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We study normal criterion of meromorphic functions shared values, we obtain the following.
Let F be a family of meromorphic functions in a domain D, such that function f ∈ F has
zeros of multiplicity at least 2, there exists nonzero complex numbers bf , cf depending on
f satisfying (i) bf/cf is a constant; (ii)min{σ(0, bf ), σ(0, cf ), σ(bf , cf ) ≥ m} for some m >

0; (iii) (1/ck−1
f

)(f ′)k(z) + f(z)/= bk
f
/ck−1

f
or (1/ck−1

f
)(f ′)k(z) + f(z) = bk

f
/ck−1

f
⇒ f(z) = bf , then

F is normal. These results improve some earlier previous results.

1. Introduction and Main Results

We use C to denote the open complex plane, ̂C(= C ∪ {∞}) to denote the extended complex
plane andD to denote a domain in C. A family F of meromorphic functions defined inD ⊂ C
is said to be normal, if for any sequence {fn} ⊂ F contains a subsequence which converges
spherically, and locally, uniformly in D to a meromorphic function or ∞. Clearly F is said to
be normal in D if and only if it is normal at every point of D see [1].

Let D be a domain in C. For f meromorphic on C and a ∈ C, set

Ef(a) = f−1({a}) ∩D =
{

z ∈ D : f(z) = a
}

. (1.1)

Two meromorphic functions f and g on D are said to share the value a if Ef(a) =
Eg(a). Let a and b be complex numbers. If g(z) = b whenever f(z) = a, we write

f(z) = a =⇒ g(z) = b. (1.2)



2 Journal of Applied Mathematics

If f(z) = a ⇒ g(z) = b and g(z) = b ⇒ f(z) = a, we write

f(z) = a ⇐⇒ g(z) = b. (1.3)

According to Bloch’s principle [2], every condition which reduces a meromorphic
function in the plane C to a constant forces a family of meromorphic functions in a
domain D normal. Although the principle is false in general (see [3]), many authors proved
normality criterion for families of meromorphic functions by starting from Liouville-Picard
type theorem (see [4]). It is also more interesting to find normality criteria from the point
of view of shared values. In this area, Schwick [5] first proved an interesting result that a
family of meromorphic functions in a domain is normal if in which every function shares
three distinct finite complex numbers with its first derivative. And later, more results about
normality criteria concerning shared values have emerged [6–9]. In recent years, this subject
has attracted the attention of many researchers worldwide.

In this paper, we use σ(x, y) to denote the spherical distance between x and y and the
definition of the spherical distance can be found in [10].

In 2008, Fang and Zalcman [11] proved the following results.

Theorem 1.1 (see [11]). Let f be a transcendental function. Let a(/= 0) and b be complex numbers,
and let n(≥ 2), k be positive integers, then f + a(f ′)n assumes every value b ∈ C infinitely often.

Theorem 1.2 (see [11]). Let F be a transcendental function. Let a(/= 0) and b be complex numbers,
and let n(≥ 2), k be positive integers. If for every f ∈ F has multiple zeros, and f + a(f ′)n /= b, then
F is normal in D.

In 2009, Xu et al. [12] proved the following results.

Theorem 1.3 (see [12]). Let f be a transcendental function. Let a(/= 0) and let b be complex
numbers, and n, k be positive integers, which satisfy n ≥ k + 1, then f + a(f (k))n assumes each
value b ∈ C infinitely often.

Theorem 1.4 (see [12]). Let f be a transcendental function. Let a(/= 0) and b be complex numbers,
and let n, k be positive integers, which satisfy n ≥ k + 1. If for every f ∈ F has only zeros of
multiplicity at least k + 1, and satisfies f + a(f (k))n /= b, then F is normal in D.

In Theorems 1.2 and 1.4, the constants are the same for each f ∈ F. Now we will prove
the condition for the constants be the same can be relaxed to some extent.

Theorem A. Let F be a family of meromorphic functions in the unit disc Δ, and k be a positive
integer and k ≥ 3. For every f ∈ F, such that all zeros of f have multiplicity at least 2, there exist
finite nonzero complex numbers bf , cf depending on f satisfying that

(i) bf/cf is a constant;

(ii) min{σ(0, bf ), σ(0, cf), σ(bf , cf) ≥ m} for some m > 0;

(iii) (1/ck−1
f

)(f ′)k(z) + f(z)/= bk
f
/ck−1

f
.

Then F is normal in Δ.
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Theorem B. Let F be a family of meromorphic functions in the unit disc Δ, and k(≥ 3) be a positive
integer. For every f ∈ F, such that all zeros of f have multiplicity at least 2, there exist finite nonzero
complex numbers bf , cf depending on f satisfying that

(i) bf/cf is a constant;

(ii) min{σ(0, bf ), σ(0, cf), σ(bf , cf) ≥ m} for some m > 0;

(iii) (1/ck−1f )(f ′)k(z) + f(z) = bkf/c
k−1
f ⇒ f(z) = bf .

Then F is normal in Δ.

2. Some Lemmas

In order to prove our theorems, we require the following results.

Lemma 2.1 (see [7]). Let F be a family of meromorphic functions in a domainD, and k be a positive
integer, such that each function f ∈ F has only zeros of multiplicity at least k, and suppose that there
exists A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0, f ∈ F. If F is not normal at z0 ∈ D, then
for each 0 ≤ α ≤ k, there exist a sequence of points zn ∈ D, zn → z0, a sequence of positive numbers
ρn → 0+, and a subsequence of functions fn ∈ F such that

gn(ζ) =
fn
(

zn + ρnς
)

ραn
−→ g(ζ) (2.1)

locally uniformly with respect to the spherical metric in C, where g is a nonconstant meromorphic
function, all of whose zeros have multiplicity at least k, such that g#(ζ) ≤ g#(0) = kA+1. Morever, g
has order at most 2.

Here as usual, g#(ζ) = |g ′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative.
Lemma 2.2 (see [10]). Let m be any positive number. Then, Möbius transformation g satisfies
σ(g(a), g(b)) ≥ m, σ(g(b), g(c)) ≥ m, σ(g(c), g(a)) ≥ m, for some constants a, b, and c also
satisfy the uniform Lipschitz condition

σ
(

g(z), g(w)
) ≤ kmσ(z,w), (2.2)

where km is a constant depending on m.

3. Proof of Theorems

Proof of Theorem A. LetM = bf/cf . We can find nonzero constants b and c satisfyingM = b/c.
For each f ∈ F, define a Möbius map gf by gf = cfz/c, thus g−1

f = cz/cf .

Next we will show G = {(g−1
f ◦ f) | f ∈ F} is normal in Δ. Suppose to the contrary,

G is not normal in Δ. Then by Lemma 2.1. We can find gn ∈ G, zn ∈ Δ, and ρn → 0+, such
that Tn(ζ) = gn(zn + ρnζ)/ρ

1/(k+1)
n converges locally uniformly with respect to the spherical

metric to a nonconstant meromorphic function T(ζ)whose zeros of multiplicity at least 2 and
spherical derivative is limited and T has order at most 2.

We now consider three cases.
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Case 1. If (1/ck−1)(T ′)k(ζ) ≡ bk/ck−1, then T(ζ) is a polynomial with degree at most 1, a
contradiction.

Case 2. If there exists ζ0 such that (1/ck−1)(T ′)k(ζ0) = bk/ck−1. Noting that ρnTn(ζ) + (1/ck−1)
(T ′

n)
k(ζ) − (bk/ck−1) → (1/ck−1)(T ′)k(ζ) − (bk/ck−1). By Hurwitz’s theorem, there exist a

sequence of points ζn → ζ0 such that (for large enough n)

0 = ρnTn(ζn) +
1

ck−1
(

T ′
n

)k(ζn) − bk

ck−1

= gn
(

zn + ρnζn
)

+
1

ck−1
(

g ′
n

)k(zn + ζn) − bk

ck−1

=
c

cf
fn
(

zn + ρnζn
)

+
1

ck−1
ck

ck
f

(

f ′
n

)k(zn + ζn) − bk

ck−1
.

(3.1)

Hence fn(zn + ρnζn) + (1/ck−1f )(f ′
n)

k(zn + ζn) = bkf/c
k−1
f . This contradicts with the suppose of

Theorem A.

Case 3. If (1/ck−1)(T ′)k(ζ)/= bk/ck−1. Let c1, c2, . . . , ck be the solution of the equation wk = ck,
then T ′(ζ)/= ci (i = 1, 2, . . . , k). When T(ζ) is a rational function, then T ′(ζ) is also a rational
function. By Picard Theorem we can deduce that T ′(ζ) is a constant (k ≥ 3). Hence T(ζ) is a
polynomial with degree at most 1. This contradicts with T(ζ) has zeros of multiplicity at least
2. When T(ζ) is a transcendental function, combining with the secondmain theorem, we have

T
(

r, T ′) ≤ N
(

r, T ′) +
k
∑

i=1

N

(

r,
1
T ′ − ci

)

+ s
(

r, T ′)

≤ N
(

r, T ′) + s
(

r, T ′) ≤ 1
2
N
(

r, T ′) + s
(

r, T ′) ≤ 1
2
T
(

r, T ′) + s
(

r, T ′).

(3.2)

Hence, T(r, T ′) ≤ s(r, T ′), a contradiction.

Hence G = {(g−1
f

◦f) | f ∈ F} is normal and equicontinuous inΔ. There given (ε/km >

0), where km is the constant of Lemma 2.2, there exists δ > 0 such that for the spherical
distance σ(x, y) < δ,

σ
((

g−1
f ◦ f

)

(x),
(

g−1
f

)

(

y
)

)

<
ε

km
(3.3)

for each f ∈ F. Hence by Lemma 2.2.

σ
(

f(x), f
(

y
))

= σ
((

gf ◦ g−1
f ◦ f

)

(x),
(

gf ◦ g−1
f ◦ f

)

(

y
)

)

= kmσ
((

g−1
f ◦ f

)

(x),
(

g−1
f ◦ f

)

(

y
)

)

< ε.

(3.4)

Therefore, the family is equicontinuous in Δ. This completes the proof of Theorem A.
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Proof of Theorem B. LetM = bf/cf . We can find nonzero constants b and c satisfyingM = b/c.
For each f ∈ F, define a Möbius map gf by gf = cfz/c, thus g−1

f
= cz/cf .

Next we will show G = {(g−1
f

◦ f) | f ∈ F} is normal in Δ. Suppose to the contrary, G
is not normal in Δ. Then by Lemma 2.1. We can find gn ∈ G, zn ∈ Δ, and ρn → 0+, such that
Tn(ζ) = gn(zn + ρnζ)/ρ

1/(k+1)
n converges locally uniformly with respect to the spherical metric

to a nonconstant meromorphic function T(ζ) whose spherical derivate is limited and T has
order at most 2.

We will also consider three cases.

Case 1. If (1/ck−1)(T ′)k(ζ) ≡ bk/ck−1, then T(ζ) is a polynomial with degree at most 1, a
contradiction.

Case 2. If there exists ζ0 such that (1/ck−1)(T ′)k(ζ0) = bk/ck−1. Noting that ρnTn(ζ) +
(1/ck−1)(T ′

n)
k(ζ) − (bk/ck−1) → (1/ck−1)(T ′)k(ζ) − (bk/ck−1). By Hurwitz’s theorem, there

exist a sequence of points ζn → ζ0 such that (for large enough n)

0 = ρnTn(ζn) +
1

ck−1
(

T ′
n

)k(ζn) − bk

ck−1

= gn
(

zn + ρnζn
)

+
1

ck−1
(

g ′
n

)k(zn + ζn) − bk

ck−1

=
c

cf
fn
(

zn + ρnζn
)

+
1

ck−1
ck

ck
f

(

f ′
n

)k(zn + ζn) − bk

ck−1
.

(3.5)

Hence fn(zn +ρnζn) + (1/ck−1f )(f ′
n)

k(zn + ζn) = bkf/c
k−1
f , then we have fn(zn +ρnζn) = bf by the

condition (iii) (1/ck−1
f

)(f ′)k(z) + f(z) = bk
f
/ck−1

f
⇒ f(z) = bf .

Thus

T(ζ0) = lim
n→∞

gn
(

zn + ρnζn
)

ρn
= lim

n→∞
cf

(

zn + ρnζn
)

cfρn
= lim

n→∞
b

ρn
= ∞. (3.6)

This is a contradiction.

Case 3. If (1/ck−1)(T ′)k(ζ)/= bk/ck−1. Let c1, c2, . . . , ck be the solution of the equation wk = ck,
then T ′(ζ)/= ci (i = 1, 2, . . . , k). When T(ζ) is a rational function, then T ′(ζ) is also a rational
function. By Picard theorem we can deduce that T ′(ζ) is a constant (k ≥ 3). Hence T(ζ) is a
polynomial with degree at most 1. This contradicts with T(ζ) has zeros of multiplicity at least
2. When T(ζ) is a transcendental function, combining with the secondmain theorem, we have

T
(

r, T ′) ≤ N
(

r, T ′) +
k
∑

i=1

N

(

r,
1
T ′ − ci

)

+ s
(

r, T ′)

≤ N
(

r, T ′) + s
(

r, T ′) ≤ 1
2
N
(

r, T ′) + s
(

r, T ′) ≤ 1
2
T
(

r, T ′) + s
(

r, T ′).

(3.7)

Hence, T(r, T ′) ≤ s(r, T ′), a contradiction.
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Hence G = {(g−1
f ◦f) | f ∈ F} is normal and equicontinuous inΔ. There given (ε/km >

0), where km is the constant of Lemma 2.2, there exists δ > 0 such that for the spherical
distance σ(x, y) < δ,

σ
((

g−1
f ◦ f

)

(x),
(

g−1
f

)

(

y
)

)

<
ε

km
(3.8)

for each f ∈ F. Hence by Lemma 2.2.

σ
(

f(x), f
(

y
))

= σ
((

gf ◦ g−1
f ◦ f

)

(x),
(

gf ◦ g−1
f ◦ f

)

(

y
)

)

= kmσ
((

g−1
f ◦ f

)

(x),
(

g−1
f ◦ f

)

(

y
)

)

< ε.

(3.9)

Therefore, the family is equicontinuous in Δ. This completes the proof of Theorem B.

Remark 3.1. Using the similar argument, if the condition (iii) f(z) = bf when (1/ck−1f )

(f ′)k(z) + f(z) = bk
f
/ck−1

f
is replaced by (iii) |f(z)| ≥ |bf | when (1/ck−1

f
)(f ′)k(z) + f(z) =

bk
f
/ck−1

f
, then F is normal too.
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