, the dynamics of system (2.1) is studied further at different values of the carrying
capacity. It is observed that the system (2.1) undergoes a Hopf bifurcation as the carrying
capacity parameter passes through K ∼= 270, which confirm our result in Theorem 5.2, as
shown in Figure 7.
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Figure 5: (a) System (2.1) approaches stable point in Int. R2
+ of the SI-plane for λ = 1.25 with the rest of

parameters are given by (6.1). (b) Time series of the trajectory in (a).
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Figure 6: (a) System (2.1) approaches periodic attractor in Int. R3
+ for r = 1.55 with the rest of parameters

are given by (6.1). (b) Time series of the trajectory in (a).

Clearly, System (2.1) approaches asymptotically to the positive equilibrium point in
the Int. R3

+ when K = 260 with the rest of parameters given by (6.2) as shown in Figures
7(a)-7(b). However, system (2.1) approaches to small periodic attractor in the Int. R3

+ when
K = 280 with the rest of parameters given by (6.2) as shown in Figures 7(c) and 7(d). Finally,
system (2.1) approaches larger periodic attractor in the Int. R3

+ when K = 300 with the rest of
parameters given by (6.2) as plotted in Figures 7(e) and 7(f).

In addition to the above, the effect of other parameters on the dynamics of system (2.1)
is also studied and the obtained results can be summarized as follows.

For the parameters values given by (6.2) with β ≤ 160, system (2.1) has a periodic
attractor, while as the half-saturation parameter β increases, β > 160, it is observed that
system (2.1) approaches asymptotically positive equilibrium point. On the other hand, for
the parameters values in (6.2) with the natural death rate for the predator in the range
μ2 < 0.3, system (2.1) has a periodic dynamic. However, for 0.3 ≤ μ2 ≤ 0.43, the solution
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Figure 7: System (2.1) undergoes a Hopf bifurcation as the carrying capacity pass throughK ∼= 270 keeping
other parameters fixed as in (6.2).

of system (2.1) approaches asymptotically stable positive equilibrium point. Further increase
the natural death rate, that is, 0.43 < μ2 will lead to extinction in the predator species and then
the solution of system (2.1) approaches asymptotically the predator-free equilibrium point in
the Int. R2

+ of the SI-plane.
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7. Discussions and Conclusions

In this paper, an eco-epidemiological prey-predator system with nonlinear incidence rate has
been proposed and analyzed. The existence, uniqueness, and boundedness of the solution
of the system are discussed. The existence and stability analysis of the equilibria of the
system are investigated. The global stability analysis of the proposed model is also studied
using suitable Lyapunov function. The conditions that guarantee the accruing of the Hopf
bifurcation in system (2.1) are presented. Moreover, numerical simulations are used to study
the global dynamics of our system and confirm our analytical results. It is observed the
following:

(1) The infective rate constant λ has a vital role on the dynamics of system (2.1). In fact
decreasing the value of λ more than a specific value, say λ1, causes destabilizing
the system first and then leads to extinction in the infected individuals; however
increasing λ more than a specific value, say λ2, leads to extinction in the predator
species. Finally, for λ1 < λ < λ2, system (2.1) has asymptotically stable point.

(2) Decreasing the intrinsic growth rate of the susceptible prey below a specific
value, say r1, leads to extinction in the predator species; however, increasing this
parameter more than a specific value, say r2, causes coexistence of all species and
the system approaches periodic dynamic. Finally for the values of intrinsic growth
rate in the range r1 < r < r2, the system approaches asymptotically stable point.
Consequently, increasing this parameter has a destabilizing effect on the system.

(3) System (2.1) persists and has asymptotically stable point for relatively small values
of carrying capacity; however, increasing the value of carrying capacity more than
a specific value, say K > K1, the positive equilibrium point losses its stability and
then the system approaches periodic attractor in the Int. R3

+. Indeed, K1 represents
a Hopf bifurcation point of system (2.1).

Finally, the effects of other parameters of system (2.1) are also studied and similar conclusions
are obtained as those mentioned in Section 6.
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