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Constructing structures with other mathematical theories is an important research field of rough
sets. As one mathematical theory on sets, matroids possess a sophisticated structure. This paper
builds a bridge between rough sets and matroids and establishes the matroidal structure of rough
sets. In order to understand intuitively the relationships between these two theories, we study
this problem from the viewpoint of graph theory. Therefore, any partition of the universe can be
represented by a family of complete graphs or cycles. Then two different kinds of matroids are
constructed and some matroidal characteristics of them are discussed, respectively. The lower
and the upper approximations are formulated with these matroidal characteristics. Some new
properties, which have not been found in rough sets, are obtained. Furthermore, by defining the
concept of lower approximation number, the rank function of some subset of the universe and the
approximations of the subset are connected. Finally, the relationships between the two types of
matroids are discussed, and the result shows that they are just dual matroids.

1. Introduction

Rough sets provide an important tool to deal with data characterized by uncertainty and
vagueness. Since it was proposed by Pawlak [1, 2], rough sets have been generalized from
different viewpoints such as the similarity relation [3, 4] or the tolerance relations [5] instead
of the equivalence relation, and a covering over the universe instead of a partition [6–10],
and the neighborhood instead of the equivalence class [11–14]. Besides, using some other
mathematical theories, such as fuzzy sets [15–19], boolean algebra [20–23], topology [24–27],
lattice theory [28–30], and modal logic [31], to study rough sets has became another kind
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of important generalizations of rough sets. Specially, matroids also have been used to study
rough sets recently [32, 33].

Matroids, as a simultaneous generalization of graph theory and linear algebra, was
proposed by Whitney in [34]. The original purpose of this theory is to formalize the
similarities between the ideas of independence and rank in graph theory and those of
linear independence and dimension in the study of vector spaces [35]. It has been found
that matroids are effective to simplify various ideas in graph theory and are useful in
combinatorial optimization problems.

In the existing works on the combination of rough sets and matroids, Zhu and Wang
[32] constructed amatroid by defining the concepts of upper approximation number in rough
sets. Then they studied the generalized rough sets with matroidal approaches. As a result,
some unique properties are obtained in this way. Wang et al. [33] studied the covering-
based rough sets with matroids. Two matroidal structures of covering-based rough sets are
established.

In this paper, we attempt to make a further contribution to studying rough sets with
matroids. As we see in Section 2.3, it is somewhat hard to understand matroids. And this
will also arise in the combination of matroids and rough sets. So, in order to give an intuitive
interpreting to the combination, we will study it from the viewpoint of graph theory. There
are at least two kinds of graphic ways, which can be used to build relationships between
matroids and rough sets. The complete graph and the cycle. More specifically, for a partition
over the universe, any equivalence class of the partition can be regarded as a complete graph
or a cycle. Thus a partition is transformed to a graph composed of these complete graphs or
circles induced by the equivalence classes of the partition. And we can establish a matroid in
terms of the graph. Afterwards, some characteristics of the matroid are formulated and some
new properties, which are hard to be found via the rough sets way, are obtained. With these
characteristics and properties, a matroidal structure of rough sets is constructed. Finally, the
relationships between the two kinds of matroids established from the viewpoints of complete
graph and cycle are discussed.

The rest of this paper is organized as follows. In Section 2, we review some basic
knowledge about rough sets, matroids, and graph theory. In Section 3, we analyze the
relationships between rough set theory and graph theory from the viewpoints of complete
graph and cycle, respectively. In Sections 4 and 5, two kinds of matroids are established in
terms of the analytical results of Section 3. And two kinds of the matroidal structures of rough
sets are constructed. In Section 6, the relationships between the two kinds of matroids are
discussed.

2. Preliminary

For a better understanding to this paper, in this section, some basic knowledge of rough sets,
graph theory, and matroids are introduced.

2.1. Rough Sets

Let U be a nonempty and finite set called universe, R a family of equivalence relations over
U, then the relational system K = (U,R) is called a knowledge base [1]. If ∅/=Q ⊆ R, then ∩Q
is also an equivalence relation [1]. And ∩Q is called an indiscernibility relation and denoted
by IND(Q) [1]. If R ∈ R, then U/R represents the partition of U induced by R. That is in
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the partition U/R = {T1, T2, . . . , Tn}, for all Ti ∈ U/R, Ti ⊆ U and Ti /= ∅, Ti ∩ Tj = ∅ for i /= j,
i, j = 1, 2, . . . , n, and ∪Ti = U. Each Ti inU/R is an equivalence class, and it can also be denoted
by [x]R if x ∈ Ti.

For any subset X ⊆ U, the lower and the upper approximations of X with respect to R
are defined as follows [1]:

R(X) = ∪ {T ∈ U/R : T ⊆ X},

R(X) = ∪ {T ∈ U/R : T ∩X /= ∅}.
(2.1)

Set BNR(X) = R(X) − R(X) is called the R-boundary of X or the boundary region of X with
respect to R [1]. If R(X) = R(X), that is, BNR(X) = ∅, then X is R-definable, or X is called
a definable set with respect to R; else, if R(X)/=R(X), that is, BNR(X)/= ∅, then X is rough
with respect to R, or X is called a rough set with respect to R [1]. The lower and the upper
approximations satisfy duality, that is [1],

(P1) for all X ⊆ U, R(X) =∼ R(∼ X),

(P2) for all X ⊆ U, R(X) =∼ R(∼ X),

where ∼ X represents the set U −X.
Neighborhood and upper approximation number are another two important concepts,

which will be used in this paper. They are defined as follows.

Definition 2.1 (Neighborhood [36]). Let R be a relation on U. For all x ∈ U, RNR(x) = {y ∈
U : xRy} is called the successor neighborhood of x in R. When there is no confusion, we omit
the subscript R.

Definition 2.2 (Upper approximation number [32]). Let R be a relation on U. For all X ⊆ U,
f∗
R(X) = |{RNR(x) : x ∈ U ∧ RNR(x) ∩ X/= ∅}| is called the upper approximation number of

X with respect to R.

2.2. Graph Theory

A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of the set V (2) of
unordered pairs of V [37]. The set V is the set of vertices and E is the set of edges. If G is a
graph, then V = V (G) is the vertex set of G, and E = E(G) is the edge set. An empty graph
is a graph whose edge set is empty. An edge {u, v} is said to join the vertices u and v and
is denoted by uv. Thus uv and vu mean exactly the same edge; the vertices u and v are
the endpoints of this edge. If uv ∈ E(G), then u and v are adjacent and are neighbors. A loop
[38] is an edge whose endpoints are equal. Parallel edges are edges having the same pair of
endpoints. The degree of vertex v in a graph G, denoted by dG(v) or d(v), is the number of
edges incident to v, except that each loop at v counts twice.

A simple graph is a graph having no loops or parallel edges [38]. An isomorphism [38]
from a simple graph G to a simple graph H is a bijection f : V (G) → V (H) such that
uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). That is to say “G is isomorphic to H,” denoted by
G ∼= H if there is an isomorphism from G toH.

We say that G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊂ V and E′ ⊂ E [37]. In this
case, we write G′ ⊂ G. If G′ contains all edges of G that join two vertices in V ′ then G′ is said
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to be the subgraph induced by V ′ and is denoted by G[V ′]. Thus, a subgraph G′ of G is an
induced subgraph if G′ = G[V (G′)].

2.3. Matroids

Definition 2.3 (Matroid [39]). A matroid M is a pair (E,I), where E (called the ground set)
is a finite set and I (called the independent sets) is a family of subsets of E satisfying the
following axioms:

(I1) ∅ ∈ I;
(I2) if I ∈ I and I ′ ⊆ I, then I ′ ∈ I;
(I3) if I1, I2 ∈ I and |I1| < |I2|, then ∃e ∈ I2 − I1 such that I1 ∪ {e} ∈ I,

where | · | represents the cardinality of “·”.

The matroid M is generally denoted by M = M(E,I). E(M) represents the ground
set ofM and I(M) the independent sets ofM. Each element of I(M) is called an independent
set of M. If a subset X of E is not an independent set, then it is called a dependent set. The
family of all dependent sets of M is denoted by D(M), that is,

D(M) = 2E − I(M). (2.2)

Example 2.4. Let E = {a, b, c}, I = {{a, b}, {b, c}, {a}, {b}, {c}, ∅}. Then (E,I) is a matroid,
which satisfies the axioms (I1)∼(I3). And each element of I is an independent set. {a, b, c}
and {a, c} are only two dependent sets of (E,I).

Next, we will introduce some characteristics of a matroid. For a better understanding
to them, some operations will be firstly introduced as follows.

Let E be a set and A ⊆ 2E. Then [39]:

Max(A) = {X ∈ A : ∀Y ∈ A, if X ⊆ Y then X = Y},
Min(A) = {X ∈ A : ∀Y ∈ A, if Y ⊆ X then X = Y},
Opp(A) = {X ⊆ E : X /∈ A},
Com(A) = {X ⊆ E : E −X ∈ A}.

(2.3)

Definition 2.5 (Circuit [39]). Let M be a matroid. A minimal dependent set is called a circuit
ofM, and the set of all circuits of M is denoted by C(M), that is, C(M) = Min(Opp(I)).

A circuit in a matroid M(E,I) is a set which is not independent but has the property
that every proper subset of it is independent. In Example 2.4, C(M) = {{a, c}}.

Theorem 2.6 (Circuit axioms [39]). Let C be a family of subsets of E. Then there exists M(E,I)
such that C = C(M) if and if only C satisfies the following properties:

(C1) ∅ /∈ C;
(C2) if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2;

(C3) if C1, C2 ∈ C, C1 /=C2, and ∃e ∈ C1 ∩ C2, then ∃C3 ∈ C such that C3 ⊆ (C1 ∪ C2) − {e}.
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Definition 2.7 (Base [39]). Let M be a matroid. A maximal independent set of M is called a
base ofM; the set of all bases of M is denoted by B(M), that is, B(M) = Max(I).

In Example 2.4, according to Definition 2.7, we can get that B(M) = {{a, b}, {b, c}}.
It is obvious that all bases of a matroid have the same cardinality, which is called the

rank of the matroid.

Definition 2.8 (Rank function [39]). Let M = M(E,I) be a matroid. Then the rank function
rM of M is defined as: for all X ⊆ E,

rM(X) = max{|I| : I ∈ I ∧ I ⊆ X}. (2.4)

Amatroid can be determined by its base, its rank function, or its circuit. For a set, I ⊆ E
is independent if and only if it is contained in some base, if and only if it satisfies rM(I) = |I|,
or if and only if it contains no circuit. It is possible to axiomatize matroids in terms of their
sets of bases, their rank functions, or their sets of circuits [40].

Definition 2.9 (Closure [39]). Let M = M(E,I) be a matroid. For all X ⊆ E, the closure
operator clM of M is defined as follows:

clM(X) = {e ∈ E : rM(X) = rM(X ∪ {e})}. (2.5)

If e ∈ clM(X), we say that e depends on X. The closure of X is composed of these
elements of E that depend on X. If clM(X) = X, then X is called a closed set ofM.

Definition 2.10 (Hyperplane [39]). Let M = (E,I) be a matroid. H ⊆ E is called a hyperplane
of M if H is a closed set of M and rM(H) = rM(E) − 1. And H(M) represents the family of
all hyperplanes of M.

3. The Viewpoint of Graph Theory in Rough Sets

Graph theory provides an intuitive way to interpret and comprehend a number of practical
and theoretical problems. Here, we will make use of it to interpret rough sets. There are at
least two different ways to understand rough sets from the viewpoint of graph theory: the
complete graph and the cycle. This will be analyzed in detail in the following subsections.

3.1. The Complete Graph

Definition 3.1 (Complete graph [38]). A complete graph is a simple undirected graph whose
vertices are pairwise adjacent. A complete graph whose cardinality of vertex set is equal to n
is denoted by Kn.

In rough sets, an equivalence relation can generally be regarded as an indiscernibility
relation. That means any two different elements in the same equivalence class are indis-
cernible. In order to interpret this phenomenon from the viewpoint of graph theory, we can
consider the two elements as two vertices and the indiscernibility relation between them as
an edge connecting the two vertices. Then an equivalence class is represented by a complete
graph. For a better understanding of it, an example is served as follows.
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Figure 1: The complete graphs of equivalence classes.

Example 3.2. Let U = {a, b, c, d, e, f, g, h} be the universe, R an equivalence relation,
and U/R = {T1, T2, T3} = {{a}, {b, c}, {d, e, f, g, h}}. Then each equivalence class can be
transformed to a complete graph showed in Figure 1.

Figure 1(a) represents the complete graph of the equivalence class T1. Because T1
just includes one element a, there is only one vertex and no edge in the complete graph
Figure 1(a). Figure 1(b) represents the complete graph of T2, which includes two vertices and
only one edge connecting the two vertices. And Figure 1(c) represents the complete graph of
T3. We can find that there are five vertices in Figure 1(c) and each pair of vertices are con-
nected by an edge. Here, we denote the complete graphs Figures 1(a), 1(b), and 1(c) as K|T1|,
K|T2|, and K|T3|, respectively.

From the above example, for any two elements in the universe, if they are indiscernible
then there is one edge between them. Then the partition is transformed to be a graph G =
(U,E), where

EP =
{
xy : x ∈ T ∈ P ∧ y ∈ T − {x}}. (3.1)

It is obvious that if x and y belong to the same equivalence class, then there is an edge
xy in E. So, we can formulate the equivalence class as follows: for all x ∈ U,

[x]R = {x} ∪ {
y : xy ∈ E

}
. (3.2)

Furthermore, for any subset X ⊆ U, the lower and the upper approximations of X can
be formulated as follows:

R(X) = ∪ {T ∈ U/R : G[T] ⊂ G[X]},

R(X) = ∪ {
T ∈ U/R : ∃Y ⊆ T s.t. K|T |[Y ] ⊂ G[X]

}
.

(3.3)

3.2. The Cycle

A walk [37] W in a graph is an alternating sequence of vertices and edges, say x0, e1,
x1, e2, . . . , el, xl where ei = x(i−1)xi, 0 < i ≤ l. For simplicity, the walk W can also be denoted
by x0x1 · · ·xl; the length ofW is l, that is, the number of its edges. A walk that starts and ends
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Figure 2: The cycles of equivalence classes.

at the same vertex but otherwise has no repeated vertices is called a cycle [41]. A cycle on
one vertex consists of a single vertex with a loop, and a cycle on two vertices consists of two
vertices joined by a pair of parallel edges [42].

Then, how to build a bridge between rough sets and cycle? In rough sets, elements
contained in the same equivalence class are indiscernible, and any proper subset of an
equivalence class is no longer an equivalence class. So, we can convert an equivalence class
to a cycle whose vertices set is the equivalence class. Therefore, each vertex is connected with
all vertices in the cycle [42]. This reflects the indiscernible relationship among the elements of
an equivalence class. Furthermore, any subgraph of the cycle does not contain a cycle. That
is, any subgraph of the cycle is no longer a cycle. This can be illustrated in the following
example.

Example 3.3 (Continued from Example 3.2). For any equivalence class in U/R, it can be
represented by a cycle. As shown in Figure 2, the equivalence class T1, T2, and T3 are
represented by Figures 2(a), 2(b), and 2(c), respectively.

Figure 2(a) is a cycle with only one vertex and one edge. It is also called a loop. That
means the vertex a is connected with itself. Figure 2(b) is a cycle with two vertices and two
edges. And it is generally regarded as a parallel edges. Figure 2(c) is not only a cycle but also
a simple graph. Obviously, any subgraph of each cycle in Figure 2 is no longer a cycle. And,
for any two different elements of the universe, they belong to the same equivalence class if
and only if they are connected to each other.

It is worth noting that the sequence of vertices in a cycle is not emphasized here. We
only care that the vertices, namely, elements of some equivalence class, can form a cycle. So,
to Figure 2(c), the cycle defghd and cycle dfhegd can be treated as the same cycle.

For convenience, to an equivalence class T inU/R, the cycle whose vertices set is equal
to T is denoted by CT , that is, CT = (T, ET ) is a graph (cycle) where ET is the set of edges of
CT . Then the partition U/R can be transformed to be a graph G = (U,E)where

E = ∪{ET : T ∈ U/R}. (3.4)
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One may ask which edges belong to ET exactly? In fact, it is nonnecessary to define the
edges of ET exactly. Here, we just need to form a cycle with the vertex set T . That is, each pair
of vertices of T are connected and the degree of each vertex is equal to 2. In other words, we
simply need to know that each vertex of CT is adjacent with two other vertices (except the
loop and parallel edges) and do not need to care which two vertices they are.

We can find from the Example 3.3 that, for any two elements in the universe, they
belong to the same equivalence class if and only if they are connected with each other.
Therefore, we can formulate the equivalence class as follows: for all x ∈ U,

[x]R =
{
y ∈ U : y is connected to x

}
. (3.5)

Likewise, for any subset X ⊆ U, the lower and the upper approximations of X can be
formulated as follows:

R(X) = ∪ {T ∈ U/R : CT ⊂ G[X]},

R(X) = ∪ {T ∈ U/R : ∃Y ⊆ T s.t. CT [Y ] ⊂ G[X]}.
(3.6)

So far, rough sets are interpreted from the viewpoints of complete graph and cycle,
respectively. The above analysis shows that there are some similarities, and also some differ-
ences, between the two ways to illustrate rough sets. Because there are closed connections
between graph theory and matroid theory, we will study the matroidal structure of rough
sets through the two kinds of graphs.

4. Matroidal Structure of Rough Sets Constructed from
the Viewpoint of Complete Graph

In Section 3, we discussed rough sets from the viewpoint of graph theory. Two graphic ways
are provided to describe rough sets. In this section, we will construct two types of matroidal
structures of rough sets. One of them is established by using the principle of complete graph
and the other of cycle.

For convenience, in this section, we suppose that U is the universe, R an equivalence
relation over U and P = U/R the partition. And GP = (U,EP ) is the graph induced by P ,
where EP = {xy : x ∈ T ∈ P ∧ y ∈ T − {x}}.

4.1. The First Type of Matroidal Structure of Rough Sets

We know that a complete graph is a simple graph. Then, for any vertex v of a complete graph,
there is not a loop whose vertex is v. That is to say there is not an edge between a vertex and
itself. Furthermore, for any two vertices coming from different complete graphs, there is not
an edge between them as well. Because an equivalence class can be represented by a complete
graph, we can construct the matroidal structure of rough sets from this perspective.

In this subsection, the first type of matroid induced by a partition will be established
and defined. And then some characteristics of it such as the base, circuit, rank function, and
closure are studied.
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Proposition 4.1. Let IP = {X ⊆ U : GP [X] is an empty graph}. Then there is a matroid M on U
such that I(M) = IP .

Proof. According to Definition 2.3, we just need to prove that IP satisfies axioms (I1)∼(I3). It
is obvious that (I1) and (I2) hold. Suppose that X,Y ∈ IP and |X| < |Y |. Because GP [X] and
GP [Y ] are empty graphs, according to the definition of EP , each x ∈ X belongs to a different
equivalence class with the others of X and the same to each y ∈ Y . Since |X| < |Y |, thus there
must be at least one element y0 ∈ Y such that y0 belongs to some equivalence class which
does not include any element of X. Therefore, X ∪ {y0} ∈ IP . As a result, IP satisfies (I3).
That is, there exists a matroid M on U such that I(M) = IP .

If G[X] is an empty graph, then it means that any two different vertices of G[X] are
nonadjacent. That is, each vertex of G[X] comes from a different complete graph with others.
For instance, in Example 3.2, we can get IP as follows:

IP =
{∅, {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g},
{a, h}, {b, d}, {b, e}, {b, f}, {b, g}, {b, h}, {c, d}, {c, e}, {c, f}, {c, g}, {c, h}, {a, b, d},
{a, b, e}, {a, b, f}, {a, b, g}, {a, b, h}, {a, c, d}, {a, c, e}, {a, c, f}, {a, c, g}, {a, c, h}}.

(4.1)

Definition 4.2 (The first type of matroid induced by a partition). The first type of matroid
induced by a partition P over U, denoted by I-MIP, is such a matroid whose ground set
E = U and independent sets I = {X ⊆ U : GP [X] is an empty graph}.

Obviously, matroids proposed in Proposition 4.1 is a I-MIP . From the above result of
IP , we can find that any two elements of X come from different equivalence class. Therefore,
we can get the following proposition.

Proposition 4.3. Let MP = (U,IP ) be an I-MIP. Then for all X ⊆ U, X ∈ IP if and only if for
all T ∈ P such that |X ∩ T | ≤ 1.

Proof. (⇒): If X ∈ IP , then GP [X] is an empty graph. According to the definition of EP , each
element of X comes from a different equivalence class with the others of X. That is, for all
T ∈ P , |X ∩ T | ≤ 1.

(⇐): Let X ⊆ U. If for all T ∈ P , |X ∩ T | ≤ 1, then GP [X] is an empty graph. Therefore,
X ∈ IP .

Amatroid can be determined by its base, its rank function, or its circuit. So it is possible
to axiomatize matroids in terms of their sets of bases, their rank functions, or their sets of
circuits [40]. Here we will axiomatize the I-MIP in terms of its circuit.

Theorem 4.4. LetM be a matroid induced by P . ThenM is an I-MIP if and only if for allC ∈ C(M),
|C| = 2.

Proof. According to Definition 2.3, we know that I(M) ⊆ 2U. If I(M) = 2U, thenM is a I-MIP
induced by P = {{x} : x ∈ U}. In this case, according to (2.2), D(M) = ∅ and C(M) = ∅. It
indicates that there is not any circuit in C(M), and, therefore, we do not need to care whether
the cardinality of each circuit of C(M) is equal to 2. That is, C(M) = ∅ is compatible with
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the description that for all C ∈ C(M), |C| = 2. Similarly, if C(M) = ∅, then M is a I-MIP
induced by P = {{x} : x ∈ U}. So, Theorem 4.4 is true when the set of circuits of M is empty.

Next, we prove that Theorem 4.4 is true when the set of circuits of M is nonempty.
(⇒): According to (2.2), D(M) = 2U − IP . Therefore, in terms of Definition 4.2 and

Proposition 4.1, for all X ⊆ U, X ∈ D(M) if and only if GP [X] is not an empty graph. That is,
there is at least one edge in GP [X]. Obviously, the set of endpoints of each edge of GP [X] is a
dependent set. So, for all X ∈ D(M), there is a set Y composed of the endpoints of some edge
of GP [X] such that Y ⊆ X. According to Definition 2.5, Y ∈ C(M) and X /∈ C(M). That is, for
all C ∈ C(M), |C| = 2.

(⇐):D(M) = {X ⊆ U : ∃C ∈ C(M) s.t. C ⊆ X}. According to (2.2), I(M) = 2U−D(M).
Therefore, for all I ∈ I(M), �C ∈ C(M) such that C ⊆ I, that is, for all C ∈ C(M), |C ∩ I| ≤ 1.
So, for all C1, C2 ∈ C(M); if I ∩ C1 /= ∅, then I ∩ C2 = C1 ∩ C2. According to Theorem 2.6, if
C1 ∩ C2 /= ∅, then ∃C3 ∈ C(M) such that C3 = C1 ∪ C2 − C1 ∩ C2. For all Ci ∈ C(M), let TCi =
{C ∈ C(M) : C ∩ Ci /= ∅}. Then |I ∩ TC1 | = 1. Furthermore, if C1 ∩ C2 = ∅, then TC1 ∩ TC2 = ∅.
If for all C ∈ C(M), I ∩ C = ∅, then for all y ∈ I, �C ∈ C(M) such that y ∈ C. Thus,
PC(M) = {TCi : Ci ∈ C(M)} ∪ {{y} : y ∈ U − ∪C(M)} is a partition over U. So I(M) = {I ⊆
U : for all X ∈ PC(M), |I ∩ X| ≤ 1}. According to Definition 4.2,M = (U,I) is a I-MIP .

Summing up, Theorem 4.4 is true.

In terms of Proposition 4.1, we can get a matroid induced by a partition. Then one may
ask whether there is a bijection between a partition and the I-MIP induced by the partition.
This question will be answered by the following theorem.

Theorem 4.5. Let P be the collection of all partitions over U, M the set of all I-MIP induced by
partitions of P, f : P → M, that is, for all P ∈ P, f(P) = MP , where MP is the I-MIP induced by
P . Then f satisfies the following conditions:

(1) for all P1, P2 ∈ P, and if P1 /=P2 then f(P1)/= f(P2),

(2) for all M ∈ M, ∃PM ∈ P s.t. f(PM) = M.

Proof. (1) Let P1, P2 ∈ P, P1 /=P2, and MP1 = (U,IP1), MP2 = (U,IP2) are two I-MIP induced
by P1 and P2, respectively. We need to prove that there is an I1 ∈ IP1 such that I1 /∈ IP2 , or
there is an I2 ∈ IP2 such that I2 /∈ IP1 . Because P1 /=P2, there is at least one equivalence class
T1 ∈ P1 such that T1 /∈ P2. If ∃T2 ∈ P2 such that T1 ⊂ T2, then ∃X ⊆ U and X ∈ IP1 such that
X ∩ (T2 − T1)/= ∅. That means X /∈ IP2 . Else, there at least two equivalence classes T2i, T2j ∈ P2

such that T2i ∩T1 /= ∅ and T2j ∩T1 /= ∅. That is, there is a set Y ∈ IP2 such that Y ∩T2i ∩T1 /= ∅ and
Y ∩ T2j ∩ T1 /= ∅. Obviously, according to Proposition 4.3, Y /∈ IP1 .

(2) Let M = (U,I) be a I-MIP , for all x ∈ U, Cx = {x} ∪ (∪{C ∈ C(M) : C ∩ {x}/= ∅}).
According to Theorem 4.4, for all y ∈ U and y /∈ Cx, then Cx ∩Cy = ∅. Therefore, we can get a
family CU = {Cx : x ∈ U}. It is obvious that ∪CU = U. Therefore, CU is a partition of U. That
is, CU ∈ P and f(CU) = M.

Theorem 4.5 shows that there is one-to-one correspondence between a partition and
the I-MIP induced by the partition.

4.2. Characteristics of I-MIP

The characteristics of a matroid are very important to describe the matroid from different
aspects. In this subsection, we will study the characteristics of I-MIP such as the base, circuit,
rank function, and closure.
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The set of bases of a matroid is the collection of all maximal independent sets.
Observing from the result of IP in Section 4.1, the maximal independent set is the vertex
set whose cardinality is equal to the cardinality of P . Then the following proposition can be
obtained.

Proposition 4.6. Let MP be the I-MIP induced by P , Y ⊆ U, and GP [Y ] = (Y, EY ) a subgraph of
GP . Then BP = {X ⊆ U : |X| = |P | ∧ EX = ∅} is the set of bases of MP .

Proof. According to Definition 2.7, we need to prove that B(MP ) = BP , namely, Max(IP ) =
{X ⊆ U : |X| = |P | ∧ EX = ∅}. In terms of Proposition 4.3, for all I ∈ IP , |I ∩ T | ≤ 1 for all
T ∈ P . So, for all I ∈ B(MP ), |I| = |P |. According to Proposition 4.1 and Definition 4.2, for all
I ∈ B(MP ), GP [I] is an empty graph, that is, I ∈ BP . Similarly, we can prove in the same way
that for all X ∈ BP , X ∈ B(MP ). That is, B(MP ) = BP .

For a base B in BP , we can say that B is such a set including one and only one element
of every equivalence class of P . Then we can get the following corollary.

Corollary 4.7. Let X ⊆ U. Then X ∈ BP if and only if for all T ∈ P , |X ∩ T | = 1.

Proof. According to Proposition 4.6, it is straightforward.

Corollary 4.8. ∪BP = U.

Proof. According to Proposition 4.6, it is straightforward.

For a subset X of U, X is either an independent set or a dependent set of MP . And
so the opposition to the Proposition 4.1, X is a dependent set if and only if there is at least
one pair of vertices of the vertex set of GP [X], which is adjacent. Furthermore, a minimal
dependent set of MP is the vertex set of an edge of GP . Then we can get the following
proposition.

Proposition 4.9. Let MP = (U,IP ) be the I-MIP induced by P . Then CP = {{x, y} : xy ∈ EP} is
the set of circuits of MP .

Proof. According to Definition 2.5, we need to prove C(MP ) = CP , that is, Min(Opp(IP )) =
{{x, y} : xy ∈ EP}. D(M) = Opp(IP ), for all I ∈ D(M), ∃x, y ∈ I such that xy ∈ E(GP [I]).
Furthermore, xy ∈ EP . If {x, y} ⊂ I, then {x, y} ∈ C(MP ) and I /∈ C(MP ); else, {x, y} = I ∈
C(MP ). So, for all I ∈ C(MP ), I ∈ CP . Similarly, for all {x, y} ∈ CP , ∃I ∈ D(MP ) such that
{x, y} ⊆ I. Therefore, {x, y} ∈ C(MP ). As a result, CP = {{x, y} : xy ∈ EP}.

Likewise, Proposition 4.3 provides a necessary and sufficient condition to decide
whether a set is an independent set of MP . In this way, we can get the family of dependent
sets of MP as follows:

D(MP ) = {X ⊆ U : ∃T ∈ P s.t. |X ∩ T | > 1}. (4.2)

Moreover, in terms of the Definition 2.5, we can get the set of circuits ofMP as follows:

C(MP ) = Min(D(MP )). (4.3)
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According to Proposition 4.1, it can be found that each subset of U which contains
exactly one element is an independent set. So, for any dependent set X of MP , if |X| > 2 then
there must exist a subset Y of X such that |Y | = 2 and Y is a dependent set. Thus, we can get
the following proposition.

Proposition 4.10. Let MP be the I-MIP induced by P . Then C+ = {X ⊆ U : ∃T ∈ P s.t. X ⊆
T ∧ |X| = 2} is the set of circuits of MP .

Proof. According to Proposition 4.3, for all X ∈ C+, X is a dependent set, that is, X ∈
D(MP ). In terms of Proposition 4.9, X ∈ C(MP ). Similarly, for all I ∈ C(MP ), according to
Proposition 4.9, I ∈ C+. That is, C+ is the set of circuits ofMP .

From Propositions 4.9 and 4.10, we can find that CP and C+ are the set of circuits of
MP . Therefore, we can get the following corollary.

Corollary 4.11. CP = C+.

Propositions 4.1 and 4.3 provide two ways to transform an partition to a matroid.
Then, how to convert an I-MIP to a partition? In the following proposition, this question
is answered through the set of circuits of the I-MIP .

Proposition 4.12. LetMP be the I-MIP induced by P . Then for all x ∈ U,

[x]R = {x} ∪ {
y ∈ U :

{
x, y

} ∈ C(MP )
}
. (4.4)

Proof. According to Proposition 4.10, for all T ∈ P , if x ∈ T then {x, y} ∈ C(MP ) for each
y ∈ T − {x}. And for any y ∈ U and y /∈ T , {x, y} /∈ C(MP ). Therefore, T = [x]R = {x} ∪ {y ∈
U : {x, y} ∈ C(MP )}.

Proposition 4.12 shows that if two different elements form a circuit, then they belong
to the same equivalence class. In terms of (3.2), there is an edge in EP whose vertex set just
contains the two elements. For a subset X ⊆ U, if X does not contain a circuit, then X is
an independent set and the rank of it is equal to |X|. In other words, if GP [X] is an empty
graph, that is, each pair of vertexes of GP [X] is nonadjacent, then the rank of X is equal to
|X|. According to Definition 2.8, for any subset of the universe, the rank of the subset is the
number of the maximal independent set contained in the subset. Therefore, we can get the
following proposition.

Proposition 4.13. LetMP be the I-MIP induced by P . Then for all X ⊆ U, rP (X) = max{|Y | : Y ⊆
X,GP [Y ] is an empty graph} is the rank of X inMP .

If the set of bases BMP of MP has been obtained, then for all X ⊆ U; we can get the
rank of X as follows:

r+(X) = max{|B ∩X| : B ∈ BMP }. (4.5)

It can be proved easily that rP (X) = r+(X). So, r+ is also the rank function of MP .
Different from the rank ofX inMP , the closure ofX is the maximal subset ofU, which

contains X and its rank is equal to X. For an element y ∈ U − X, if there is an element x ∈ X
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such that {x, y} form a circuit, then the rank of X is equal to it of X ∪ {y}. That is, y belongs
to the closure of X. Therefore, we can get the following proposition.

Proposition 4.14. Let MP be the I-MIP induced by P . Then for all X ⊆ U, clP (X) = X ∪ {y ∈
U −X : x ∈ X ∧ xy ∈ EP} is the closure of X inMP .

Proof. According to Definition 2.9, we need to prove that clP (X) = clMP (X), that is, X ∪ {y ∈
U−X : x ∈ X ∧xy ∈ EP} = {x ∈ U : rMP (X) = rMP (X ∪{x})}. It is obvious that, for all X ⊆ U,
X ⊆ clP (X). So, we just need to prove that for all y ∈ U − X if there is an element x ∈ X
such that xy ∈ EP if and if only y ∈ {x ∈ U : rMP (X) = rMP (X ∪ {x})}. According to (3.1),
xy ∈ EP if and if only x and y belong to the same equivalence. According to Definition 2.8,
for all X ⊆ U, rMP (X) is equal to the number of the maximal independent set contained in X.
According to Proposition 4.3, for allX′ ⊆ X; ifX′ is amaximal independent set contained inX,
thenX′ ∪ {y} is not an independent set. That is, rMP (X) = |X′| = rMP (X

′∪{y}) = rMP (X∪{y}).
Thus, for all x ∈ U, x ∈ clP (X) if and if only x ∈ {x ∈ U : rMP (X) = rMP (X ∪ {x})}.

From Proposition 4.14, it can be found that, for any element y ∈ U − X, if xy ∈
E(GP [X]), then y ∈ clP (X). Therefore, the closure of X can be equivalently represented as

clP (X) = X ∪ {
y ∈ U −X : xy ∈ E(GP [X])

}
. (4.6)

For any element x ∈ U, according to Figure 1, it can be found that if there is an element
y ∈ U − {x} such that xy ∈ EP , then x and y must belong to the same equivalence class. Then
we can get the following corollary.

Corollary 4.15. Let x ∈ U. For all T ∈ P ; if x ∈ T then clP ({x}) = clP (T).

Next, we will discuss the hyperplane of the I-MIP . From the Definition 2.10, we know
that a hyperplane of a matroid is a closed set and the rank of it is one less than the rank of the
matroid. Because the rank of the I-MIP induced by P is equal to the cardinality of P , we can
get the following proposition.

Proposition 4.16. Let MP be the I-MIP induced by P . Then HP = {U − T : T ∈ P} is the
hyperplane of MP .

Proof. According to (4.5) and Proposition 4.6, we know that the rank of the I-MIP induced
by P is equal to |P |. Furthermore, in terms of Proposition 4.14 and Corollary 4.15, for all T ∈ P ,
U − T is a closed set and rMP (U − T) = |P | − 1. So U − T ∈ H(MP ), that is, for all X ∈ HP ,
X ∈ H(MP ). Similarly, we can get that for all X ∈ H(MP ), X ∈ HP .

4.3. Approximations Established through I-MIP

So far, the base, circuit, rank function, closure, and hyperplane of a I-MIP are established.
Next, we will further study the approximations in rough sets in this subsection through these
characteristics.
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Proposition 4.17. LetMP be the I-MIP induced by P , B(MP ) = BP . Then for all X ⊆ U,

R(X) = ∪{B − (BX −X) : B ∈ BP ∧ (BX −X) ⊆ B}, (4.7)

where BX ∈ BP a base having the maximal intersection with X.

Proof. For all B ∈ BP , B ∩ X is an independent set contained in X. Because BX is a base
having the maximal intersection with X, rMP (X) = |BX ∩X|. Furthermore, for all y ∈ BX −X,
[y]R ∩ X = ∅. Let S1 = {[y]R : y ∈ BX − X} and S2 = P − S1. Then R(X) = U − ∪S1 = ∪S2.
If BX − X ⊆ B, then B − (BX − X) ⊆ ∪S2. According to Corollary 4.7, for all Y ⊆ ∪S2, if for
all T ∈ (P − S2) and |Y ∩ T | = 1, then Y ∪ (BX − X) ∈ BP . And ∪{Y ⊆ ∪S2 : for all T ∈
(P − S2), |Y ∩ T | = 1} = ∪S2. Therefore, ∪S2 = ∪{B − (BX − X) : B ∈ BP ∧ (BX − X) ⊆ B}. That
is, R(X) = ∪{B − (BX −X) : B ∈ BP ∧ (BX −X) ⊆ B}.

In rough sets, an element in the lower approximation certainly belongs to X, while an
element in the upper approximation possibly belongs to X [43]. And the boundary region of
X is the set of elements in which each element does not certainly belong to either X or ∼ X.
In general, we can get the boundary region of X by the difference set of the lower and upper
approximation of X. But here, we can provide a matroidal approach to obtain the boundary
region of X firstly, and then the lower and the upper approximations should be established.

Proposition 4.18. LetMP be the I-MIP induced by P , C(MP ) = CP . Then for all X ⊆ U,

BNR(X) = ∪{C ∈ CP : |C ∩X| = 1}. (4.8)

Proof. According to Proposition 4.10 and Corollary 4.11, for all C ∈ CP , ∃T ∈ P such that
C ⊆ T . |C ∩ X| = 1 means that each element of C does not certainly belong either to X or to
∼ X. And then ∪{C ∈ CP : |C ∩X| = 1} is the collection of all elements, which do not certainly
belong either to X or to ∼ X. So BNR(X) = ∪{C ∈ CP : |C ∩X| = 1}.

Proposition 4.19. LetMP be the I-MIP induced by P , C(MP ) = CP . Then for all X ⊆ U,

R(X) = X − BNR(X),

R(X) = X ∪ BNR(X),
(4.9)

where BNR(X) = ∪{C ∈ CP : |C ∩X| = 1}.

Proof. According to the definition of the boundary region and Proposition 4.18, it is
straightforward.

Corollary 4.20. LetMP be the I-MIP induced by P , C(MP ) = CP and X ⊆ U. Then for all C ∈ CP ,
C/⊆R(X) if and only if for all x ∈ X, {x} ∈ P .

Proof. (⇒): According to Proposition 4.10 and Corollary 4.11, if for all C ∈ CP , C /⊆R(X), then
for all T ∈ P and |T | ≥ 2, T ∩X = ∅. That is, for all x ∈ X, {x} ∈ P .

(⇐): It is straightforward.
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Proposition 4.21. Let MP be the I-MIP induced by P , rMP = rP . Then for all X ⊆ U, the following
equations hold:

(1) R(X) = {x ∈ U : rP (X) = rP (X ∪ {x})},
(2) R(X) = ∪ {T ∈ P : rP (X) = rP (X ∪ T)},
(3) R(X) = Max({A ⊆ U : rP (X) = rP (A)}).

Proof. (1)According to Proposition 4.13, rP (X) = |Y |where Y ⊆ X and for all T ∈ P , |Y∩T | ≤ 1.
Let T ∈ P . If |Y ∩ T | = 0, then T ∩ X = ∅ and for all t ∈ T , rP (X) = rP (X ∪ {t}) − 1, that is,
T /⊆R(X) and for all t ∈ T , t /∈ {x ∈ U : rP (X) = rP (X ∪ {x})}; else, if |Y ∩ T | = 1, then
X ∩ T /= ∅ and for all x ∈ T , rP (X) = rP (X ∪ {x}), that is, T ⊆ R(X) and for all t ∈ T ,
t ∈ {x ∈ U : rP (X) = rP (X ∪ {x})}. That is, R(X) = {x ∈ U : rP (X) = rP (X ∪ {x})}.

Similarly, we can prove that (2) and (3) are true.

Proposition 4.21 provides three ways to get the upper approximation of X with rank
function. This intensifies our understanding to rank function of MP .

Proposition 4.22. LetMP be the I-MIP induced by P , clMP = clP . Then for all X ⊆ U,

R(X) = clP (X). (4.10)

Proof. According to Proposition 4.14 and Corollary 4.15, we can get that clP (X) = ∪{T ∈ P :
x ∈ X ∧ x ∈ T}. Therefore, according to the definition of the upper approximation, it is
obvious that R(X) = clP (X).

The compact formulation of the upper approximation in Proposition 4.22 indicates
that the closure is an efficient way to get the approximations in rough sets.

Proposition 4.23. LetMP be the I-MIP induced by P ,H(MP ) = HP . Then for all X ⊆ U,

R(X) = ∪{∼ H : H ∈ HP ∧X −H /= ∅}. (4.11)

Proof. According to Proposition 4.16, for all H ∈ HP , U − H ∈ P , that is, ∼ H ∈ P . And if
X −H /= ∅, then X ∩ (∼ H)/= ∅. Therefore, in terms of (2.1), ∼ H ⊆ R(X). Thus, R(X) = ∪{∼ H :
H ∈ HP ∧X −H /= ∅}.

5. Matroidal Structure of Rough Sets Constructed from
the Viewpoint of Cycle

In Section 3.2, the relationships between a cycle and an equivalence class are analyzed in
detail. And a partition over the universe is transformed to a graph composed of some
cycles. So, inspired by the cycle matroid introduced in [39], we will construct the matroidal
structure of rough sets from this viewpoint. A new matroid will be established and the
characteristics of it are studied. Then the approximations in rough sets are investigated via
these characteristics.
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For convenience, in this section, we suppose that U is a universe, R an equivalence
relation over U, and P = U/R the partition. And G′

P = (U,E′
P ) is the graph induced by P ,

where E′
P = ∪{ETi : Ti ∈ P}.

5.1. The Second Type of Matroidal Structure of Rough Sets

In this subsection, the second type of matroid induced by a partition is defined. Similar to
the discussion of I-MIP , the base, circuit, rank function, and closure of the second type of
matroid are investigated.

From the analysis in Section 3.2, we know that for all T ∈ P and for allK ⊂ T , CK is not
a cycle. Obviously, any subgraph of CK is also not a cycle. Therefore, we can get the following
proposition.

Proposition 5.1. Let I′
P = {X ⊆ U : for all T ∈ P,CT /⊆G′

P [X]}. Then there exists a matroidM′ on
U such that I(M′) = I′

P .

Proof. According to Definition 2.3, we need to prove that I′
P satisfies (I1)∼(I3). In terms of

Section 3.2, for all T ∈ P , CT is the cycle whose vertices set is T , that is, CT = (T, ET )where ET

is the set of edges of CT . So, it is obvious that I′
P satisfies (I1) and (I2). Here, we just need to

prove I′
P satisfies (I3).
Let I1, I2 ∈ I′

P , |I1| < |I2| and I2 − I1 = {e1, e2, . . . , em}(1 ≤ m ≤ |U|). Suppose that
for all ei ∈ I2 − I1 for 1 ≤ i ≤ m, ∃Tei ∈ P such that Tei ⊆ I1 ∪ {ei}, that is, Tei − {ei} ⊆ I1.
Because |Tei − {ei}| ≥ 1, |Te1 − {e1}| + |Te2 − {e2}| + · · · + |Tem − {em}| ≥ m = |I2 − I1|. It is obvious
that Tei /⊆ (I1 ∩ I2) ∪ {ei}. So |I1| = |Te1 − {e1}| + |Te2 − {e2}| + · · · + |Tem − {em}| + |I1 ∩ I2|. Since
|I2| = |I2 − I1|+ |I2 ∩ I1|, we can get that |I1| ≥ |I2|. It is contradictory with the known conditions
that |I1| < |I2|. So ∃ei ∈ I2 − I1 such that for all T ∈ P , T /⊆ I1 ∪ {ei}, namely, CT /⊆ G′

P [I1 ∪ {ei}].
That is I1 ∪ {ei} ∈ I′

P . As a result, I′
P satisfies (I1)∼(I3). That is, there exists a matroid M′ on

U such that I(M′) = I′
P .

The matroid mentioned in Proposition 5.1 is established from the viewpoint of cycle.
It is a new type of matroid induced by a partition and is defined as follows.

Definition 5.2 (The second type of matroid induced by a partition). The second type of
matroid induced by a partition P overU, denoted by II-MIP, is such amatroid whose ground
set E = U and independent sets I = {X ⊆ U : for all T ∈ P, CT /⊆G[X]}.

Because of the intuition of a graph, it is easy to understand the matroid established in
Definition 5.2. In fact, we can formulate a II-MIP as follows.

Proposition 5.3. Let I′
+ = {⋃n

i=1 Si : Si ⊂ Ti ∧ Ti ∈ P} where n = |P |. Then M′
+ = (U,I′

+) is a
II-MIP.

Proof. Because Si ⊂ Ti, for all X ∈ I′
+, X ∩ T ⊂ T for each T ∈ P . That means for all T ∈ P ,

CT /⊆G′
P [X], that is, X ∈ I′

P . Conversely, for all X ∈ I′
P , since for all T ∈ P , CT /⊆G′

P [X], we
can get that T /⊆X, that is, T ∩X ⊂ T . So X ∈ I′

+. As a result, M′
+ = (U,I′

+) is a II-MIP .

In terms of Propositions 5.1 and 5.3, we can find that the two matroids established in
them are equivalent. That is to say for anymatroidM = (U,I), if I = I′

+, thenM is a II-MIP .
So, the following corollary can be obtained.
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Corollary 5.4. I′
P = I′

+.

Similar to the axiomatization of I-MIP , we will axiomatize II-MIP with the set of
circuits of it in the following.

Theorem 5.5. Let M = (U,I) be a matroid. Then M is a II-MIP if and only if for all C1, C2 ∈
C(M), C1 ∩ C2 = ∅ and ∪C(M) = U.

Proof. (⇒): Let M = (U,I) be the II-MIP induced by P . Therefore, for all T ∈ P , T /∈ I,
and for all X ⊂ T , X ∈ I. And then for all T ∈ P , T ∈ D(M). So, according to (2.2) and
Definition 2.5, C(M) = P . Thus, for all C1, C2 ∈ C(M), C1 ∩ C2 = ∅, and ∪C(M) = U.

(⇐): Since for all C1, C2 ∈ C(M), C1 ∩ C2 = ∅, and ∪C(M) = U, we can regard the
C(M) as a partition over U. Furthermore, D(M) = {X ⊆ U : ∃C ∈ C(M) s.t. C ⊆ X}. Because
I = 2U − D(M), for all X ∈ I, �C ∈ C(M) such that C ⊆ X. According to Proposition 5.1 and
Definition 5.2, we can get that I = I′

+ = I′
P . That is, M = (U,I) is a II-MIP .

Theorem 4.5 shows there is one-to-one correspondence between a partition and the
I-MIP induced by the partition. In the following theorem, we will discuss the relationship
between a partition and the II-MIP induced by the partition.

Theorem 5.6. Let P be the collection of all partitions over U, M′ the set of all II-MIP induced by
partitions of P, g : P → M′, that is, for all P ∈ P, g(P) = M′

P whereM′
P is the II-MIP induced by

P . Then g satisfy the following conditions:

(1) for all P1, P2 ∈ P, if P1 /=P2 then g(P1)/= g(P2),

(2) for all M′ ∈ M′, ∃PM′ ∈ P s.t. (PM′) = M′.

Proof. (1) Let P1 and P2 are two different partitions over U, and M′
P1

= (U,I′
P1
), M′

P2
=

(U,I′
P2
) are two II-MIP induced by P1 and P2, respectively. We need to prove that there is

an I1 ∈ I′
P1

such that I1 /∈ I′
P2
, or there is an I2 ∈ I′

P2
such that I2 /∈ I′

P1
. Because P1 /=P2, there

must be an equivalence class T1 ∈ P1 such that T1 /∈ P2. Suppose that for all T ∈ P2, T1 /⊆ T .
Then ∃X ⊂ T1 such that X ∈ {S : S ⊂ T1} and X /∈ {S : S ⊂ T, for all T ∈ P2}. According
to Proposition 5.3, X ∈ I′

P1
and X /∈ I′

P2
. Conversely, if ∃T2 ∈ P2 such that T1 ⊆ T2, then

∃X ⊂ T2 such that X ∈ {S : S ⊂ T2} and X /∈ {S : S ⊂ T, for all T ∈ P1}. Thus, according to
Proposition 5.3, X ∈ I′

P2
and X /∈ I′

P1
.

(2) Let M′ = (U,I′) be a II-MIP matroid. According to Theorem 5.5, C(M′) is a
partition on U. That is, g(C(M′)) = M′.

Theorem 5.6 shows that there is also a bijection between a partition and the II-MIP
induced by the partition.

5.2. Characteristics of II-MIP

The II-MIP is established from the viewpoint of cycle. There is a big difference between the
formulations of I-MIP and II-MIP and the same as the characteristics between them. In this
subsection, we will formulate the characteristics of II-MIP .

A base of a matroid is one of the maximal independent sets of the matroid. From
Propositions 5.1 and 5.3, the cardinality of one of the maximal independent sets is equal to
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|U| − |P | and just one element of each equivalence class does not belong to the independent
set.

Proposition 5.7. Let M′
P be the II-MIP induced by P , n = |P |. Then B′

P = {⋃n
i=1(Ti − xi) : Ti ∈

P ∧ xi ∈ Ti} is the set of bases ofM′
P .

Proof. According to Definition 2.7, Proposition 5.3, and Corollary 5.4, it is straightforward.

So any equivalence class is not contained in some base of a II-MIP . And there will be
a cycle if a new element is put in the base. Specifically, if for all T ∈ P , |T | = 1, then B′

P = {∅}.
Next, we can also formulate the set of bases of a II-MIP from the viewpoint of graph as
follows.

Corollary 5.8. B′
P = Max({B ⊆ U : G′

P [B] does not contain a cycle}).

Proof. According to Propositions 5.1 and 5.7, it is straightforward.

From Proposition 5.7 and Corollary 5.8, we can find that for all T ∈ P , if |T | = 1, then T
is not contained in any base of the II-MIP induced by P . Therefore, we can get the following
corollary.

Corollary 5.9. Let B(M′
P ) = B′

P . Then ∩B′
P = ∅.

As the analysis in Section 3.2, any equivalence class of a partition can be converted
to a cycle. And any proper subset of an equivalence class does not form a cycle. So we can
formulate the set of circuits of a II-MIP as follows.

Proposition 5.10. LetM′
P be the II-MIP induced by P . Then C′

P = P is the set of circuits of M′
P .

Proof. According to Theorem 5.5, it is straightforward.

Likewise, from the viewpoint of graph, we can get another formulation of the set of
circuits of a II-MIP .

Corollary 5.11. C′
P = {C ⊆ U : G′

P [C] is a cycle}.

Proof. According to the definition of G′
P and Proposition 5.10, it is straightforward.

Next, we will formulate the rank function of II-MIP .

Proposition 5.12. Let M′
P be the II-MIP induced by P . Then for all X ⊆ U, r ′P (X) = max{|Y | :

Y ⊆ X ∧ (for all T ∈ P, T /⊆Y )} is the rank of X inM′
P .

Proof. According to Definition 2.8 and Proposition 5.3, it is straightforward.

In all the characteristics of a matroid introduced in this paper, the rank function of
a matroid is the one and only one numeric characteristic. In the following content, we will
further study some properties of the rank function of II-MIP .

Theorem 5.13. Let M′
P be the II-MIP induced by P , r ′P = rM′

P
, and X ⊆ U an R-definable set. For

all Y ⊆ U, if X ∩ Y = ∅, then r ′P (X ∪ Y ) = r ′P (X) + r ′P (Y ).
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Proof. Because X is an R-definable set and X ∩ Y = ∅, according to Proposition 5.3 and
Corollary 5.4, for all I1 ∈ Max({I ∈ I′

P : I ⊆ X}) and for all I2 ∈ Max({I ∈ I′
P : I ⊆ Y}),

I1 ∩ I2 = ∅. Furthermore, I1 ∪ I2 ∈ I′
P and I1 ∪ I2 ∈ Max({Z ⊆ X ∪ Y : for all T ∈ P, T /⊆Z}).

According to Definition 2.8, r ′P (X) = |I1| and r ′P (Y ) = |I2|. Because I1 ∩ I2 = ∅, |I1 ∪ I2| = |I1|+ I2.
As a result, r ′P (X ∪ Y ) = r ′P (X) + r ′P (Y ).

Theorem 5.13 provides a way to separate the rank of a subset into the sum of ranks of
two disjoint sets contained in the subset. And one of the two disjoint sets is a definable set. It is
obvious that any subset of the universe can be represented as the union of a definable set, and
an indefinable set which are disjoint and contained in the subset. This will be very helpful to
some proofs in the following. In order to study the properties of the rank function of II-MIP
conveniently, the concept of lower approximation number will be defined as follows.

Definition 5.14 (Lower approximation number). Let R be a relation on U. For all X ⊆ U,
f∗R(X) = |{RNR(x) : x ∈ U ∧ RNR(x) ⊆ X}| is called the lower approximation number of X
with respect to R. When there is no confusion, we omit the subscript R.

In classical rough sets, R usually refers to the equivalence relation. For a better
understanding to the lower approximation number, an example is served.

Example 5.15. Let U = {a, b, c, d, e, f, g, h} be the universe, R an equivalence relation over U,
and U/R = {T1, T2, T3, T4} = {{a, b}, {c}, {d, e, f}, {g, h}}. Compute the lower approximation
numbers of X1, X2, and X3 where X1 = {a, b, c}, X2 = {a, d, g}, and X3 = {a, c, g, h}.

Because R is an equivalence relation, according to Definition 2.1, for all x ∈ U,
RNR(x) = [x]R. Therefore, we can get that f∗(X1) = |{T1, T2}| = 2, f∗(X2) = |∅| = 0, and
f∗(X3) = |{T2, T4}| = 2.

Similarly, according to Definition 2.2, we can get that f∗(X1) = |{T1, T2}| = 2, f∗(X2) =
|{T1, T3, T4}| = 3, and f∗(X3) = |{T1, T2, T4}| = 3.

Theorem 5.16. Let M′
P be the II-MIP induced by P , r ′P = rM′

P
. Then for all X ⊆ U, r ′P (X) =

|X| − f∗(X).

Proof. Let A ⊆ X be the largest R-definable set contained in X. Then X = A ∪ (X − A). Thus
X −A is an R-indefinable set and for all T ∈ P , T /⊆X −A. According to Proposition 5.12 and
Definition 5.14, r ′P (A) = |A| − f∗(X) and r ′P (X − A) = |X − A| = |X| − |A|. Therefore, in terms
of Theorem 5.13, r ′P (X) = r ′P (A ∪ (X −A)) = r ′P (A) + r ′P (X −A) = |X| − f∗(X).

Theorem 5.16 combines the lower approximation number and the rank function of
II-MIP closely. And the formulation is very simple. This is useful to study rough sets with
matroidal approaches and vice verse.

Lemma 5.17. Let M′
P be the II-MIP induced by P , rM′

P
= r ′P . Then for all X ⊆ U, r ′P (X) + r ′P (∼

X) = |U| − (f∗(X) + f∗(∼ X)).

Proof. Let A ⊆ X be the largest R-definable set contained in X and B ⊆ ∼ X the largest R-
definable set contained in ∼ X. Then, in terms of Theorem 5.16, r ′P (X) = r ′P (A ∪ (X − A)) =
|X| − f∗(X) and r ′P (∼ X) = r ′P (B ∪ (∼ X − B)) = | ∼ X| − f∗(∼ X). So r ′P (X) + r ′P (∼ X) = |X| + | ∼
X| − f∗(X) − f∗(∼ X) = |U| − (f∗(X) + f∗(∼ X)).
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The last lemma discusses the relationship between the II-MIP ranks of a subset and
its complementary set. For a subset X ofU, if X is a definable set then ∼ X is also a definable
set. So, we can get the following lemma.

Lemma 5.18. LetM′
P be the II-MIP induced by P , r ′P = rM′

P
. Then for allX ⊆ U,X is anR-definable

set if and only if r ′P (X) + r ′P (∼ X) = |U| − |P |.

Proof. (⇒): According to Theorems 5.13 and 5.16 and Lemma 5.17, it is straightforward.
(⇐): According to Lemma 5.17, |P | = f∗(X) + f∗(∼ X). Then, according to

Definition 5.14, X is an R-definable set.

From Definition 2.9, we know that, for any subset X of U, if x ∈ U − X such that the
rank of X ∪ {x} is equal to the rank of X, then x belongs to the closure of X. In II-MIP , we
can say that if X ∪ {x} contains one cycle more than X, then x belongs to the closure of X.

Proposition 5.19. Let M′
P be the II-MIP induced by P . Then for all X ⊆ U, cl′P (X) = X ∪ {x ∈

U −X : ∃Y ⊆ X s.t. Y ∪ {x} ∈ P} is the closure of X inM′
P .

Proof. According to Proposition 5.12, for all x ∈ X, r ′P (X) = r ′P (X ∪ {x}). Then, in terms of
Definition 2.9, X ⊆ clM′

P
(X). Let YX ⊆ X and |YX | = r ′P (X). For all x ∈ U − X, if x ∈ clM′

P
(X)

then r ′P (X) = r ′P (X ∪ {x}). According to Proposition 5.12, for all T ∈ P , T /⊆YX . That means
∃T ∈ P such that T ⊆ YX ∪ {x}, that is, ∃Y ⊆ YX such that Y ∪ {x} ∈ P . As a result clM′

P
(X) =

cl′P (X).

The hyperplane of II-MIP can be formulated as follows.

Proposition 5.20. LetM′
P be the II-MIP induced by P . ThenH′

P = {U−X : T ∈ P ∧X ⊆ T ∧|X| =
2} is the hyperplane ofM′

P .

Proof. According to Definition 2.10, we need to prove that for all H ∈ H′
P , H is a close set of

M′
P , and rM′

P
(H) = rM′

P
(U) − 1. And more, we need to prove that for all Y ⊆ U, if Y /∈ H′

P ,
then Y is not a hyperplane of M′

P .

(1) Is a close set of M′
P .

For all H ∈ H′
P , there is an equivalence class T ∈ P and a subset X ⊆ T such that

|X| = 2 and H = U −X. Therefore, for all Y ⊆ H and for all x ∈ X, Y ∪ {x} is not an
equivalence class, that is, Y ∪{x} /∈ P . That is, the set {x ∈ X : ∃Y ⊆ H s.t. Y ∪{x} ∈
P} = ∅. Thus, according to Proposition 5.19, clM′

P
(H) = H. That is to say H is a

close set of M′
P .

(2) For all H ∈ H′
P , rM′

P
(H) = rM′

P
(U) − 1.

For any T ∈ P , since T is R-definable, by Theorem 5.13

rM′
P
(U) = rM′

P
(T ∪ ∼ T)

= rM′
P
(T) + rM′

P
(∼ T)

= |T | − 1 + rM′
P
(∼ T).

(5.1)



Journal of Applied Mathematics 21

That is,

rM′
P
(∼ T) = rM′

P
(U) − |T | + 1. (5.2)

Furthermore, since ∼ T is also R-definable, by Theorem 5.13

rM′
P
(H) = rM′

P
((T −X) ∪ ∼ T)

= rM′
P
(T −X) + rM′

P
(∼ T)

= |T | − 2 + rM′
P
(∼ T).

(5.3)

That is,

rM′
P
(H) = rM′

P
(∼ T) + |T | − 2. (5.4)

Therefore, from (5.2) and (5.4), rM′
P
(H) = rM′

P
(U) − 1.

(3) For all Y ⊆ U, if Y /∈ H′
P , then Y is not a hyperplane of M′

P .

If Y /∈ H′
P , then there are two cases.

(1) |U − Y | = 2 and U − Y /⊆ T , for all T ∈ P .

(2) |U − Y |/= 2.

Next, we discuss these two cases, respectively.

Case 1. By Proposition 5.19, cl′P (Y ) = U so Y is not a close set.

Case 2. if |U − Y | = 1, then cl′P (Y ) = U so Y is not a close set. If |U − Y | > 2, then suppose that
cl′P (Y ) = Y . In that case, for T ∈ P such that (U − Y ) ∩ T /= ∅, |(U − Y ) ∩ T | ≥ 2. So

rM′
P
(Y ) =

∑

T∈P
(U−Y )∩T /= ∅

(|T | − |(U − Y ) ∩ T |) +
∑

T∈P
(U−Y )∩T=∅

(|T | − 1).
(5.5)

In that case, rM′
P
(Y ) is not equal to rM′

P
(U) − 1 =

∑

T∈P
(|T | − 1) − 1.

Summing up, H′
P = {U −X : T ∈ P ∧X ⊆ T ∧ |X| = 2} is the hyperplane ofM′

P .

5.3. Approximations Established through II-MIP

In this subsection, we will redefine the lower and the upper approximations with some
characteristics of II-MIP . Three pairs of approximations are established.

Proposition 5.10 shows that the set of circuits of a II-MIP is equal to the partition
which induces the II-MIP . So we can get the following proposition.
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Proposition 5.21. LetM′
P be the II-MIP induced by P , C(M′

P ) = C′
P . Then for all X ⊆ U,

R(X) = ∪{C ∈ C′
P : C ⊆ X

}
,

R(X) = ∪{C ∈ C′
P : C ∩X /= ∅}.

(5.6)

Proof. According to Proposition 5.10, (2.1), it is straightforward.

We know that the lower and the upper approximations of a subset are all definable sets.
The lower approximation is the largest definable set contained in the subset. And the upper
approximation is the smallest definable set, which contains the subset. Since Lemma 5.18
provides a way to decide whether a subset is a definable set, we can define the lower and the
upper approximations as follows.

Proposition 5.22. LetM′
P be the II-MIP induced by P , rM′

P
= r ′P . Then for all X ⊆ U,

R(X) = Max
({

Y ⊆ X : r ′P (Y ) + r ′P (∼ Y ) = |U| − |P |}),

R(X) = Min
({

X ⊆ Y : r ′P (Y ) + r ′P (∼ Y ) = |U| − |P |}).
(5.7)

Proof. According to Lemma 5.18, for all X ⊆ U, if r ′P (X) + r ′P (∼ X) = |U| − |P |, then X is an
R-definable set. So Max({Y ⊆ X : r ′P (Y ) + r ′P (∼ Y ) = |U| − |P |}) is the largest R-definable set
contained in X. And Min({X ⊆ Y : r ′P (Y ) + r ′P (∼ Y ) = |U| − |P |}) is the smallest R-definable
set contained X. And then, according to (2.1), it is straightforward.

Next, we will establish the lower approximation via the closure of II-MIP .

Proposition 5.23. LetM′
P be the II-MIP induced by P , clM′

P
= cl′P . Then for all X ⊆ U,

R(X) =
{
x ∈ X : cl′P (X) = cl′P (X − {x})}. (5.8)

Proof. For all T ∈ P , if T ⊆ X, then for all x ∈ T , T − {x} ⊆ X. According to Proposition 5.19,
cl′P (X) = cl′P (X − {x}). That is, x ∈ {x ∈ X : cl′P (X) = cl′P (X − {x})}. In terms of (2.1),
R(X) = {x ∈ X : cl′P (X) = cl′P (X − {x})}.

In terms of (P2), we can get the upper approximation by using the duality. That is,
R(X) = ∼ R(∼ X) =∼ cl′P (∼ X − {x}).

6. Relationship between I-MIP and II-MIP

In the previous two sections, we have got two types of matroids induced by a partition
from the viewpoints of complete graph and cycle, respectively. And it is can be found that
the matroidal characteristics of them are very different. But, if the two types of matroid are
induced by the same partition, what are the relationships between them? In this section, we
will study this issue.
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Definition 6.1 (Dual matroid see [39]). Let M = (E,I) be a matroid, and B the set of bases of
M. The dual matroid M∗ is the matroid on the set E whose bases B∗ = Com(B). If I(M) =
I(M∗), thenM is called an identically self-dual matroid.

For convenience, in the following content, we suppose that U is the universe, R is an
equivalence relation over U, P = U/R is the partition on U, and MP is the I-MIP induced by
P and M′

P the II-MIP induced by P .

Proposition 6.2. Let M∗
P be the dual matroid ofMP . Then M∗

P = M′
P .

Proof. For all B ∈ B(MP ), according to Definition 6.1, U − B ∈ B(M∗
P ). For all T ∈ P such that

|T∩B| = 1, ∃x ∈ T such that T−{x} ⊆ U−B. Therefore,B(M∗
P ) = {⋃n

i=1 (Ti−xi) : Ti ∈ P∧xi ∈ Ti}
where n = |P |. In terms of Proposition 5.7, B(M∗

P ) = B(M′
P ). As a result, M∗

P = M′
P .

Proposition 6.2 shows that MP and M′
P are dual matroids. This result is very

interesting and helpful to study rough sets. Maybe people want to ask some questions about
the relationships between MP and M′

P as follows: whether a I-MIP and a II-MIP which
induced by different partitions could be dual matroids? And whether two different I-MIP
(or II-MIP) could be dual matroids? Next, we will answer them.

Proposition 6.3. Let P1 and P2 be two partitions over U, MP1 the I-MIP induced by P1, and MP2

the II-MIP induced by P2. Then M∗
P1

= MP2 if and only if P1 = P2.

Proof. According to Theorems 4.5 and 5.6 and Proposition 6.2, it is straightforward.

Proposition 6.3 shows that a I-MIP and a II-MIP induced by different partitions are
not dual matroids.

Proposition 6.4. Let P1 and P2 be two different partitions overU andMP1 andMP2 are the I-MIP
induced by P1 and P2, respectively. Then M∗

P1
/=MP2 .

Proof. Suppose that M∗
P1

= MP2 . From Proposition 6.2, M∗
P1

is a II-MIP. In terms of
Proposition 5.10, we can get thatC(M∗

P1
) = P1 = C(MP2). Therefore, according to Theorem 4.4,

for all T ∈ P1, |T | = 2. Thus P1 = P2. This is contrary to the known condition that P1 and P2 are
two different partitions over U. As a result, M∗

P1
/=MP2 .

Proposition 6.5. Let P1 and P2 be two different partitions over U and MP1 and MP2 are the II-MIP
induced by P1 and P2, respectively. Then M∗

P1
/=MP2 .

Proof. Similar to the proof of Proposition 6.4, it is straightforward.

Propositions 6.4 and 6.5 show that two different I-MIP are not dual matroids. And the
same as two different II-MIP. One can find that we emphasize in Propositions 6.4 and 6.5 that
P1 and P2 are two different partitions over U. So, in Propositions 6.4 and 6.5, could M∗

P1
be

equal to MP2 when P1 = P2? We will discuss this problem in the following proposition.

Proposition 6.6. MP = M′
P if and only if for all T ∈ P , |T | = 2.

Proof. (⇒): According to Definition 6.1, if MP = M′
P , then I(MP ) = I(M′

P ). According to
Propositions 4.1, 4.3, and 5.1, for all T ∈ P , |T | = 2.

(⇐): It is straightforward.
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Proposition 6.6 provides a necessary and sufficient condition to decide whether a
I-MIP or a II-MIP is a self-dual matroid. This gives a good answer to the previous question
that whether M∗

P1
could be equal toMP2 when P1 = P2.

The set of circuits of a matroid is complementary to the set of hyperplanes of its dual
matroid [39]. That is,

H(MP ) =
{
U − C : C ∈ C′

P

}
,

H(
M′

P

)
= {U − C : C ∈ CP}.

(6.1)

Next, we will study when a hyperplane of MP is also a hyperplane of M′
P .

Proposition 6.7. Let H ∈ H(MP ). Then H ∈ H(M′
P ) if and only ifU −H ∈ C(MP ).

Proof. (⇒): According to Proposition 4.16, U − H ∈ P , that is, ∃T ∈ P such that U − H = T .
If H ∈ H(M′

P ), according to Proposition 5.20, then |U − H| = |T | = 2. According to
Proposition 4.10 and Corollary 4.11, T ∈ C(MP ), that is, U −H ∈ C(MP ).

(⇐): If U −H ∈ C(MP ), then |U −H| = 2 and ∃T ∈ P such that T = U −H. Therefore,
according to Propositions 4.16 and 5.20,H ∈ H(M′

P ).

From the Propositions 4.14 and 5.19, we can find, for any subsetX ⊆ U, that the cl′P (X)
is generally the subset of clP (X). Now, we will study under what conditions that the cl′P (X)
is certain the subset of clP (X).

Proposition 6.8. Let X ⊆ U, clMP (X) = clP (X), and clM′
P
(X) = cl′P (X). Then cl′P (X) ⊆ clP (X) if

and only if for all x ∈ U −X, r ′P ({x})/= 0.

Proof. (⇒): Let cl′P (X) ⊆ clP (X). According to Propositions 4.14 and 5.19, we can get that
{y ∈ U − X : ∃Y ⊆ X s.t. Y ∪ {y} ∈ P} ⊆ {y ∈ U − X : x ∈ X ∧ xy ∈ EP}. That is, for all
y ∈ {y ∈ U − X : ∃Y ⊆ X s.t. Y ∪ {y} ∈ P}, y ∈ {y ∈ U − X : x ∈ X ∧ xy ∈ EP}. In terms of
Section 4, we know that EP = {xy : x /=y∧(∃T ∈ P s.t. {x, y} ⊆ T)}. Therefore, for all y ∈ {y ∈
U − X : x ∈ X ∧ xy ∈ EP}, {y} /∈ P . And for all y ∈ {y ∈ U − X : ∃Y ⊆ X s.t. Y ∪ {y} ∈ P},
{y} /∈ P . That is, for all x ∈ U −X, r ′P ({x})/= 0.

(⇐): According to Propositions 4.14 and 5.19, it is straightforward.

The formulation of rank functions of MP and M′
P are very different. In consideration

of that MP and M′
P are dual matroids, it is meaningful to discuss the relationship between

the rank functions of them.

Theorem 6.9. Let X ⊆ U, rMP = rP , and rM′
P
= r ′P . Then rP (X) = r ′P (X) if and only if |X| =

f∗(X) + f∗(X).

Proof. (⇒): If rP (X) = r ′P (X), according to Theorem 5.16, rP (X) = |X| − f∗(X). Then, in terms
of Definition 2.2 and Proposition 4.13, we can get that rP (X) = f∗(X). Therefore, f∗(X) =
|X| − f∗(X). And then |X| = f∗X + f∗(X).

(⇐): With the same way used in the above proof, it is straightforward.

In Theorem 6.9, we make use of the lower and the upper approximations numbers to
discuss the relationship between the rank functions ofMP andM′

P . It adequately reflects the
close relation between rough sets and matroids.
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7. Conclusions

Wemake a further study to the combination of rough sets and matroids. Two graphical ways
are provided to establish and understand the matroidal structure of rough sets intuitively.
For a better research on the relationships between rough sets and matroids, the concept of
lower approximation number is proposed. And then, some meaningful results are obtained.
For example, Theorem 5.16 shows that, for any subsetX ⊆ U, the rank ofXwithin the context
of II-MIP is equal to the difference of the cardinality and the lower approximation number
of X. And Theorem 6.9 indicates that the rank of X within the context of I-MIP is equal to it
within the context of II-MIP if and only if the cardinality ofX is equal to the difference of its
lower and upper approximation numbers. Furthermore, the relationships between the two
kinds of matroids established in Sections 4 and 5 are discussed. It is so exciting that the two
kinds of matroids are dual matroids. And this is meaningful to the study of the combination
of rough sets and matroids.

Matroids possess a sophisticated mathematical structure. And it has been widely
used in real world. So we hope our work in this paper could be contributive to the
theoretical development and applications of rough sets. In future works, we will study the
axiomatization of rough sets with matroidal approaches and explore the wider applications
of rough sets with matroids.
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