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We first introduce the concept of admitting an exponential dichotomy to a class of linear dynamic
equations on time scales and study the existence and uniqueness of almost periodic solution
and its expression form to this class of linear dynamic equations on time scales. Then, as an
application, using these concepts and results, we establish sufficient conditions for the existence
and exponential stability of almost periodic solution to a class of Hopfield neural networks with
delays. Finally, two examples and numerical simulations given to illustrate our results are plausible
and meaningful.

1. Introduction

In recent years, researches in many fields on time scales have received much attention. The
theory of calculus on time scales (see [1, 2] and references cited therein) was initiated by
Hilger in his Ph.D. thesis in 1988 [3] in order to unify continuous and discrete analysis, and
it has a tremendous potential for applications and has recently received much attention since
his fundamental work. It has been created in order to unify the study of differential and
difference equations. Also, the existence of almost periodic, asymptotically almost periodic,
pseudo-almost periodic solutions is among the most attractive topics in qualitative theory of
differential equations and difference equations due to their applications, especially in biology,
economics, and physics [4–20].

Motivated by the above, based on the theory of almost periodic functions on time
scales in our previous work [21, 22], we first introduce the concept of admitting an
exponential dichotomy to a class of linear dynamic equations on time scales and study the
existence and uniqueness of almost periodic solution and its expression form to this class
of linear dynamic equations on time scales. Then, as an application, using these concepts,
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results, the fixed point theorem and differential inequality techniques, we establish sufficient
conditions for the existence and exponential stability of almost periodic solution to a class of
Hopfield neural networks with delays. Finally, two examples given to illustrate our results
are plausible and meaningful to unify continuous and discrete models.

The organization of this paper is as follows. In Section 2, we introduce some notations
and state some preliminary results needed in the later sections. In Section 3, we introduce
the concepts of admitting an exponential dichotomy to a class of linear dynamic equations
on time scales under which the existence, uniqueness, and expression form of an almost
periodic solution are obtained. Furthermore, some fundamental conditions of admitting an
exponential dichotomy to linear dynamic equations are also derived. In Section 4, as an
application of our results, we study the existence and exponential stability of the almost
periodic solutions of a class of Hopfield neural networks with delays, finally, we give two
examples and numerical simulations to show that our unification of continuous and discrete
situations is effective.

2. Preliminaries

In this section, we will first recall some basic definitions, lemmas which are used in what
follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then T

k = T \ {m}; otherwise T
k = T. If T has a right-scattered minimum m,

then Tk = T \ {m}; otherwise Tk = T.
A function f : T → R is right-dense continuous provided it is continuous at right-

dense point in T and its left-side limits exist at left-dense points in T. If f is continuous at
each right-dense point and each left-dense point, then f is said to be a continuous function
on T.

For y : T → R and t ∈ T
k, we define the delta derivative of y(t), yΔ(t), to be the

number (if it exists) with the property that for a given ε > 0, there exists a neighborhood U
of t such that |[y(σ(t)) − y(s)] − yΔ(t)[σ(t) − s]| < ε|σ(t) − s| for all s ∈ U.

Let y be right-dense continuous, if YΔ(t) = y(t), then we define the delta integral by∫ t
a y(s)Δs = Y (t) − Y (a).

A function p : T → R is called regressive provided 1 + μ(t)p(t)/= 0 for all t ∈ T
k.

The set of all regressive and rd-continuous functions p : T → R will be denoted by
R = R(T) = R(T,R). We define the set R+ = R+(T,R) = {p ∈ R : 1 + μ(t)p(t) > 0, for all
t ∈ T}.

An n × n-matrix-valued function A on a time scale T is called regressive provided that
I + μ(t)A(t) is invertible for all t ∈ T and the class of all such regressive and rd-continuous
functions is denoted, similar to the above scalar case, by R = R(T) = R(T,Rn×n).
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If r is a regressive function, then the generalized exponential function er is defined by
er(t, s) = exp{∫ ts ξμ(τ)(r(τ))Δτ} for all s, t ∈ T, with the cylinder transformation

ξh(z) =

⎧
⎨

⎩

Log(1 + hz)
h

, if h/= 0,

z, if h = 0.
(2.2)

Definition 2.1 (see [1, 2]). Let p, q : T → R be two regressive functions, define

p ⊕ q = p + q + μpq, �p = − p

1 + μp
, p � q = p ⊕ (�q). (2.3)

If A is a matrix, then we let A∗ denote its conjugate transpose.

Lemma 2.2 (see [1, 2]). If A,B ∈ R are matrix-value functions on T, then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I,
(ii) eA(σ(t), s) = (I + μ(t)A(t))eA(t, s),

(iii) e−1A (t, s) = e∗�A∗(t, s),

(iv) eA(t, s) = e−1A (s, t) = e∗�A∗(s, t),

(v) eA(t, s)eA(s, r) = eA(t, r),

(vi) eA(t, s)eB(t, s) = eA⊕B(t, s) if eA(t, s) and B(t) commute.

Lemma 2.3 (see [1, 2]). If A ∈ R and a, b, c ∈ T, then [eA(c, ·)]Δ = −[eA(c, ·)]σA and

∫b

a

eA(c, σ(t))A(t)Δt = eA(c, a) − eA(c, b). (2.4)

Lemma 2.4 (see [1, 2]). Let A ∈ R be an n × n-matrix-valued function on T and suppose that
f : T → R

n is rd-contibuous. Let t0 ∈ T and y0 ∈ R
n. Then the initial value problem

yΔ = −A∗(t)yσ + f(t), y(t0) = y0 (2.5)

has a unique solution y : T → R
n. Moreover, this solution is given by y(t) = e�A∗(t, t0)y0 +∫ t

t0
e�A∗(t, τ)f(τ)Δτ .

For convenience, E
n denotes R

n or C
n, AP(T) denote the set of all almost periodic

n ×m-matrix-valued functions on T.

Definition 2.5 (see [22]). A time scale T is called an almost periodic time scale if

Π := {τ ∈ R : t ± τ ∈ T, ∀t ∈ T}/= {0}. (2.6)
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Definition 2.6 (see [22]). Let T be an almost periodic time scale. A continuous n × m-
matrix-valued function f on T is called almost periodic on T if the ε-translation set of
f

E
{
ε, f
}
=
{
τ ∈ Π :

∥
∥f(t + τ) − f(t)∥∥ < ε, ∀t ∈ T

}
(2.7)

is relatively dense set in T for all ε > 0; that is, for any given ε > 0, there exists a
constant l(ε) > 0 such that each interval of length l(ε) contains a τ(ε) ∈ E{ε, f} such
that

∥∥f(t + τ) − f(t)∥∥ < ε, ∀t ∈ T. (2.8)

τ is called the ε-translation number of f and l(ε) is called the inclusion length of E{ε, f},
where ‖ · ‖ is a matrix norm on T, (say, e.g., if A = (aij(t))n×m, then we can take e.g., ‖A‖ =
supt∈T

(
∑n

i=1
∑m

j=1 |aij(t)|2)1/2).

For convenience, let α = {αn}, β = {βn} be two sequences. Then β ⊂ αmeans that β is a
subsequence of α; α + β = {αn + βn}; −α = {−αn}; and α and β are common subsequences
of α′ and β′, respectively, means that αn = α′

n(k) and βn = β′
n(k) for some given function

n(k).
Let f , g be n × m-matrix-valued functions on T, we will introduce the translation

operator T , Tαf = g means that g(t) = limn→+∞f(t + αn) and is written only when the limit
exists.

Definition 2.7. Let f be an n ×m-matrix-valued function on T, H(f) = {g: there exits α ⊂ Π
such that Tαf = g exists uniformly on T} is called the hull of f .

Similar to the proof of Theorem 3.14 in [22], one can easily get a more general version
of the following.

Theorem 2.8. Let f be an n ×m-matrix-valued function on T, if for any α′ ⊂ Π, there exists α ⊂ α′

such that Tαf(t) exists uniformly on T, then f(t) is almost periodic.

Also, from Theorem 3.30 in [22], one can easily show a more general version of the
following.

Lemma 2.9. An n ×m-matrix-valued function f is almost periodic on T, if and only if for every pair
of sequences α′, β′ ⊆ Π, there exist common subsequences α ⊂ α′, β ⊂ β′ such that

Tα+βf(t) = TαTβf(t). (2.9)
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3. Almost Periodic Dynamic Equations on Time Scales

Consider the linear almost periodic equation

xΔ = −A∗(t)xσ + f(t) (3.1)

and its associated homogeneous equation

xΔ = −A∗(t)xσ, (3.2)

where A(t) is an almost periodic matrix function and f(t) is an almost periodic vector
function.

Definition 3.1. If B ∈ H(A∗), we say that

yΔ = −B(t)yσ (3.3)

is a homogeneous equation in the hull of (3.1).

Definition 3.2. If B ∈ H(A∗), and g ∈ H(f), we say that

yΔ = −B(t)yσ + g(t) (3.4)

is an equation in hull of (3.1).

Definition 3.3. Let A(t) be n × n rd-continuous matrix function on T, the linear equation

xΔ = −A∗(t)xσ (3.5)

is said to admit an exponential dichotomy onT if there exist positive constantsK,α, projection
P and the fundamental solution matrix X(t) of (3.5), satisfying

∣∣∣X(t)PX−1(s)
∣∣∣ ≤ Ke�α(t, σ(s)), s, t ∈ T, t ≥ σ(s),

∣∣∣X(t)(I − P)X−1(s)
∣∣∣ ≤ Ke�α(σ(s), t), s, t ∈ T, t ≤ σ(s).

(3.6)

From Theorem 2.8 and Lemma 2.9 for β = −α and Lemma 2.4, one can also easily get
the following Favard theorem.

Lemma 3.4. If A(t) is almost periodic matrix function and x(t) is an almost periodic solution to the
homogeneous linear almost periodic equation xΔ = −A∗(t)xσ , then inft∈T|x(t)| > 0 or x(t) ≡ 0.
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Similar to the proof of Lemma 4.16 in [22], one can easily show the following lemma.

Lemma 3.5. Suppose that A(t) is an almost periodic matrix function and (3.2) satisfies an
exponential dichotomy (3.6), then for every B(t) ∈ H(A∗), (3.3) satisfies an exponential dichotomy
with same projection P and same constants K,α.

Similar to the proof of Lemma 4.17 in [22], one can easily show the following:

Lemma 3.6. If the homogeneous equation (3.2) satisfies an exponential dichotomy (3.6), then (3.2)
has only one bounded solution x(t) ≡ 0.

Lemma 3.7. If the homogeneous equation (3.2) satisfies an exponential dichotomy (3.6), then all
equations in the hull of (3.2) have only one bounded solution x(t) ≡ 0.

Proof. By Lemma 3.5, all equations in the hull of (3.2) satisfy an exponential dichotomy (3.6),
according to Lemma 3.6, all equations in the hull of (3.2) have only one bounded solution
x(t) ≡ 0. This completes the proof.

By Lemmas 3.4 and 3.7, one can easily have the existence and uniqueness theorem for
an almost periodic solution to (3.1):

Theorem 3.8. Let A(t) be an almost periodic matrix function, f(t) is an almost periodic vector
function. If (3.2) admits an exponential dichotomy, then (3.1) has a unique almost periodic solution

x(t) =
∫ t

−∞
X(t)PX−1(s)f(s)Δs −

∫+∞

t

X(t)(I − P)X−1(s)f(s)Δs, (3.7)

where X(t) is the fundamental solution matrix of (3.2).

Similar to the proof of Lemma 2.15 in [21], one can easily show the following.

Lemma 3.9. Let ci(t) be an almost periodic function on T, where ci(t) > 0, −ci(t) ∈ R+, t ∈ T,
i = 1, 2, . . . , n and min1≤i≤n{inft∈Tci(t)} = m̃ > 0, then the linear equation

xΔ = diag(−c1(t),−c2(t), . . . ,−cn(t))xσ (3.8)

admits an exponential dichotomy on T.

4. Applications

In the real world, both continuous and discrete systems are very important in implementation
and applications. Therefore, it is meaningful to study almost periodic problems on time scales
which can unify the continuous and discrete situations.

In this section, we consider the following model for the delayed Hopfield neutral
networks (HNNs):

xΔ
i = −ci(t)xσi +

n∑

j=1

bij(t)gj
(
xj
(
t − τij(t)

))
+ Ii(t), i = 1, 2, . . . , n, (4.1)



Journal of Applied Mathematics 7

in which n is the number of units in a neural network, xi(t) is the state vector of the ith unit
at the time t, ci(t) represents the rate at time twith which the ith unit will reset its potential to
the resting state in isolation when disconnected from the network and external inputs, gj(xj)
denotes the conversion of the membrane potential of the jth unit into its firing rate, bij(t)
denotes the strength of the jth unit on the ith unit at time t − τij(t), τij(t) ≥ 0 corresponds to
the transmission delay of the ith unit along the axon of the jth unit at time t, and Ii(t) denotes
the external bias on the ith unit at time t.

It is well known that the HNNs have been successfully applied to signal and image
processing, pattern recognition, and optimization. Hence, they have been the object of
intensive analysis by numerous authors in recent years. In particular, there have been
extensive results on the problem of the existence and stability of periodic solutions of system
(4.1) in the literature. We refer the reader to [23–30] and the references cited therein. In order
to unify continuous and discrete situations, by using results in Sections 3 and 4, one can
discuss almost periodic problems on time scales.

The main purpose of this section is to give the conditions for the existence and
exponential stability of the almost periodic solutions for system (4.1). By applying fixed point
theorem and differential inequality techniques, we derive some new sufficient conditions
ensuring the existence, uniqueness, and exponential stability of the almost periodic solution
on time scales. Our results are new even if the time scale T = hZ and other types of almost
periodic time scales such as ∪∞

k=0[2k, 2k + 1], k ∈ Z. Numerical examples and simulations are
given to illustrate our feasible results and effectiveness of our methods.

For (4.1), we assume that t− τij(t) ∈ T for t ∈ T and ci > 0, Ii, bij , τij : T → R are almost
periodic functions, where ci and τ ≥ 0 are constants, i, j = 1, 2, . . . , n, and we use the following
notation:

inf
t∈T

ci(t) := ci, sup
t∈T

∣∣bij(t)
∣∣ := bij , sup

t∈T

|Ii(t)| := Ii,

τ =: max
1≤i,j≤n

{

sup
t∈T

τij(t)

}

, i, j = 1, 2, . . . , n.
(4.2)

We also assume that the following condition (H0) holds.
(H0) for each j ∈ {1, 2, . . . , n}, gj : R → R is Lipschitz with Lipschitz constant Lj , that

is,

∣∣gj
(
uj
) − gj

(
vj
)∣∣ ≤ Lj

∣∣uj − vj
∣∣, ∀uj, vj ∈ R. (4.3)

For convenience, we will use x = (x1, x2, . . . , xn)
T ∈ R

n to denote a column vector,
in which the symbol (·)T denotes the transpose of a vector. We let |x| denote the absolute-
value vector given by |x| = (|x1|, |x2|, . . . , |xn|)T , and define ‖x‖ = max1≤i≤n|xi|. For matrix
A = (aij)n×n,A

T denotes the transpose of A, A−1 denotes the inverse of A, |A| denotes the
absolute-value matrix given by |A| = (|aij |)n×n, and 	(A) denotes the spectral radius of A. A
matrix or vector A ≥ 0 means that all entries of A are greater than or equal to zero. A > 0 is
defined similarly. For matrices or vectors A and B, A ≥ B (resp. A > B) means that A − B ≥ 0
(resp. A − B > 0). Let

D = diag
(
c1, c2, . . . , cn

)
, E =

(
bij
)

n×n
, L = diag(L1, L2, . . . , Ln). (4.4)
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Definition 4.1 (see [31]). For A ∈ Crd(T,Rn), t ∈ T and F ∈ Crd(T × R
n,Rn), V ∈ Crd(T ×

R
n,R+), we call ΔrV (t, A(t)) and ΔrV (t, A(t)) the right upper and right lower derivatives of

the function V at (t, A(t)), respectively, if

ΔrV (t, A(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V (σ(t), A(σ(t))) − V (t, A(t))
μ(t)

, σ(t) > t,

lim sup
s→ t+

V (s,A(t) + (s − t)F(t, A(t))) − V (t, A(t))
s − t , σ(t) = t,

ΔrV (t, A(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

V (σ(t), A(σ(t))) − V (t, A(t))
μ(t)

, σ(t) > t,

lim inf
s→ t+

V (s,A(t) + (s − t)F(t, A(t))) − V (t, A(t))
s − t , σ(t) = t.

(4.5)

Lemma 4.2. Let f ∈ C(T,R) is Δ-differentiable at t. Then

Δr
∣∣f(t)

∣∣ ≤ sign
(
fσ(t)

)
fΔ(t), where fσ(t) = f(σ(t)). (4.6)

Proof. Case (i). If t is a right dense point, that is, σ(t) = t.

Δr
∣∣f(t)

∣∣ ≤ sign
(
f(t)
)
fΔ(t) = sign

(
fσ(t)

)
fΔ(t). (4.7)

Case (ii). If t is a right scattered point, that is, σ(t) > t. If f(t)fσ(t) > 0, one can easily
have sign(f(t)) = sign(fσ(t)), so we can obtain

Δr
∣∣f(t)

∣∣ =

∣∣fσ(t)
∣∣ − ∣∣f(t)∣∣
μ(t)

=
sign

(
fσ(t)

)
fσ(t) − sign

(
f(t)
)
f(t)

μ(t)

= sign
(
fσ(t)

)
(
fσ(t) − f(t)

μ(t)

)
= sign

(
fσ(t)

)
fΔ(t).

(4.8)

If f(t)fσ(t) ≤ 0, then one can get |f(t)| ≥ sign(fσ(t))f(t). Then

Δr
∣∣f(t)

∣∣ =

∣∣fσ(t)
∣∣ − ∣∣f(t)∣∣
μ(t)

=
sign

(
fσ(t)

)
fσ(t) − ∣∣f(t)∣∣
μ(t)

≤ sign
(
fσ(t)

)
fσ(t) − sign

(
fσ(t)

)
f(t)

μ(t)

= sign
(
fσ(t)

)
(
fσ(t) − f(t)

μ(t)

)
= sign

(
fσ(t)

)
fΔ(t).

(4.9)
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Therefore, by (4.7), (4.8), (4.9), one can get

Δr
∣
∣f(t)

∣
∣ ≤ sign

(
fσ(t)

)
fΔ(t). (4.10)

This completes the proof.

As usual, we introduce the phase space C([t0 − τ, t0] ∩ T,Rn) as a Banach space of
continuous mappings from [t0 − τ, t0] ∩ T to R

n equipped with the supremum norm defined
by ‖ϕ‖ = max1≤i≤nsupt∈[t0−τ,t0]∩T

|ϕi(t)| for all ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))
T ∈ C([t0−τ, t0]∩T,Rn).

The initial conditions associated with system (4.1) are of the following form:

xi(s) = ϕi(s), s ∈ [t0 − τ, t0] ∩ T, i = 1, 2, . . . , n, (4.11)

where ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))
T ∈ C([t0 − τ, t0] ∩ T,Rn), t0 ∈ T.

Definition 4.3. The almost periodic solution z∗ = (x∗
1, x

∗
2, . . . , x

∗
n)
T of (4.1) is said to be globally

exponentially stable, if there exists a positive α such that for any δ ∈ [t0 − τ0, t0] ∩ T, there
existsN =N(δ) ≥ 1 such that for any solution z = (x1, x2, . . . , xn)

T of (4.1), it is valid that

‖z − z∗‖ ≤N‖z0 − z∗‖e�α(t, δ), t ∈ [t0,+∞) ∩ T, (4.12)

where z0(s), s ∈ [t0 − τ0, t0] ∩ T is the initial condition.

Definition 4.4 (see [30]). A real n × n matrix K = (kij)n×n is said to be anM-matrix if kij ≤ 0,
i, j = 1, 2, . . . , n, i /= j, and K−1 ≥ 0.

Lemma 4.5 (see [30]). Let A ≥ 0 be an n × n matrix and 	(A) < 1, then (En −A)−1 ≥ 0, where En
denotes the identity matrix of size n.

In the following, we will show the existence and uniqueness of almost periodic
solution to (4.1) on time scales.

Theorem 4.6. Let (H0) hold and 	(D−1EL) < 1. Then, there exists exactly one almost periodic
solution of system (4.1).

Proof. Let X = {φ | φ = (φ1(t), φ2(t), . . . , φn(t))
T , where φi : T → R is an almost periodic

function, i = 1, 2, . . . , n}. Then X is a Banach space with the norm defined by ‖φ‖X =
supt∈T

max1≤i≤n|φi(t)|.
To proceed further, we need to introduce an auxiliary equation

xΔ
i = −ci(t)xσi +

n∑

j=1

bij(t)gj
(
φj
(
t − τij(t)

))
+ Ii(t), i = 1, 2, . . . , n, (4.13)
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where φ(t) = (φ1(t), φ2(t), . . . , φn(t))
T ∈ X. Notice that τij(t), bij(t) and Ii(t) are almost

periodic functions, by Lemma 3.9 and Theorem 3.8, we know that the auxiliary (4.13) has
exactly one almost periodic solution

xφ(t) =
(
x
φ

1 (t), x
φ

2 (t), . . . , x
φ
n(t)
)T

=

⎛

⎝
∫ t

−∞
e−c1(t, s)

⎡

⎣
n∑

j=1

b1j(s)gj
(
φj
(
t − τ1j(s)

))
+ I1(s)

⎤

⎦Δs, . . . ,

∫ t

−∞
e−cn(t, s)

⎡

⎣
n∑

j=1

bnj(s)gj
(
φj
(
t − τnj(s)

))
+ In(s)

⎤

⎦Δs

⎞

⎠

T

.

(4.14)

Define a mappingΦ : X → X by settingΦ(φ(t)) = xφ(t) for allX. Let φ, ψ ∈ X, then by (H0),
we have

∣∣Φ
(
φ(t)
) −Φ

(
ψ(t)

)∣∣

=
(∣∣(Φ

(
φ(t)
) −Φ

(
ψ(t)

))
1

∣∣,
∣∣(Φ
(
φ(t)
) −Φ

(
ψ(t)

))
2

∣∣, . . . ,
∣∣(Φ
(
φ(t)
) −Φ

(
ψ(t)

))
n

∣∣)T

=

⎛

⎝

∣∣∣∣∣∣

∫ t

−∞
e−c1(t, s)

⎡

⎣
n∑

j=1

b1j(s)
(
gj
(
φj
(
t − τ1j(s)

)) − gj
(
ψj
(
t − τ1j(s)

)))
⎤

⎦Δs

∣∣∣∣∣∣
, . . . ,

∣∣∣∣∣∣

∫ t

−∞
e−cn(t, s)

⎡

⎣
n∑

j=1

bnj(s)
(
gj
(
φj
(
t − τnj(s)

)) − gj
(
ψj
(
t − τnj(s)

)))
⎤

⎦Δs

∣
∣∣∣∣∣

⎞

⎠

T

≤
⎛

⎝
∫ t

−∞
e−c1(t, σ(s))

⎡

⎣
n∑

j=1

b1jLj
∣∣φj
(
s − τ1j(s)

) − ψj
(
s − τ1j(s)

)∣∣

⎤

⎦Δs, . . . ,

∫ t

−∞
e−cn(t, σ(s))

⎡

⎣
n∑

j=1

bnjLj
∣∣φj
(
s − τnj(s)

) − ψj
(
s − τnj(s)

)∣∣

⎤

⎦Δs

⎞

⎠

T

≤
⎛

⎝
n∑

j=1

c1
−1b1jLjsup

t∈T

∣∣φj(t) − ψj(t)
∣∣, . . . ,

n∑

j=1

cn
−1bnjLjsup

t∈T

∣∣φj(t) − ψj(t)
∣∣

⎞

⎠

T

,

(4.15)
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which implies that

(

sup
t∈T

∣
∣(Φ
(
φ(t)
) −Φ

(
ψ(t)

))
1

∣
∣, sup

t∈T

∣
∣(Φ
(
φ(t)
) −Φ

(
ψ(t)

))
2

∣
∣, . . . , sup

t∈T

∣
∣(Φ
(
φ(t)
) −Φ

(
ψ(t)

))
n

∣
∣
)T

≤
⎛

⎝
n∑

j=1

c1
−1b1jLjsup

t∈T

∣
∣φj(t) − ψj(t)

∣
∣, . . . ,

n∑

j=1

cn
−1bnjLjsup

t∈T

∣
∣φj(t) − ψj(t)

∣
∣

⎞

⎠

T

≤ F
(

sup
t∈T

∣
∣φ1(t) − ψ1(t)

∣
∣, . . . , sup

t∈T

∣
∣φn(t) − ψn(t)

∣
∣
)T

,

(4.16)

where F = D−1EL. Letm be a positive integer. Then, from (4.16), we get

(

sup
t∈T

∣∣(Φm(φ(t)
) −Φm(ψ(t)

))
1

∣∣, . . . , sup
t∈T

∣∣(Φm(φ(t)
) −Φm(ψ(t)

))
n

∣∣
)T

=

(

sup
t∈T

∣∣∣
(
Φ
(
Φm−1(φ(t)

)) −Φ
(
Φm−1(ψ(t)

)))

1

∣∣∣, . . . ,

sup
t∈T

∣∣∣
(
Φ
(
Φm−1(φ(t)

)) −Φ
(
Φm−1(ψ(t)

)))

n

∣∣∣

)T

≤ F
(

sup
t∈T

∣∣∣
(
Φm−1(φ(t)

) −Φm−1(ψ(t)
))

1

∣∣∣, . . . , sup
t∈T

∣∣∣
(
Φm−1(φ(t)

) −Φm−1(ψ(t)
))

n

∣∣∣

)T

...

≤ Fm
(

sup
t∈T

∣∣(φ(t) − ψ(t))1
∣∣, . . . , sup

t∈T

∣∣(φ(t) − ψ(t))n
∣∣
)T

= Fm
(

sup
t∈T

∣∣φ1(t) − ψ1(t)
∣∣, . . . , sup

t∈T

∣∣φn(t) − ψn(t)
∣∣
)T

.

(4.17)

Since 	(F) < 1, we obtain limm→+∞Fm = 0, which implies that there exist a positive integerN
and a positive constant r < 1 such that

FN =
(
D−1EL

)N
=
(
hij
)
n×n,

n∑

j=1

hij ≤ r, i = 1, 2, . . . , n. (4.18)
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In view of (4.17), (4.18), we have

∣
∣
∣
(
ΦN(φ(t)

) −ΦN(ψ(t)
))

i

∣
∣
∣ ≤ sup

t∈T

∣
∣
∣
(
ΦN(φ(t)

) −ΦN(ψ(t)
))

i

∣
∣
∣

≤
n∑

j=1

hijsup
t∈T

∣
∣φj(t) − ψj(t)

∣
∣

≤ sup
t∈T

max
1≤j≤n

∣
∣φj(t) − ψj(t)

∣
∣
n∑

j=1

hij ≤ r
∥
∥φ − ψ∥∥X

(4.19)

for all t ∈ T, i = 1, 2, . . . , n. It follows that

∥∥∥ΦN(φ(t)
) −ΦN(ψ(t)

)∥∥∥
X
= sup

t∈T

max
1≤i≤n

∣∣∣
(
ΦN(φ(t)

) −ΦN(ψ(t)
))

i

∣∣∣

≤ r∥∥φ − ψ∥∥X.
(4.20)

This implies that the mapping ΦN : X → X is a contraction mapping.
By the fixed point theorem of Banach space, Φ possesses a unique fixed point Z∗ in X

such that ΦZ∗ = Z∗. We know from (4.14) that Z∗ satisfies system (4.1), and therefore, it is
the unique almost periodic solution of system (4.1). This completes the proof.

Next, we will establish a result for the exponential stability of the almost periodic
solution of system (4.1).

Theorem 4.7. Suppose that all the conditions of Theorem 4.6 hold. Then system (4.1) has exactly one
almost periodic solution Z∗(t). Moreover, Z∗(t) is globally exponentially stable.

Proof. Since 	(D−1EL) < 1, it follows from Theorem 4.6 that system (4.1) has a unique almost
periodic solution Z∗(t) = (x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))

T . Let Z(t) = (x1(t), x2(t), . . . , xn(t))
T be an

arbitrary solution of system (4.1) and define y(t) = Z(t) − Z∗(t). Then, set

fj
(
t, yj
(
t − τij(t)

))
= gj
(
yj
(
t − τij(t)

)
+ x∗

j

(
t − τij(t)

)) − gj
(
x∗
j

(
t − τij(t)

))
j = 1, 2, . . . , n,

(4.21)

we get

yΔ
i = −ci(t)yσi +

n∑

j=1

bij(t)fj
(
t, yj
(
t − τij(t)

))
, i = 1, 2, . . . , n. (4.22)



Journal of Applied Mathematics 13

Thus, for i = 1, 2, . . . , n, by Lemma 4.2, we have

Δr
∣
∣yi(t)

∣
∣ ≤ sign

(
yσi
)
yΔ
i (t) ≤ −ci

∣
∣yσi
∣
∣ +

n∑

j=1

∣
∣bij(t)fj

(
t, yj
(
t − τij(t)

))∣∣

≤ −ci
∣
∣yσi
∣
∣ +

n∑

j=1

bijLj sup
s∈[t−τ,t]∩T

∣
∣yj(s)

∣
∣ = −ci

∣
∣yσi
∣
∣ +

n∑

j=1

bijLjyj(t),
(4.23)

where yj(t) = sups∈[t−τ,t]∩T
|yj(s)|, j = 1, 2, . . . , n. Again from 	(D−1EL) < 1, it follows from

Lemma 4.5 that En − D−1EL is an M-matrix, we obtain that there exist a constant σ0 > 0
and a vector ξ = (ξ1, ξ2, . . . , ξn)

T > (0, 0, . . . , 0)T such that (En − D−1EL)ξ > (σ0, σ0, . . . , σ0).
Therefore, ξi−

∑n
j=1 ci

−1bijLjξj > σ0, i = 1, 2, . . . , n, which imply that −ciξi+
∑n

j=1 bijLjξj < −ciσ0,
i = 1, 2, . . . , n. Hence, we can choose a positive constant α < 1 such that

αξi +

⎡

⎣−ciξi +
n∑

j=1

bijLjξjeα(τ, 0)

⎤

⎦ < 0, i = 1, 2, . . . , n. (4.24)

Choose a constant β > 1 such that

βξie�α(t, δ) > 1, ∀t ∈ [t0 − τ, t0] ∩ T, δ ∈ [t0 − τ, t0] ∩ T, i = 1, 2, . . . , n. (4.25)

For any ε > 0, let

Zi(t) = βξi

⎡

⎣
n∑

j=1

yj(t0) + ε

⎤

⎦e�α(t, δ), i = 1, 2, . . . , n. (4.26)

From (4.24), (4.26), noticing that (1 + μ(t)(�α)) < 1, we obtain

ΔrZi(t) = (�α)βξi

⎡

⎣
n∑

j=1

yj(t0) + ε

⎤

⎦e�α(t, δ)

>

⎡

⎣−ciξi +
n∑

j=1

bijLjξjeα(τ, 0)

⎤

⎦β

⎡

⎣
n∑

j=1

yj(t0) + ε

⎤

⎦e�α(t, δ)
(
1 + μ(t)(�α)

)

= −ciβξi
⎡

⎣
n∑

j=1

yj(t0) + ε

⎤

⎦e�α(σ(t), δ)

+
n∑

j=1

⎡

⎣bijLjξjβ

⎛

⎝
n∑

j=1

yj(t0) + ε

⎞

⎠e�α(σ(t), δ)eα(τ, 0)

⎤

⎦

> −ciZi(σ(t)) +
n∑

j=1

bijLjZj(t), i = 1, 2, . . . , n,

(4.27)
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where Zj(t) = sups∈[σ(t)−τ,σ(t)]∩T
Zj(s), j = 1, 2, . . . , n. In view of (4.25) and (4.26), for i = 1,

2, . . . , n, we have

Zi(t) = βξi

⎡

⎣
n∑

j=1

yj(t0) + ε

⎤

⎦e�α(t, δ)

>
n∑

j=1

yj(t0) + ε >
∣
∣yi(t)

∣
∣, ∀t ∈ [t0 − τ, t0] ∩ T.

(4.28)

We claim that

∣
∣yi(t)

∣
∣ < Zi(t) ∀t ∈ [t0,+∞) ∩ T, i = 1, 2, . . . , n. (4.29)

Contrarily, there must exist i ∈ {1, 2, . . . , n} and ti > 0 such that

∣∣yi(ti)
∣∣ ≥ Zi(ti),

∣∣yj(t)
∣∣ < Zj(t), ∀t ∈ [t0 − τ, ti) ∩ T, j = 1, 2, . . . , n, (4.30)

which implies that

∣∣yi(ti)
∣∣ − Zi(ti) ≥ 0,

∣∣yj(t)
∣∣ − Zj(t) < 0, ∀t ∈ [t0 − τ, ti) ∩ T, j = 1, 2, . . . , n. (4.31)

Case I. If ρ(ti) is right dense point, that is, σ(ρ(ti)) = ρ(ti) = ti, we have

0 ≤ Δr(∣∣yi
(
ρ(ti)

)∣∣ − Zi

(
ρ(ti)

))
= lim sup

h→ 0−

[∣∣yi(ti + h)
∣∣ − Zi(ti + h)

] − [∣∣yi(ti)
∣∣ − Zi(ti)

]

h

≤ lim sup
h→ 0−

∣∣yi(ti + h)
∣∣ − ∣∣yi(ti)

∣∣

h
− lim inf

h→ 0−

Zi(ti + h) − Zi(ti)
h

= Δr
∣∣yi(ti)

∣∣ −ΔrZi(ti).
(4.32)

Case II. If ρ(ti) is right scattered point, that is, σ(ρ(ti)) = ti > ρ(ti), we obtain

0 ≤ Δr(∣∣yi
(
ρ(ti)

)∣∣ − Zi

(
ρ(ti)

))
=

∣∣yi(ti)
∣∣ − ∣∣yi

(
ρ(ti)

)∣∣

μ
(
ρ(ti)

) − Zi(ti) − Zi

(
ρ(ti)

)

μ
(
ρ(ti)

)

= Δr
∣∣yi
(
ρ(ti)

)∣∣ −ΔrZi

(
ρ(ti)

)
.

(4.33)

Thus,

Δr
∣∣yi
(
ρ(ti)

)∣∣ ≥ ΔrZi

(
ρ(ti)

)
. (4.34)



Journal of Applied Mathematics 15

From (4.23), (4.27), (4.30), we can obtain

Δr
∣
∣yi
(
ρ(ti)

)∣∣ ≤ −ci
∣
∣yi(ti)

∣
∣ +

n∑

j=1

bijLjyj
(
ρ(ti)

)

≤ −ciZi(ti) +
n∑

j=1

bijLjyj
(
ρ(ti)

)
< ΔrZi

(
ρ(ti)

)
,

(4.35)

which contradicts (4.34). Hence, (4.29) holds. Letting ε → 0+ and M = nmax1≤i≤n{βξi + 1},
we have from (4.26) and (4.29) that

∣
∣xi(t) − x∗

i (t)
∣
∣ =
∣
∣yi(t)

∣
∣ ≤ βξi

n∑

j=1

yj(t0)e�α(t, δ) ≤ βξi‖Z − Z∗‖ne�α(t, δ)

< max
1≤i≤n

{
βξi + 1

}
n‖Z − Z∗‖e�α(t, δ)

≤M‖Z − Z∗‖e�α(t, δ), i = 1, 2, . . . , n

(4.36)

for all t ∈ [t0,+∞) ∩ T. This completes the proof.

Example 4.8. Let T = Z, consider the following HNN:

xΔ
1 = −c1(t)xσ1 + 0.04(sin t)g1

(
x1
(
t − sin2t

))
+ 0.016(cos t)g2

(
x2
(
t − 2sin2t

))
+ 2 cos t,

xΔ
2 = −c2(t)xσ2 + 0.02(sin 2t)g1

(
x1
(
t − 3cos2t

))
+ 0.014(cos 4t)g2

(
x2
(
t − 4sin2t

))
+ sin t,

xΔ
3 = −c3(t)xσ3 + 0.013(sin 2t)g3

(
x3
(
t − cos2t

))
+ cos2t,

(4.37)

where g1(x) = g2(x) = g3(x) = (1/2)(|x+1|−|x−1|) and c1(t) = 1+0.05 sin t, c2(t) = 1+0.03 cos t,
c3(t) = 1 + 0.01 sin t.

Note that c1 = 0.05, c2 = 0.07, c3 = 0.09, L1 = L2 = L3 = 1, and b11 = 0.04, b12 = 0.016,

b21 = 0.02, b22 = 0.014, b33 = 0.013, b13 = b23 = b31 = b32 = 0. Then we have

D =
(
c−1i bijLj

)

3×3
=

⎛

⎝
0.8000 0.3200 0
0.2857 0.2000 0

0 0 0.1444

⎞

⎠ (4.38)

and 	(D) = 0.9259 < 1. Thus, from Theorems 4.6 and 4.7, (4.37) has exactly one almost
periodic solution and it is exponentially stable. We can take the initial value ϕ1(s) = −0.3,
ϕ3(s) = −0.1, ϕ3(s) = −0.4, s ∈ [−4, 0] ∩ Z, we can give the following numerical simulation
figures to show our results are plausible and effective on time scales (see Figures 1 and 2).
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Figure 1: Transient response of state variables x1, x2, and x3 in Example 4.8.
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Figure 2: Phase response of state variables x1, x2, and x3 in Example 4.8.

Example 4.9. Let T = R, consider the following HNN:

xΔ
1 = −c1(t)xσ1 +

1
2
(sin t)g1

(
x1
(
t − sin2t

))
+

1
18

(cos t)g2
(
x2
(
t − 2sin2t

))
+ 2 cos t,

xΔ
2 = −c2(t)xσ2 + 2(sin 2t)g1

(
x1
(
t − 3cos2t

))
+
1
2
(cos 4t)g2

(
x2
(
t − 4sin2t

))
+ sin t,

xΔ
3 = −c3(t)xσ3 +

6
7
(sin 2t)g3

(
x3
(
t − cos2t

))
+ cos2t,

(4.39)

where g1(x) = g2(x) = g3(x) = (1/2)(|x + 1| − |x − 1|) and c1(t) = 2 + sin t, c2(t) = 2 + cos t,
c3(t) = 2 + sin t.
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Figure 3: Transient response of state variables x1, x2 and x3 in Example 4.9.
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Figure 4: Phase response of state variables x1, x2 and x3 in Example 4.9.

Note that c1 = c2 = c3 = L1 = L2 = L3 = 1, and b11 = 1/2, b12 = 1/18, b21 = 2, b22 = 1/2,
b33 = 6/7, b13 = b23 = b31 = b32 = 0. Then we have

D =
(
c−1i bijLj

)

3×3
=

⎛

⎜⎜⎜⎜
⎝

1
2

1
18

0

2
1
2

0

0 0
6
7

⎞

⎟⎟⎟⎟
⎠

(4.40)

and ρ(D) = 0.8571 < 1. Thus, from Theorems 4.6 and 4.7, (4.39) has exactly one almost
periodic solution and it is exponentially stable. We can take the initial value ϕ1(s) = −1.3,
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ϕ3(s) = −0.9, ϕ3(s) = −0.7, s ∈ [−4, 0], we can give the following numerical simulation figures
to show our results are plausible and effective on time scales (see Figures 3 and 4).

5. Conclusion

The existence and uniqueness of almost periodic solution and its expression form to a
class of linear dynamic equations on time scales are obtained. As an application, sufficient
conditions for the existence and exponential stability of almost periodic solution to a class
of Hopfield neural networks with delays are established. To the best of our knowledge, the
results presented here have not appeared in the related literature. In fact, both continuous and
discrete systems are very important in implementation and applications. But it is troublesome
to study the existence and stability of almost periodic solutions for continuous and discrete
systems, respectively. Therefore, it is meaningful to study that on timescales which can unify
the continuous and discrete situations. Also, the results and methods used in this paper can
be used to study many other types neural networks and population models.
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The Tôhoku Mathematical Journal, vol. 34, no. 2, pp. 301–309, 1982.
[8] S. Bochner, “A new approach to almost periodicity,” Proceedings of the National Academy of Sciences of

the United States of America, vol. 48, pp. 2039–2043, 1962.
[9] A. M. Fink, Almost Periodic Differential Equations, vol. 377 of Lecture Notes in Mathematics, Springer,

New York, NY, USA, 1974.
[10] A. M. Fink and G. Seifert, “Liapunov functions and almost periodic solutions for almost periodic

systems,” Journal of Differential Equations, vol. 5, pp. 307–313, 1969.
[11] D. Cheban and C. Mammana, “Invariant manifolds, global attractors and almost periodic solutions

of nonautonomous difference equations,” Nonlinear Analysis, vol. 56, no. 4, pp. 465–484, 2004.
[12] C. Corduneanu,Almost Periodic Functions, Chelsea Publishing, New York, NY, USA, 2nd edition, 1989.
[13] G. M. N’Guerekata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer

Academic Publishers, New York, NY, USA, Plenum Press, London, UK, 2001.
[14] C. Y. Zhang,Almost Periodic Type Functions and Ergodicity, Science Press, Kluwer Academic Publishers,

New York, NY, USA, 2003.
[15] C. Y. Zhang, “Pseudo-almost-periodic solutions of some differential equations,” Journal of Mathemati-

cal Analysis and Applications, vol. 181, no. 1, pp. 62–76, 1994.



Journal of Applied Mathematics 19

[16] A. M. Fink and J. A. Gatica, “Positive almost periodic solutions of some delay integral equations,”
Journal of Differential Equations, vol. 83, no. 1, pp. 166–178, 1990.

[17] Y. Hino, N. V. Minh, J. S. Shin, and T. Naito, Almost Periodic Solutions of Differential Equations in Banach
Spaces, Taylor & Francis, New York, NY, USA, 2002.

[18] N. Boukli-Hacene and K. Ezzinbi, “Weighted pseudo almost periodic solutions for some partial
functional differential equations,” Nonlinear Analysis, vol. 71, no. 9, pp. 3612–3621, 2009.

[19] E. H. A. Dads, P. Cieutat, and K. Ezzinbi, “The existence of pseudo-almost periodic solutions for some
nonlinear differential equations in Banach spaces,” Nonlinear Analysis, vol. 69, no. 4, pp. 1325–1342,
2008.

[20] Y. K. Li and X. Fan, “Existence and globally exponential stability of almost periodic solution for
Cohen-Grossberg BAM neural networks with variable coefficients,” Applied Mathematical Modelling,
vol. 33, no. 4, pp. 2114–2120, 2009.

[21] Y. K. Li and C. Wang, “Almost periodic functions on time scales and applications,” Discrete Dynamics
in Nature and Society, vol. 2011, Article ID 727068, 20 pages, 2011.

[22] Y. K. Li and C.Wang, “Uniformly almost periodic functions and almost periodic solutions to dynamic
equations on time scales,” Abstract and Applied Analysis, vol. 2011, Article ID 341520, 22 pages, 2011.

[23] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no.
8, pp. 2554–2558, 1982.

[24] J. Hopfied, “Neurons with graded response have collective computational properties like those of
two-state neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol.
81, no. 10, pp. 3088–3092, 1984.

[25] Y. K. Li and L. H. Lu, “Global exponential stability and existence of periodic solution of Hopfield-type
neural networks with impulses,” Physics Letters A, vol. 333, no. 1-2, pp. 62–71, 2004.

[26] Q. Dong, K. Matsui, and X. Huang, “Existence and stability of periodic solutions for Hopfield neural
network equations with periodic input,” Nonlinear Analysis, vol. 49, no. 4, pp. 471–479, 2002.

[27] S. Guo and L. Huang, “Periodic solutions in an inhibitory two-neuron network,” Journal of
Computational and Applied Mathematics, vol. 161, no. 1, pp. 217–229, 2003.

[28] Z. Liu and L. Liao, “Existence and global exponential stability of periodic solution of cellular neural
networks with time-varying delays,” Journal of Mathematical Analysis and Applications, vol. 290, no. 1,
pp. 247–262, 2004.

[29] S. Guo and L. Huang, “Stability analysis of a delayed Hopfield neural network,” Physical Review E,
vol. 67, no. 6, Article ID 061902, 7 pages, 2003.

[30] B. Liu and L. Huang, “Existence and exponential stability of almost periodic solutions for Hopfield
neural networks with delays,” Neurocomputing, vol. 68, pp. 196–207, 2005.

[31] S. Hong, “Stability criteria for set dynamic equations on time scales,” Computers & Mathematics with
Applications, vol. 59, no. 11, pp. 3444–3457, 2010.


