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We study two-component evolutionary systems of a homogeneous KdV equations of second and
third order. The homotopy analysis method (HAM) is used for analytical treatment of these
systems. The auxiliary parameter h of HAM is freely chosen from the stability region of the h-curve
obtained for each proposed system.

1. Introduction

Applications in physics are modeled by nonlinear systems. Very few nonlinear systems have
closed form solutions, therefore, many researchers stress their goals to search numerical
solutions. Homotopy analysis method (HAM), first proposed by Liao [1], is an elegant
method which has proved its effectiveness and efficiency in solving many types of nonlinear
equations [2, 3]. Liao in his book [4] proved that HAM is a generalization of some previously
used techniques such as the d-expansion method, artificial small parameter method [5],
and Adomian decomposition method. Moreover, unlike previous analytic techniques, the
HAM provides a convenient way to adjust and control the region and rate of convergence
[6]. Recently, new interested applications of the homotopy analysis have been introduced
by Abbasbandy and coauthors [7, 8]. Also, in [9] HAM is used to study the effects of
thermocapillarity and thermal radiation on flow and heat transfer in a thin liquid film.

In this work, we consider a two-component evolutionary system of a homogeneous
KdV equations of third order type (I) and (II) given, respectively, by

ut = uxxx + uux + vvx,

vt = −2vxxx − uvx,
(1.1)
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ut = uxxx + 2vux + uvx,

vt = uux.
(1.2)

Also, we study a two-component evolutionary system of a homogeneous KdV equations of
second order given by

ut = −3vxx,

vt = 4uxx + u2.
(1.3)

In the literature many other direct mathematical methods such as the sine-cosine method,
rational sine-cosinemethod, and extended tanh-cothmethod [10–14] have been implemented
in obtaining different solitonic solutions to these systems. Our main goal in this paper is to
see how much accuracy we may gain by applying HAM to such evolutionary systems.

In what follows, we highlight the main features of the homotopy analysis method.
More details and examples can be found in [7, 8, 15] and the references therein.

2. Survey of Homotopy Analysis Method

To illustrate the basic ideas of this method, we consider the following nonlinear system of
differential equations:

Nj[u1(x, t), u2(x, t), · · ·um(x, t)] = 0, j = 1, . . . , n, (2.1)

whereNj are nonlinear operators, t is an independent variable, ui(t) are unknown functions.
By means of generalizing the traditional homotopy method, Liao construct the zeroth-order
deformation equation as follows:

(
1 − q

)
Lj

[
φi

(
x, t, q

) − ui,0(x, t)
]
= qhH(x, t)Nj

[
φ1

(
x, t, q

)
, . . . , φm

(
x, t, q

)]
, (2.2)

where i = 1, . . . , m, j = 1, . . . , n, q ε [0, 1] is an embedding parameter, Lj is a general
differential linear operator, ui,0(x, t) are initial guesses of ui(x, t), φi(x, t, q) are unknown
functions, and h and H(x, t) are auxiliary parameter and auxiliary function, respectively. It
is important note that, one has great freedom to choose auxiliary objects such as h and Lj

in HAM; this freedom plays an important role in establishing the key stone of validity and
flexibility of HAM as shown in this paper. obviously, when q = 0 and q = 1, both

φi(x, t, 0) = ui,0(x, t), φi(x, t, 1) = ui(x, t), i = 1, . . . , m, (2.3)

thus as q increasing from 0 to 1, the solutions of φi(x, t, q) change from the initial guesses
ui,0(x, t) to the solutions ui(x, t). Expanding φi(x, t, q) in Taylor series with respect to q, one
has

φi

(
x, t, q

)
= ui,0(x, t) +

+∞∑

k=1

ui,k(x, t)qk, i = 1, . . . , m, (2.4)



Journal of Applied Mathematics 3

where

ui,k(x, t) =
1
k!

∂kφi

(
x, t, q

)

∂qk

∣
∣
∣
∣
∣
q=0

, i = 1, . . . , m, (2.5)

if the auxiliary linear operators, the initial guesses, the auxiliary parameter h, and the
auxiliary function are so properly chosen, then the series (2.4) converges at q = 1, then one
has

φi(x, t, 1) = ui,0(x, t) +
+∞∑

k=1

ui,k(x, t), i = 1, . . . , m, (2.6)

which must be one of the solutions of the original nonlinear equations, as proved by liao.
Define the vector

�ui,n(x, t) = (ui,0(x, t), ui,1(x, t), . . . , ui,n(x, t)), i = 1, . . . , m. (2.7)

Differentiating (2.2), k times with respect to the embedding parameter q and then setting
q = 0 and finally dividing them by k!, we have the so-called kth-order deformation equation

Lj

[
ui,k(x, t) − χkui,k−1(x, t)

]
= hRj,k(�ui,k−1(x, t)), i = 1, . . . , m, j = 1, . . . , n, (2.8)

subject to the initial conditions

Lj(0) = 0, (2.9)

where

Rj,k(�ui,k−1(x, t)) =
1

(k − 1)!
∂k−1Nj

[
φ1

(
x, t, q

)
, φ2

(
x, t, q

)
, . . . , φm

(
x, t, q

)]

∂qk−1

∣∣∣∣∣
q=0

,

χm = 0, m ≤ 1; χm = 1, m > 1.

(2.10)

It should be emphasized that ui,k(x, t) form ≥ 1 is governed by the linear equation (2.8) under
the linear boundary conditions that come from original problem, which can be easily solved
by symbolic computation software such as Mathematica. When h = −1, and H(x, t) = 1 (2.2)
becomes

(
1 − q

)
Lj

[
φi

(
x, t, q

) − ui,0(x, t)
]
+ qNj

[
φ1

(
x, t, q

)
, . . . , φm

(
x, t, q

)]

= 0, i = 1, . . . , m; j = 1, . . . , n,
(2.11)

which is used mostly in the homotopy perturbation method [16–20].
For the following numerical examples, we use Lj = ∂/∂t; H(x, t) = 1.
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3. Two-Component Evolutionary System of Order 3: Type I

In this section, we consider system (1.1)

ut = uxxx + uux + vvx,

vt = −2vxxx − uvx

(3.1)

subject to

u(x, 0) = −6 csch2
(

x√
2

)
,

v(x, 0) = 6 csch
(

x√
2

)
.

(3.2)

For application of the homotopy analysis method, we choose the initial approximations as

u0(x, t) = u(x, 0),

v0(x, t) = v(x, 0).
(3.3)

Employing HAM with the mentioned parameters in Section 2, we have the following zero-
order deformation equations:

(
1 − q

)
Lj

[
φ1t − u(x, 0)

]
= qh

[
φ1t − φ1xxx − φ1φ1x − φ2φ2x

]
,

(
1 − q

)
Lj

[
φ2t − v(x, 0)

]
= qh

[
φ2t + 2φ2xxx + φ1φ2x

]
.

(3.4)

Subsequently solving the Nth order deformation equations, we obtain

u1(x, t) = 3ht
√
2 csch4

(
x√
2

)
sinh

(√
2x

)
,

v1(x, t) = −3ht
√
2 coth4

(
x√
2

)
csch

(
x√
2

)
,

u2(x, t) = −3ht csch4
(

x√
2

)(
2ht + ht cosh

(√
2x

)
−
√
2(1 + h) sinh

(√
2x

))
,

v2(x, t) =
3
4
ht csch3

(
x√
2

)(
3ht + ht cosh

(√
2x

)
− 2

√
2(1 + h) sinh

(√
2x

))
.

(3.5)
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Figure 1: (a) The h curve of system (1.1) for u(3, 1) obtained from the 10th order HAM. (b) The h curve of
system (1.1) for v(3, 1) obtained from the 10th order HAM.
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Figure 2: (a) The obtained uHAM for system (1.1) using 10-term approximation. (b) The obtained vHAM for
system (1.1) using 10-term approximation. h = −1.1.

We use an 10-term approximation and set

uHAM(x, t) =
10∑

i=0

ui(x, t),

vHAM(x, t) =
10∑

i=0

vi(x, t).

(3.6)

Comments and illustrations upon the obtained results can be observed in Figures 1 and 2.

4. Two-Component Evolutionary System of Order 3: Type II

In this section, we consider system (1.2)

ut = uxxx + 2vux + uvx,

vt = uux

(4.1)
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subject to

u(x, 0) = − tanh
(

x√
3

)

v(x, 0) = −1
6
− 1
2
tanh2

(
x√
3

)
.

(4.2)

For application of the homotopy analysis method, we choose the initial approximations as

u0(x, t) = u(x, 0)

v0(x, t) = v(x, 0).
(4.3)

Employing HAMwith mentioned parameters in Section 2, we have the following zero-order
deformation equations:

(
1 − q

)
Lj

[
φ1t − u(x, 0)

]
= qh

[
φ1t − φ1xxx − 2φ2φ1x − φ1φ2x

]
,

(
1 − q

)
Lj

[
φ2t − v(x, 0)

]
= qh

[
φ2t − φ1φ1x

]
.

(4.4)

Subsequently solving the Nth order deformation equations, we obtain

u1(x, t) = − ht√
3
sech2

(
x√
3

)
,

v1(x, t) = − ht√
3
sech2

(
x√
3

)
tanh

(
x√
3

)
,

u2(x, t) = −ht
3
sech3

(
x√
3

)(√
3(1 + h) cosh

(
x√
3

)
− ht sinh

(
x√
3

))
,

v2(x, t) =
ht

6
sech4

(
x√
3

)(
−2ht + ht cosh

(
2x√
3

)
−
√
3(1 + h) sinh

(
2x√
3

))
,

(4.5)

and so on. We use an 10-term approximation and set

uHAM(x, t) =
10∑

i=0

ui(x, t),

vHAM(x, t) =
10∑

i=0

vi(x, t).

(4.6)

Comments and illustrations upon the obtained results can be observed in Figures 3 and 4.
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Figure 3: (a) The h curve of system (1.2) for u(5, 1) obtained from the 10th order HAM. (b) The h curve of
system (1.2) for v(5, 1) obtained from the 10th order HAM.
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Figure 4: (a) The obtained uHAM for system (1.2) using 10-term approximation. (b) The obtained vHAM for
system (1.2) using 10-term approximation. h = −1.3.

5. Two-Component Evolutionary System of Order 2

In this section, we consider system (1.3)

ut = −3vxx,

vt = 4uxx + u2
(5.1)

subject to

u(x, 0) = −1
8
− 1
8
tan2

(
x

2
√
3

)
,

v(x, 0) = − 1

4
√
3
tan

(
x

2
√
3

)
.

(5.2)
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We proceed in the same manner and choose the initial approximations as

u0(x, t) = u(x, 0),

v0(x, t) = v(x, 0).
(5.3)

The zero-order deformation equations are

(
1 − q

)
Lj

[
φ1t − u(x, 0)

]
= qh

[
φ1t + φ2xx

]
,

(
1 − q

)
Lj

[
φ2t − v(x, 0)

]
= qh

[
φ2t − φ2

1 − 4φ1xx

]
.

(5.4)

Subsequently, we obtain

u1(x, t) =
ht

8
√
3
sec2

(
x

2
√
3

)
tan

(
x

2
√
3

)
,

v1(x, t) = −ht

24
sec2

(
x

2
√
3

)
,

u2(x, t) =
ht

96
sec4

(
x

2
√
3

)(
−2ht + ht cos

(
x√
3

)
+ 2

√
3(1 + h) sin

(
x√
3

))
,

v2(x, t) =
ht

144
sec3

(
x

2
√
3

)(
−6(1 + h) cos

(
x

2
√
3

)
+
√
3h sin

(
x

2
√
3

))
,

(5.5)

and so on. We use an 11-term approximation and set

uHAM(x, t) =
10∑

i=0

ui(x, t),

vHAM(x, t) =
10∑

i=0

vi(x, t).

(5.6)

The obtained h-curve and the HAM solutions of u(x, t) and v(x, t) are given in Figures 5 and
6.

6. Discussion and Concluding Remarks

In this paper, we obtained soliton solutions for homogeneous KdV systems of second and
third order bymeans of homotopy analysis method. The convergence region for the obtained,
approximation, is determined by the parameter h as shown in Figures 1, 3, and 5, respectively,
for systems ((1.1), (1.2), and (1.3)).

Homotopy analysis method provides us a convenient freely chosen with parameter
h in contrast to the Homotopy perturbation method, where h is assumed to be −1. In this
work, h has been chosen to be −1.1, −1.3, and − 0.7, respectively, for systems ((1.1), (1.2),
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Figure 5: (a) The h curve of system (1.3) for u(3, 1) obtained from the 10th order HAM. (b) The h curve of
system (1.3) for v(3, 1) obtained from the 10th order HAM.
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Figure 6: (a) The obtained uHAM for system (1.3) using 10-term approximation. (b) The obtained vHAM for
system (1.3) using 10-term approximation. h = −0.7.

Table 1: Absolute errors regarding u(x, t) for system (1.1)with N = 10.

xi|tj 0.05 0.1 0.15 0.20 0.25 0.30
−6 4.32 × 10−13 4.09 × 10−12 2.05 × 10−11 7.48 × 10−11 2.24 × 10−10 5.86 × 10−10

−4 7.77 × 10−12 7.78 × 10−11 4.14 × 10−10 1.61 × 10−9 5.16 × 10−9 1.44 × 10−8

−2 3.43 × 10−10 6.30 × 10−9 5.54 × 10−8 3.25 × 10−7 1.46 × 10−6 5.40 × 10−6

2 1.25 × 10−12 1.99 × 10−12 1.92 × 10−12 5.76 × 10−12 1.29 × 10−11 1.98 × 10−11

4 9.23 × 10−14 1.59 × 10−13 5.30 × 10−14 4.45 × 10−13 3.79 × 10−13 7.06 × 10−13

6 5.52 × 10−15 9.60 × 10−15 2.88 × 10−15 2.67 × 10−14 2.02 × 10−14 4.30 × 10−14

Table 2: Absolute errors regarding v(x, t) for system (1.1)with N = 10.

xi|tj 0.05 0.1 0.15 0.20 0.25 0.30
−6 2.67 × 10−12 1.51 × 10−11 5.27 × 10−11 1.45 × 10−10 3.46 × 10−10 7.47 × 10−10

−4 1.17 × 10−11 7.21 × 10−11 2.81 × 10−10 8.87 × 10−10 2.44 × 10−9 6.15 × 10−9

−2 1.22 × 10−10 1.62 × 10−9 1.21 × 10−8 6.42 × 10−8 2.68 × 10−7 9.44 × 10−7

2 6.19 × 10−13 3.18 × 10−12 5.02 × 10−13 6.58 × 10−12 1.03 × 10−11 2.23 × 10−12

4 1.61 × 10−13 7.90 × 10−13 8.33 × 10−14 1.39 × 10−12 1.70 × 10−12 3.50 × 10−13

6 3.93 × 10−14 1.92 × 10−13 2.42 × 10−14 3.34 × 10−13 4.01 × 10−13 1.00 × 10−13
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and (1.3)). It is worth noting that the choice of the parameter h in this paper is considered
based on the obtained stability region of the h-curve for each system; for example, in system
(1.1) the stability region of h falls between −1.5 and −0.7 and we considered the midpoint of
this interval.

Finally, the absolute errors for the obtained approximate solution of system (1.1) are
given in Tables 1 and 2.
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