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We have presented a new unified approach to model the dynamics of both the sum and
difference of two correlated lognormal stochastic variables. By the Lie-Trotter operator splitting
method, both the sum and difference are shown to follow a shifted lognormal stochastic
process, and approximate probability distributions are determined in closed form. Illustrative
numerical examples are presented to demonstrate the validity and accuracy of these approximate
distributions. In terms of the approximate probability distributions, we have also obtained an
analytical series expansion of the exact solutions, which can allow us to improve the approximation
in a systematic manner. Moreover, we believe that this new approach can be extended to study
both (1) the algebraic sum of N lognormals, and (2) the sum and difference of other correlated
stochastic processes, for example, two correlated CEV processes, two correlated CIR processes,
and two correlated lognormal processes with mean-reversion.

1. Introduction

“Given two correlated lognormal stochastic variables, what is the stochastic dynamics of the sum or
difference of the two variables?”; or equivalently “What is the probability distribution of the sum or
difference of two correlated lognormal stochastic variables?” The solution to this long-standing
problem has wide applications in many fields such as telecommunication studies [1–6],
financial modelling [7–9], actuarial science [10–12], biosciences [13], physics [14], and so
forth. Although the lognormal distribution is well known in the literature [15, 16], yet almost
nothing is known of the probability distribution of the sum or difference of two correlated
lognormal variables. However, it is commonly agreed that the distribution of either the sum
or difference is neither normal nor lognormal.
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The aforesaid problem can be formulated as follows. Given two lognormal stochastic
variables S1 and S2 obeying the following stochastic differential equations:

dSi

Si
= σidZi, i = 1, 2, (1.1)

where σ2
i = Var(lnSi), dZi denotes a standard Weiner process associated with Si, and the two

Weiner processes are correlated as dZ1dZ2 = ρdt, the time evolution of the joint probability
distribution function P(S1, S2, t;S10, S20, t0) of the two correlated lognormal variables is
governed by the backward Kolmogorov equation

{
∂

∂t0
+ L̂

}
P(S1, S2, t;S10, S20, t0) = 0 for t > t0, (1.2)

where

L̂ =
1
2
σ2
1S

2
10

∂2

∂S2
10

+ ρσ1σ2S10S20
∂2

∂S10∂S20
+
1
2
σ2
2S

2
20

∂2

∂S2
20

(1.3)

subject to the boundary condition

P(S1, S2, t;S10, S20, t0 −→ t) = δ(S1 − S10)δ(S2 − S20). (1.4)

This joint probability distribution function tells us how probable the two lognormal variables
assume the values S1 and S2 at time t > t0, provided that their values at t0 are given by S10

and S20. Since P(S1, S2, t;S10, S20, t0) is known in closed form as follows:
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(1.5)

the probability distribution of the sum or difference, namely S± ≡ S1 ± S2, of the two cor-
related lognormal variables can be obtained by evaluating the integral

P±
(
S±, t;S10, S20, t0

)
=
∫∫∞

0
dS1dS2P(S1, S2, t;S10, S20, t0)δ

(
S1 ± S2 − S±). (1.6)
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Despite that many methods have been developed to address the problem, a closed-form
representation for the probability distribution of the sum or difference is still missing.
Hence, we must resort to numerical methods to perform the integration. Nevertheless, the
numerically exact solution does not provide any information about the stochastic dynamics
of the sum or difference explicitly.

In the lack of knowledge about the probability distribution of the sum or difference of
two correlated lognormal variables, several analytical approximation methods which focus
on finding a good approximation for the desired probability distribution have been proposed
in the literature [1–6, 8, 17–27]. Essentially, these analytical approximations assume a specific
distribution that the sum or difference of the two correlated lognormal variables follow,
and then use a variety of methods to identify the parameters for that specific distribution.
However, no mathematical justification for the specific distribution was apparently given. In
spite of this shortcoming, these approximations attract considerable attention and have been
extended to tackle the algebraic sums ofN correlated lognormal variables, too.

In this communication, we apply the Lie-Trotter operator splitting method [28] to
derive an approximation for the dynamics of the sum or difference of two correlated log-
normal variables. It is shown that both the sum and difference can be described by a
shifted lognormal stochastic process. Approximate probability distributions of both the sum
and difference of the lognormal variables are determined in closed form, and illustrative
numerical examples are presented to demonstrate the accuracy of these approximate
distributions. Unlike previous studies which treat the sum and difference in a separate
manner, our proposed method thus provides a new unified approach to model the dynamics
of both the sum and difference of two correlated lognormal stochastic variables. In addition,
in terms of the approximate solutions, we are able to obtain an analytical series expansion
of the exact solutions, which can allow us to improve the approximation systematically.
Moreover, we believe that this new approach can be extended to study both (1) the algebraic
sum ofN lognormals, and (2) the sum and difference of other correlated stochastic processes,
for example, two correlated CEV processes, two correlated CIR processes, and two correlated
lognormal processes with mean-reversion.

2. Lie-Trotter Operator Splitting Method

It is observed that the probability distribution of the sum or difference of the two correlated
lognormal variables, that is, P±(S±, t;S10, S20, t0), also satisfies the same backward Kol-
mogorov equation given in (1.2), but with a different boundary condition

P±
(
S±, t;S10, S20, t0 −→ t

)
= δ
(
S10 ± S20 − S±). (2.1)

To solve for P±(S±, t;S10, S20, t0), we first rewrite the backward Kolmogorov equation in terms
of the new variables S±

0 ≡ S10 ± S20 as

{
∂

∂t0
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}
P±
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−
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)
= 0, (2.2)
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where
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The corresponding boundary condition now becomes

P±
(
S±, t;S+

0 , S
−
0 , t0 −→ t

)
= δ
(
S±
0 − S±). (2.4)

Accordingly, the formal solution of (2.2) is given by
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)
= exp
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δ
(
S±
0 − S±). (2.5)

Since the exponential operator exp{(t − t0)(L̂+ + L̂0 + L̂−)} is difficult to evaluate, we
apply the Lie-Trotter operator splitting method [28] to approximate the operator by (see the
appendix)
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± = exp
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and obtain an approximation to the formal solution P±(S±, t;S+
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which is normally valid unless S10 and S20 are both close to zero, the operators L̂+ and L̂− can
be approximately expressed as
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where σ̃+ = σ+/2 and σ̃− = (σ2
1 − σ2

2)/(2σ−). Without loss of generality, we assume that
σ1 > σ2. Obviously, both S̃+ and S̃− are lognormal (LN) random variables defined by the
stochastic differential equations

dS̃± = σ̃±S̃±dZ±, (2.10)

and their closed-form probability distribution functions are given by
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for t > t0. As a result, it can be inferred that within the Lie-Trotter splitting approximation
both S+ and S− are governed by a shifted lognormal process. It should be noted that for the
Lie-Trotter splitting approximation to be valid, σ̃2

±(t − t0) needs to be small.
Alternatively, we can also approximate the operator L̂− by
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It is not difficult to recognize that R− follows the square-root (SR) stochastic process defined
by the stochastic differential equation

dR− = σ−
√
R−dZ−, (2.14)

and has the closed-form probability distribution function

fSR(R−, t;R−
0 , t0
)
=

2

σ2
−(t − t0)

√
R−

0

R− exp

{
−2
(
R− + R−

0

)
σ2
−(t − t0)

}
I1

⎛
⎜⎝ 4
√
R−R−

0

σ2
−(t − t0)

⎞
⎟⎠ (2.15)

for t > t0, where I1(·) is themodified Bessel function of the first kind of order one. Accordingly,
we have shown that within the Lie-Trotter splitting approximation, which requires σ2

−(t − t0)
to be small, S− can be described by a shifted square-root process, too.



6 Journal of Applied Mathematics

Moreover, in terms of the approximate solutions P
LT
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The integrals over the temporal variables {ξi; i = 1, 2, 3, . . .} can be evaluated analytically. If
we keep terms up to the order of (t − t0)

2, then P±(S±, t;S+
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This analytical series expansion can allow us to improve the approximate solutions
systematically.

3. Illustrative Numerical Examples

In Figure 1 we plot the approximate closed-form probability distribution function of the sum
S+ given in (2.11) for different values of the input parameters. We start with S10 = 110,
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Figure 1: Probability density versus S1 + S2: The solid lines denote the distributions of the approximate
shifted lognormal process, and the dash lines show the exact results. (a) S10 = 110, S20 = 100, σ1 = 0.25,
and σ2 = 0.15; (b) S10 = 110, S20 = 70, σ1 = 0.25, and σ2 = 0.15; (c) S10 = 110, S20 = 40, σ1 = 0.25, and
σ2 = 0.15; (d) S10 = 110, S20 = 100, σ1 = 0.3, and σ2 = 0.2; (e) S10 = 110, S20 = 70, σ1 = 0.3, and σ2 = 0.2; (f)
S10 = 110, S20 = 40, σ1 = 0.3, and σ2 = 0.2.
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S20 = 100, σ1 = 0.25, and σ2 = 0.15 in Figure 1(a). Then, in order to examine the effect of S20,
we decrease its value to 70 in Figure 1(b) and to 40 in Figure 1(c). In Figures 1(d), 1(e), and
1(f) we repeat the same investigation with a new set of values for σ1 and σ2, namely σ1 = 0.3
and σ2 = 0.2. Without loss of generality, we set t−t0 = 1 for simplicity. The (numerically) exact
results which are obtained by numerical integrations are also included for comparison. It is
clear that the proposed approximation can provide accurate estimates for the exact values.
Moreover, to have a clearer picture of the accuracy, we plot the corresponding errors of the
estimation in Figure 2. We can easily see that major discrepancies appear around the peak of
the probability distribution function, and that the estimation deteriorates as the correlation
parameter ρ decreases from 0.5 to −0.5. It is also observed that the errors increase with the
ratio S−

0/S
+
0 as expected but they seem to be not very sensitive to the changes in σ1 and σ2.

Next, we apply the same sequence of analysis to the two approximate closed-form
probability distribution functions of the difference S− given in (2.11) and (2.15). Similar
observations about the accuracy of the proposed approximation can be made for the
difference S−, too (see Figures 3 and 4). However, contrary to the case of S+, the estimation
performs better for positive correlation. Of the two different approximation schemes for the
S−, the shifted LN process seems to have a comparatively better performance than the shifted
SR process, as evidenced by the numerical results.

4. Conclusion

In this paper we have presented a new unified approach to model the dynamics of both
the sum and difference of two correlated lognormal stochastic variables. By the Lie-Trotter
operator splitting method, both the sum and difference are shown to follow a shifted
lognormal stochastic process, and approximate probability distributions are determined
in closed form. Illustrative numerical examples are presented to demonstrate the validity
and accuracy of these approximate distributions. In terms of the approximate probability
distributions, we have also obtained an analytical series expansion of the exact solutions,
which can allow us to improve the approximation in a systematic manner. Moreover, we
believe that this new approach can be extended to study both (1) the algebraic sum of
N lognormals, and (2) the sum and difference of other correlated stochastic processes, for
example, two correlated CEV processes, two correlated CIR processes, and two correlated
lognormal processes with mean-reversion.

Appendix

Lie-Trotter Splitting Approximation

Suppose that one needs to exponentiate an operator Ĉ which can be split into two different
parts, namely Â and B̂. For simplicity, let us assume that Ĉ = Â + B̂, where the exponential
operator exp(Ĉ) is difficult to evaluate but exp(Â) and exp(B̂) are either solvable or easy to
deal with. Under such circumstances, the exponential operator exp(εĈ), with ε being a small
parameter, can be approximated by the Lie-Trotter splitting formula [28]:

exp
(
εĈ
)
= exp

(
εÂ
)
exp
(
εB̂
)
+O
(
ε2
)
. (A.1)
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Figure 2: Error versus S1 + S2: The error is calculated by subtracting the approximate estimate from the
exact result. (a) S10 = 110, S20 = 100, σ1 = 0.25, and σ2 = 0.15; (b) S10 = 110, S20 = 70, σ1 = 0.25, and
σ2 = 0.15; (c) S10 = 110, S20 = 40, σ1 = 0.25, and σ2 = 0.15; (d) S10 = 110, S20 = 100, σ1 = 0.3, and σ2 = 0.2;
(e) S10 = 110, S20 = 70, σ1 = 0.3, and σ2 = 0.2; (f) S10 = 110, S20 = 40, σ1 = 0.3, and σ2 = 0.2.
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Figure 3: Probability density versus S1 − S2: the dash lines denote the distributions of the approximate
shifted lognormal process, the dotted lines indicate the distributions of the approximate shifted square-
root process, and the solid lines show the exact results. (a) S10 = 110, S20 = 100, σ1 = 0.25, and σ2 = 0.15; (b)
S10 = 110, S20 = 70, σ1 = 0.25, and σ2 = 0.15; (c) S10 = 110, S20 = 40, σ1 = 0.25, and σ2 = 0.15; (d) S10 = 110,
S20 = 100, σ1 = 0.3, and σ2 = 0.2; (e) S10 = 110, S20 = 70, σ1 = 0.3, and σ2 = 0.2; (f) S10 = 110, S20 = 40,
σ1 = 0.3, and σ2 = 0.2.
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Figure 4: Error versus S1 − S2: the error is calculated by subtracting the approximate estimate from the
exact result. The dash lines denote the errors of the approximate shifted square-root process, and the solid
lines show the errors of the approximate shifted lognormal process. (a) S10 = 110, S20 = 100, σ1 = 0.25, and
σ2 = 0.15; (b) S10 = 110, S20 = 70, σ1 = 0.25, and σ2 = 0.15; (c) S10 = 110, S20 = 40, σ1 = 0.25, and σ2 = 0.15;
(d) S10 = 110, S20 = 100, σ1 = 0.3, and σ2 = 0.2; (e) S10 = 110, S20 = 70, σ1 = 0.3, and σ2 = 0.2; (f) S10 = 110,
S20 = 40, σ1 = 0.3, and σ2 = 0.2.
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This can be seen as the approximation to the solution at t = ε of the equation dŶ/dt = (Â+B̂)Ŷ
by a composition of the exact solutions of the equations dŶ/dt = ÂŶ and dŶ/dt = B̂Ŷ at time
t = ε.
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