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Multicriteria group decision making (MCGDM) research has rapidly been developed and become
a hot topic for solving complex decision problems. Because of incomplete or non-obtainable
information, the refractured well-selection problem often exists in complex and vague conditions
that the relative importance of the criteria and the impacts of the alternatives on these criteria are
difficult to determine precisely. This paper presents a newmodel forMCGDMby integrating fuzzy
analytic hierarchy process (AHP) with fuzzy TOPSIS based on interval-typed fuzzy numbers, to
help group decision makers for well-selection during refracturing treatment. The fuzzy AHP is
used to analyze the structure of the selection problem and to determine weights of the criteria
with triangular fuzzy numbers, and fuzzy TOPSIS with interval-typed triangular fuzzy numbers
is proposed to determine final ranking for all the alternatives. Furthermore, the algorithm allows
finding the best alternatives. The feasibility of the proposed methodology is also demonstrated by
the application of refractured well-selection problem and the method will provide a more effective
decision-making tool for MCGDM problems.

1. Introduction

With the rapid development of economic and technology, the theories and method of multi-
criteria decision-making (MCDM) problems [1, 2] have been extensively applied to various
areas such as management sciences [3, 4], operation research [5], project selection [6], and
economic evaluation [7]. The goal of decision-making process is to select a finite number of
alternatives generally characterized by multiple conflicting criteria. Great achievements have
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been made to the development of several MCDM approaches in modern decision science [1,
2, 6, 8–14]. Guitouni andMartel [10] stated that the aggregation of the alternative evaluations
expressed according to different dimensions should imply some kind of compensation
[15]. To choose an appropriate multicriteria decision aid method is to choose a kind of
compensation logic. One of these techniques known as technique for order preference by
similarity to ideal solution (TOPSIS) [16], developed by Hwang and Yoon [2], is a technique
to evaluate the performance of alternatives through the similarity with the ideal solution. In
this technique, the best alternative should have the shortest distance from the positive ideal
solution and the farthest distance from the negative ideal solution. The positive ideal solution
is one that maximizes the benefit criteria and minimizes the cost criteria. The negative
ideal solution is one that maximizes the cost criteria and minimizes the benefit criteria. In
summary, the positive ideal solution is composed of all best values attainable of criteria, and
the negative ideal solution consists of all the worst values attainable of criteria. In addition,
the ranking of all the alternatives is presented in decreasing order.

In the process of well selection with refracturing, a major issue is to evaluate all the
chosen alternatives with respect to various criteria and to determine the relative importance
of these criteria. These criteria usually conflict with each other and are incommensurable;
there may be no solution satisfying all the criteria simultaneously. Moreover, because of
the complexity of objective things and incomplete information, decision makers′ judgments
including preferences are often vague and cannot estimate their preference with an exact
value. Also, different decision makers have different knowledge about these alternatives and
criteria. Therefore, the refractured well selection belongs to a multicriteria decision-making
problem [1, 2]which involves both quantitative and qualitative criteria with various kinds of
uncertainties such as ignorance, interval data, and fuzziness.

In order to handle uncertainties in an effective manner, Zadeh [17] developed the
theory of fuzzy sets and fuzzy logic and utilized the theory to model uncertainty or lack
of knowledge successfully when applied to a variety of problems in science and engineering.
Bellman and Zadeh [18] were the first to introduce the theory of fuzzy sets in problems of
multicriteria decision-making as an effective approach to treat vagueness, lack of knowledge,
and ambiguity inherent in the human decision-making process. Recently, Chen [19] extended
the concept of TOPSIS to develop a methodology for solving multicriteria group decision
making problems in fuzzy environment. Jahanshahloo et al. [20] proposed an algorithmic
method to extend TOPSIS for decision-making problems with interval data. Baležentienė and
Klimas [21] used the TOPSIS method with interval data to to evaluate the effectiveness and
optimal rate of humic fertilizer on various impact patterns. When considering the situations
that decision makers cannot reach an agreement sometimes on the method of defining
linguistic variables based on the fuzzy sets, Ashtiani et al. [8] presented an interval-valued
fuzzy TOPSIS method to solve the management selection application of MCDM problems.
Ye [5] extended the TOPSIS method with interval-valued intuitionistic fuzzy numbers to
solve virtual enterprise partner selection. Wei-guo and Hong [22] extended the TOPSIS
framework ofmultiattribute individual decision-making to group decision-making situations
by introducing the concepts of group positive ideal and group negative ideal solutions.
In their method, a relative closeness to the group positive ideal solution was defined to
determine the ranking order of all alternatives by calculating the distances to both the group
positive ideal and group negative ideal solutions simultaneously. However, the framework
proposed by Wei-guo and Hong may present limitations because the personal judgments
were represented by numerical values in the traditional formulation of TOPSIS. Afterwards,
Krohling and Campanharo [23] proposed a fuzzy TOPSIS for group decision making to
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evaluate the ratings of response alternatives to a simulated oil spill and to do research for
finding out the best combat responses in case of accidents with oil spill in the sea. Baležentienė
and Užupis [4] applied the fuzzy TOPSIS method for group decision making to evaluate
fertilizing management alternatives in order to investigate mitigation of greenhouse gas
emissions and maximization yield indices in agriculture.

The analytic hierarchy process (AHP) is another important MCDM approach, which
was originally proposed by Saaty [24]. The AHP has been widely used by both researchers
and practitioners. For instance, Dağdeviren and Yüksel [25] developed a fuzzy AHP model
for behavior-based safety management. Miri lavasani et al. [26] utilized the analytical
hierarchy process to estimate weights required for grouping noncommensurate risk sources
in oil and gas offshore wells. Amiri [6] used the AHP and fuzzy TOPSIS methods to tackle
project selection problems, who stressed that calculation of the criteria weights was important
in fuzzy TOPSIS and they could change the ranking for some projects in application. Ju
and Wang [27] developed a method of incorporating DS/AHP with extended TOPSIS to
select suitable emergency alternatives under group decision makers. Comparing AHP and
fuzzy AHP, Saaty and Tran [28] stated the invalidity of fuzzifying numerical judgments
indiscriminately in the AHP. They stressed that validity is the goal in decision making
and fuzzification does not necessarily improve the numerical value of a solution in those
situations when the true value is already known by other means and is being estimated
by a numerical process that represents judgments of involved participants, whether well or
poorly informed. So it is suggested that fuzzy AHP is a preferred techniques in decision
making until it is validated effectively. Then Sun [29] explored a performance evaluation
model by integrating fuzzy AHP and fuzzy TOPSIS methods based on triangular fuzzy
numbers. Gumus [30] handled the evaluation of hazardous waste transportation firms
problem by using a two-step fuzzy-AHP and TOPSISmethodology, where the usage of fuzzy-
AHP weights in TOPSIS made the application more realistic and reliable. Torfi et al. [31]
proposed a fuzzy multicriteria decision-making approach, combining fuzzy AHP with fuzzy
TOPSIS, to evaluate the alternative options in respect to the user’s preference orders when the
performance ratings are vague and imprecise. Also, taking triangular fuzzy numbers as truth
values of performance ratings, Büyüközkan and Cifci [32] used a combined fuzzy AHP and
fuzzy TOPSIS technique to evaluate a set of hospital website alternatives in order to search
for the best qualified alternative that satisfies the needs and the expectations of customers.

Considering the fact that interval-valued fuzzy numbers are more general and better
to express incomplete and vague information [33–36], we try to propose a new model for
multicriteria group decision-making problems by integrating fuzzy AHP with fuzzy TOPSIS
in the basis of interval-typed fuzzy numbers in this paper, where the interval-typed fuzzy
numbers can be regarded as a generalization of interval-valued fuzzy numbers, and the
positive and negative ideal solutions are expressed by interval-typed fuzzy numbers. In
addition, the algorithm is presented and applied to evaluate well selection for refracturing.
The rest of the paper is organized as follows: Section 2 describes some basic concepts and
the fuzzy-AHP technique. Section 3 develops a fuzzy TOPSIS for group decision making to
deal with preference of the decision makers, where the decision matrix consists of interval-
typed triangular fuzzy numbers and the weights of criteria are determined by the fuzzy AHP
based on triangular fuzzy numbers. Section 4 introduces the well selection for fracturing. In
Section 5, the proposed method is applied to solve the refractured well-selection problem.
And the practical results show that the method is of great feasibility and reliability. Finally,
conclusions and directions for future work are presented in Section 6.
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Figure 1: A triangular fuzzy number A.

2. Some Basic Concepts and the Fuzzy AHP Method

2.1. Some Basic Concepts

We first give some basic concepts to be used within this paper.

Definition 2.1. A triangular fuzzy numberA is defined as a triplet (a1,a2,a3) shown in Figure
1. The membership function μA(x) is defined as

μA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, if a1 ≤ x ≤ a2,

x − a3

a2 − a3
, if a2 ≤ x ≤ a3,

0, otherwise,

(2.1)

where a1 ≤ a2 ≤ a3; the elements of the fuzzy numbers are real numbers, and its mem-
bership function μA(x) is the regularly and continuous convex function, showing that the
membership degree to the fuzzy set; a2 represents the value for which μA(a2) = 1, and a1 and
a3 are themost extreme values on the left and on the right of the fuzzy numberA, respectively,
with membership μA(a1) = μA(a3) = 0. If −1 ≤ a1 ≤ a2 ≤ a3 ≤ 1, thenA is called a normalized
triangular fuzzy number. If a1 = a2 = a3, then A is reduced to a real number.

Definition 2.2. Let A = (a1,a2,a3) and B = (b1, b2, b3) be two triangular fuzzy numbers. Then
the operation with these fuzzy numbers are defined as follows:

(i) A + B = (a1 + b1,a2 + b2,a3 + b3);

(ii) A − B = (a1 − b3,a2 − b2,a3 − b1);

(iii) A × B = (a1 · b1,a2 · b2,a3 · b3) for ai > 0, bi > 0 with i = 1, 2, 3;

(iv) A/B = (a1/b3,a2/b2,a3/b1) for ai > 0, bi > 0 with i = 1, 2, 3;

(v) λA = (λa1, λa2, λa3) for any positive λ ∈ R;

(vi) Ak = (ak
1 ,a

k
2 ,a

k
3) for k > 0, a1 > 0, a2 > 0 and a3 > 0.
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Figure 2: An interval-typed triangular fuzzy number [AL,AU].

Definition 2.3. Let I denote a finite index set, let {Ai = (ai1,ai2,ai3) | i ∈ I} be a family of
triangular fuzzy numbers, and let

∨
and

∧
represent the supremum and infimum operator

on the real set R, respectively. Then

∨

i∈I
Ai =

(
∨

i∈I
ai1,

∨

i∈I
ai2,

∨

i∈I
ai3

)

,
∧

i∈I
Ai =

(
∧

i∈I
ai1,

∧

i∈I
ai2,

∧

i∈I
ai3

)

. (2.2)

Definition 2.4. Let A = (a1,a2,a3) and B = (b1, b2, b3) be two triangular fuzzy numbers. Then
the distance between them is calculated by

d(A, B) =

√

1
3

(
(a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2
)
. (2.3)

The definitions of interval-valued fuzzy numbers are shown in the references [37, 38]
for details. As a generalization, now we introduce the definition of interval-typed triangular
fuzzy numbers.

Definition 2.5. An interval-typed triangular fuzzy number is a fuzzy interval [AL,AU], shown
in Figure 2, where both the lower-bound AL = (aL

1 ,a
L
2 ,a

L
3 ) and the upper-bound AU =

(aU
1 ,a

U
2 ,a

U
3 ) are triangular fuzzy numbers and aL

2 ≤ aU
2 .

Moreover, if −1 ≤ aL
1 ≤ aL

2 ≤ aL
3 ≤ 1 and −1 ≤ aU

1 ≤ aU
2 ≤ aU

3 ≤ 1, then [AL,AU] is called
a normalized interval-typed triangular fuzzy number. If aU

1 ≤ aL
1 , a

L
2 = aU

2 and aL
3 ≤ aU

3 , then
[AL,AU] is called an interval-valued triangular fuzzy number. If AL = AU, then [AL,AU] is
reduced to a triangular fuzzy number. If aL

1 = aL
2 = aL

3 and aU
1 = aU

2 = aU
3 , then [AL,AU] is

reduced to a regular interval value. Moreover, if aL
1 = aL

2 = aL
3 = aU

1 = aU
2 = aU

3 , then [AL,AU]
is reduced to a numerical value.

Definition 2.6. Let [AL,AU] and [BL, BU] be two interval-typed triangular fuzzy numbers.
Then the operations with them are defined as follows:

(i) [AL,AU] + [BL, BU] = [AL + BL,AU + BU];

(ii) [AL,AU] − [BL, BU] = [AL − BU,AU − BL];

(iii) [AL,AU] × [BL, BU] = [
∧
T1,

∨
T1] for T1 = {AL × BL,AL × BU,AU × BL,AU × BU};
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(iv) [AL,AU]/[BL, BU] = [
∧
T2,

∨
T2] for T2 = {AL/BL,AL/BU,AU/BL,AU/BU};

(v) k[AL,AU] = [kAL, kAU] for k ∈ R+.

Definition 2.7. Let {[AL
i ,A

U
i ]}i∈I be a collection of interval-typed triangular fuzzy numbers,

where I denotes a finite index set. Then

∨

i∈I

[
AL

i ,A
U
i

]
=

[
∨

i∈I
AL

i ,
∨

i∈I
AU

i

]

,

∧

i∈I

[
AL

i ,A
U
i

]
=

[
∧

i∈I
AL

i ,
∧

i∈I
AU

i

]

.

(2.4)

Definition 2.8. Let [AL,AU] and [BL, BU] be two interval-typed triangular fuzzy numbers.
Then the distance between them is calculated by

d̂
([

AL,AU
]
,
[
BL, BU

])
=

√

1
2
(
d
(
AL, BL

))2 +
1
2
(
d
(
AU, BU

))2
. (2.5)

According to [39], Definition 2.8 is well defined, where the computations of d(AL, BL)
and d(AU, BU) are given by Definition 2.4.

2.2. Fuzzy Analytical Hierarchy Process (AHP)

Fuzzy AHP utilizes a similar framework to AHP in conducting analysis by using fuzzy ratios
instead of crisp values. The approach to determine weighting factors in refractured well
selection is composed of the following steps.

Step 1. Identify the factors and sub-factors to be used in the model.

Step 2. Structure the AHPmodel hierarchically based on the factors and sub-factors identified
at Step 1. AHP model is structured such that the objective is in the first level, factors are in
the second level, and the sub-factors from the second level are on the third level.

Step 3. Determine the local weights of the factors and sub-factors by using pairwise
comparison matrices. The fuzzy scale regarding relative importance to measure the relative
weights is given in Table 1. This scale is proposed by Kahraman et al. [40] and used for
solving fuzzy decision-making problems [40, 41] in the literature.

For example, there are n factors to the objective in the second level. Assign linguistic
terms to the pairwise comparisons by asking which is the more important of each two factors.
Then the matrix is constructed as follows:

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

, (2.6)
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Table 1: Linguistic scales for importance.

Linguistic scales for relative importance Triangular fuzzy scale Triangular fuzzy reciprocal scale
Just equal (1, 1, 1) (1, 1, 1)
Equally important (EI) (1/2, 1, 3/2) (2/3, 1, 2)
Weakly more important (WMI) (1, 3/2, 2) (1/2, 2/3, 1)
Strongly more important (SMI) (3/2, 2, 5/2) (2/5, 1/2, 2/3)
Very strongly more important (VSMI) (2, 5/2, 3) (1/3, 2/5, 1/2)
Absolutely more important (AMI) (5/2, 3, 7/2) (2/7, 1/3, 2/5)

where aij is a fuzzy comparison value of factor i to factor j, aii = (1, 1, 1)with i = 1, . . . , n, and
aij = (1, 1, 1)/aji with i, j = 1, . . . , n.

Next, we use geometric mean technique [42, 43] to define the fuzzy geometric mean
and fuzzy local weights of factors:

ri =
(
ai1 × · · · × aij × · · · × ain

)1/n
,

wi =
ri

r1 + · · · + ri + · · · + rn
, i = 1, . . . , n,

(2.7)

where ri is a geometric mean of fuzzy comparison value of factor i to each factor and wi is
the fuzzy local weight of the ith factor.

Step 4. Calculate the global weights for the sub-factors. Global subfactor weights are comput-
ed by multiplying local weight of the sub-factor with the local weight of the factor to which
it belongs.

3. The Proposed Fuzzy TOPSIS with Interval-Valued Fuzzy Numbers

Let G = {G1, G2, . . . , Gl}, A = {A1,A2, . . . ,Am}, and C = {C1, C2, . . . , Cn} be a set of decision
makers in the group decision making, a set of alternatives, and a set of criteria, respectively.
Suppose that kaij = [kxL

ij ,
kxU

ij ] is the criterion value given by the decision maker Gk, where
kaij is a normalized interval-typed triangular fuzzy number for the alternative Ai with
respect to the criterion Cj with i = 1, . . . , m; j = 1, . . . , n. Let triangular fuzzy number kω̃j =
(kωj1,

kωj2,
kωj3) be the jth criterion weight given by the decision maker Gk, j = 1, . . . , n;

k = 1, . . . , l. Suppose λ = (λ1, λ2, . . . , λl) be the weight vector of decision makers, where
0 ≤ λk ≤ 1, k = 1, . . . , l, and

∑l
k=1 λk = 1. Then we utilize the criteria weights, the decision

makers’ weights, and the criteria values to rank the order of the alternatives in the following
steps.

Step 1. Determine the weighted vector of criteria by virtue of fuzzy AHP, which is suitable for
dealingwith the uncertainty associatedwith themapping of human judgment to a number by
natural language. Theweight vectors with respect to each group decisionmaker are described
by

kω =
(
kω̃1,

kω̃2, . . . ,
k ω̃n

)
, k = 1, . . . , l. (3.1)
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Step 2. Construct a weighted fuzzy normalized decision matrix for each decision maker as
follows:

kB̃ = (kỹij)m×n =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

kω̃1 ×
[
kxL

11,
kxU

11

]
kω̃2 ×

[
kxL

12,
kxU

12

] · · · kω̃n ×
[
kxL

1n,
kxU

1n

]

kω̃1 ×
[
kxL

21,
kxU

21

]
kω̃2 ×

[
kxL

22,
kxU

22

] · · · kω̃n ×
[
kxL

2n,
kxU

2n

]

...
...

...
...

kω̃1 ×
[
kxL

m1,
kxU

m1

]
kω̃2 ×

[
kxL

m2,
kxU

m2

] · · · kω̃n ×
[
kxL

mn,
kxU

mn

]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(3.2)

where k = 1, . . . , l, and the element kỹij (i = 1, . . . , m; j = 1, . . . , n) of kB̃ can be calculated
according to Definition 2.6 (iii), 2.2, and 2.3; that is,

kỹij = kω̃j ×
[
kxL

ij ,
kxU

ij

]
=

[
kω̃j ,

kω̃j

]
×
[
kxL

ij ,
kxU

ij

]
=

[
kbLij ,

kbUij

]
,

kbLij =
∧{

kω̃j × kxL
ij ,

k ω̃j × kxU
ij

}
, kbUij =

∨{
kω̃j ×k xL

ij ,
kω̃j ×k xU

ij

}
.

(3.3)

Step 3. Identify the positive ideal solution kS+ and negative ideal solution kS− for each deci-
sion maker Gk (k = 1, . . . , l) as follows:

kS+ =
(
kS+

1 ,
k S+

2 , . . . ,
k S+

n

)
,

kS− =
(
kS−

1 ,
k S−

2 , . . . ,
k S−

n

)
,

(3.4)

where

kS+
j =

⎧
⎪⎨

⎪⎩

∨

i∈Nm

kỹij , if j ∈ J1,

∧

i∈Nm

kỹij , if j ∈ J2,

kS−
j =

⎧
⎪⎨

⎪⎩

∧

i∈Nm

kỹij , if j ∈ J1,

∨

i∈Nm

kỹij , if j ∈ J2,

(3.5)

j = 1, . . . , n; Nm = {1, . . . , m}, J1 is composed of the criteria with the property that the more
value of the criterion the better, and J2 consists of the criteria with the property that the less
its value, the better.

Step 4. Calculate the distances from the positive ideal solution kS+ and the negative ideal
solution kS− for each alternative Ai, respectively. The distance of alternative Ai from the
positive ideal solution of the group decision maker Gk, kd+

i is given by

kd+
i =

n∑

j=1

d̂
(
kỹij ,

kS+
j

)
=

n∑

j=1

√

1
2

(
d
(
kỹij

L, kS+L
j

))2
+
1
2

(
d
(
kỹij

U, kS+U
j

))2
, i ∈ Nm.

(3.6)
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In a similar way, the distance of alternative Ai from the negative ideal solution of the group
decision maker Gk, kd−

i is given by

kd−
i =

n∑

j=1

d̂
(
kỹij ,

kS−
j

)
=

n∑

j=1

√

1
2

(
d
(
kỹij

L, kS−L
j

))2
+
1
2

(
d
(
kỹij

U, kS−U
j

))2
, i ∈ Nm,

(3.7)

where the distance between two triangular fuzzy numbers is defined in Section 2.

Step 5. Calculate the relative closeness for each alternative Ai of each decision maker Gk,
kp(Ai) with respect to the positive ideal solution as

kp(Ai) =
kd−

i

kd+
i +

k d−
i

, i ∈ Nm, k = 1, . . . , l. (3.8)

The higher the value of kp(Ai), the closer the ith alternative is to the positive ideal
solution for the decision maker Gk.

Next, the relative closeness matrix is constructed by

RC =

⎛

⎜
⎜
⎜
⎝

1p(A1) 2p(A1) · · · 1p(A1)
1p(A2) 2p(A2) · · · 1p(A2)

...
...

...
...

1p(Am) 2p(Am) · · · 1p(Am)

⎞

⎟
⎟
⎟
⎠

. (3.9)

And the weighted relative closeness matrix by introducing the importance weights of group
decision makers into the relative closeness is presented as follows:

WRC =

⎛

⎜
⎜
⎜
⎝

λ1 · 1p(A1) λ2 · 2p(A1) · · · λl · lp(A1)
λ1 · 1p(A2) λ2 · 2p(A2) · · · λl · lp(A2)

...
...

...
...

λ1 · 1p(Am) λ2 · 2p(Am) · · · λl · lp(Am)

⎞

⎟
⎟
⎟
⎠

. (3.10)

Step 6. Construct the group positive ideal solution S+
G and the group negative ideal solution

S−
G, respectively, by applying the classical TOPSIS to the decision matrix in the following:

S+
G =

(
Ŝ+
G1
, Ŝ+

G2
, . . . , Ŝ+

Gl

)
=

(
∨

i∈Nm

λ1 · 1p(Ai),
∨

i∈Nm

λ2 · 2p(Ai), . . . ,
∨

i∈Nm

λl · lp(Ai)

)

,

S−
G =

(
Ŝ−
G1
, Ŝ−

G2
, . . . , Ŝ−

Gl

)
=

(
∧

i∈Nm

λ1 · 1p(Ai),
∧

i∈Nm

λ2 · 2p(Ai), . . . ,
∧

i∈Nm

λl · lp(Ai)

)

,

(3.11)
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Step 7. Calculate to each alternative Ai the distances from the group positive ideal solution
S+
G and from the group negative ideal solution S−

G, respectively, as follows:

d+
Gi

=

√
√
√
√

l∑

r=1

(
λr · rp(Ai) − Ŝ+

Gr

)2
,

d−
Gi

=

√
√
√
√

l∑

r=1

(
λr · rp(Ai) − Ŝ−

Gr

)2
,

(3.12)

where i ∈ Nm.

Step 8. Calculate the group relative closeness δG for each alternativeAi (i ∈ Nm)with respect
to group positive ideal solution S+

G as

δG(Ai) =
d−
Gi

(
d−
Gi

+ d+
Gi

) . (3.13)

Step 9. Rank the alternatives according to the group relative closeness. The bigger the δG(Ai)
is, the better the alternative i is, vice versa. This is the reason that the alternative having higher
value δG(Ai) is closer to the group positive ideal solution. Therefore, the best alternatives are
those that have the highest value δG.

4. Refractured Well Selection

In the low-permeability oil and gas development process, refracturing of oil and gas wells
has been extensively used and become an important measure to maintain and increase
the production of more crude oil in the failure of the original crack. During refracturing
treatment, several properties of oil and gas reservoir including porosity, formation pressure,
and oil saturation reduce to varying degrees. Moreover, it is difficult for refractured well to
ensure a certain amount of economic output. Currently, the alternative of refractured well is
chosen mainly by experience. Since human judgments including preferences are often vague
and imprecise and many factors affecting refractured well selection are complex and often
conflict with each other, whether the desire yield is achieved after refracturing is unknown.
In this paper, we try to deal with the well selection of refracturing problem by quantitative
factors comprehensively and by means of fuzzy AHP and fuzzy TOPSIS. By that, we can
quantificationally determine the preferred candidate well for refracturing. As an illustration,
consider six wells in a certain oil field as alternatives. There aremany kinds of factors affecting
refracturing as follows.

4.1. Effective Permeability (c1)

Effective permeability is one of the important parameters for evaluating reservoir, which
reflects the capacity for allowing fluid to flow through the formation. If the reservoir lithology
is too dense and has extremely low permeability, then the yield will not be too high due
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to the diversion capacity constraints, even if the formation pressure is higher and have
larger reserves. So making refracturing measurement can greatly generate far-reaching crack,
improve the reservoir flow capacity and enlarge the drainage area in order to achieve the
increasing yield effect obviously.

4.2. Reservoir Effective Thickness (c2)

Whether the fracturing measures can be implemented is directly affected by the size of the
reservoir’s effective thickness. If the effective thickness is too thin, the yield through fractur-
ing will be greatly affected.

4.3. Porosity (c3)

For the reservoir with low porosity and poor connectivity, taking fracturing can generate
crack in the formation, change pore network structure, and increase the number of connected
throat to help improving conductivity.

4.4. Water Saturation (c4)

Water saturation, an important parameter for the calculation of reserves and recoverable
reserves, directly reflects the quality of the reservoir. The higher the water saturation for well
layer, the worse the yield of fractured well layer.

4.5. Skin Factor (c5)

Skin coefficient reflects the degree of well pollution. The higher the skin factor, the more
serious the well pollution. When permeability decreased more and more seriously near the
wellbore and the fluid fall into the well, the exploration value is lost because of the loss of a
large amount of energy. If the conduct of fracturing removes the blocking, then both the yield
and the flow condition can be effectively improved.

4.6. Producing Pressure Drop (c6)

The bigger the producing pressure drop, the bigger the loss of pressure induced by fluid
flowing from the supply side to the bottom of well. It shows that reservoir has poor
connectivity and low permeability zone. If the fracturing is conducted, then energy con-
sumption can be reduced and low permeability zone crack is generated.

4.7. Formation Pressure (c7)

All the oil, gas, and water contained in oil and gas layer bear certain formation pressure.
Generally speaking, the deeper the reservoir, the larger the formation pressure. Most of the
reservoir pressure coefficient lies between 0.7 and 1.2. The reservoir pressure, less than 0.7,
is called abnormal low pressure. And the reservoir, higher than 1.2, is called abnormal high
pressure.
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Table 2: Several characteristic parameters of six alternatives for refracturing.

c1 c2 c3 c4
c5 c6 c7 c8

(×10−3 μm2) (m) (%) (%) (MPa) (MPa) (t/d)
A1 [10, 11] [17.8, 20] [5.5, 6] [49, 50] [6.48, 6.5] [8.9, 9.1] [39.6, 40] [4.12, 4.18]
A2 [0.2, 0.3] [10.2, 11] [5.5, 6] [57, 59] [0.76, 0.8] [9.9, 10] [49.8, 50] [3.05, 3.1]
A3 [10.8, 11.2] [9.8, 10.6] [4.8, 5] [50, 51] [11.35, 12] [12, 13] [47.5, 47.8] [4.11, 4.2]
A4 [4.5, 5] [6.4, 7.5] [4.8, 6] [55, 56] [9.32, 9.5] [7, 7.2] [49.9, 50] [1.13, 1.16]
A5 [12.5, 13] [3.2, 4] [6, 6.5] [58, 60] [2.25, 2.5] [15, 15.5] [49.8, 50] [3.02, 3.1]
A6 [4, 4.5] [5.2, 6] [4, 4.5] [40, 42] [7.12, 7.3] [9.5, 9.6] [47.9, 48] [2, 2.05]

4.8. Oil Production Daily (c8)

Oil production is the capability logo for the well. Fracturing measures aim at choosing the
wells with low permeability or production.

Table 2 presents the measured values of the alternatives with respect to the above
influencing factors. Because of some incomplete and unattainable information, the result
data is determined by interval data. Next we utilize the proposed approach to determine
the preferred alternatives with refracturing measurement.

5. Results and Discussion

Firstly, suppose that the matrix B1 = (uij)m×n consists of the interval data from Table 2, where
uij = [uL

ij , u
U
ij ] and uij denotes the interval data from the alternative Ai with respect to the

criterion cj, i = 1, . . . , m; j = 1, . . . , n. Then we calculate a normalized decision matrix B2 =
(nij)m×n with nij = [nL

ij , n
U
ij ], i = 1, . . . , m; j = 1, . . . , n, as follows:

nL
ij =

xL
ij

√
∑m

i=1

((
xL
ij

)2
+
(
xU
ij

)2
) ,

nU
ij =

xU
ij

√
∑m

i=1

((
xL
ij

)2
+
(
xU
ij

)2
) .

(5.1)

Since our field data given in Table 2 is affected by complex environment, incomplete
information, and human imprecise judgments, decision makers’ judgments including pref-
erences are often vague and cannot estimate his preference with an exact value. Here, we
consider that the rating of each alternative is affected by 5% of uncertainty. Therefore, the
fuzzy decision matrix after normalization using interval-valued triangular fuzzy numbers is
shown in Table 3.

In the process of decision making for refractured well selection, suppose that the
decision makers consist of three managers from the project, two experts (G1 and G2) from
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Table 3: A fuzzy normalized decision matrix.

c1 c2

A1 [(0.3221, 0.3390, 0.3560), (0.3543, 0.3729, 0.3916)] [(0.4625, 0.4868, 0.5112), (0.5197, 0.5470, 0.5744)]

A2 [(0.0064, 0.0068, 0.0071), (0.0097, 0.0102, 0.0107)] [(0.2650, 0.2790, 0.2929), (0.2858, 0.3009, 0.3159)]

A3 [(0.3479, 0.3662, 0.3845), (0.3607, 0.3797, 0.3987)] [(0.2546, 0.2680, 0.2814), (0.2754, 0.2899, 0.3044)]

A4 [(0.1449, 0.1526, 0.1602), (0.1610, 0.1695, 0.1780)] [(0.1663, 0.1750, 0.1838), (0.1949, 0.2051, 0.2154)]

A5 [(0.4026, 0.4238, 0.4450), (0.4187, 0.4408, 0.4628)] [(0.0831, 0.0875, 0.0919), (0.1039, 0.1094, 0.1149)]

A6 [(0.1288, 0.1356, 0.1424), (0.1449, 0.1526, 0.1602)] [(0.1351, 0.1422, 0.1493), (0.1559, 0.1641, 0.1723)]

c3 c4

A1 [(0.2777, 0.2923, 0.3069), (0.3029, 0.3189, 0.3348)] [(0.2554, 0.2688, 0.2823), (0.2606, 0.2743, 0.2880)]

A2 [(0.2777, 0.2923, 0.3069), (0.3029, 0.3189, 0.3348)] [(0.2971, 0.3127, 0.3284), (0.3075, 0.3237, 0.3399)]

A3 [(0.2423, 0.2551, 0.2678), (0.2524, 0.2657, 0.2790)] [(0.2606, 0.2743, 0.2880), (0.2658, 0.2798, 0.2938)]

A4 [(0.2423, 0.2551, 0.2678), (0.3029, 0.3189, 0.3348)] [(0.2867, 0.3018, 0.3168), (0.2919, 0.3072, 0.3226)]

A5 [(0.3029, 0.3189, 0.3348), (0.3282, 0.3454, 0.3627)] [(0.3023, 0.3182, 0.3341), (0.3127, 0.3292, 0.3456)]

A6 [(0.2019, 0.2126, 0.2232), (0.2272, 0.2391, 0.2511)] [(0.2085, 0.2195, 0.2304), (0.2189, 0.2304, 0.2420)]

c5 c6

A1 [(0.2413, 0.2540, 0.2667), (0.2421, 0.2548, 0.2676)] [(0.2243, 0.2361, 0.2479), (0.2293, 0.2414, 0.2534)]

A2 [(0.0283, 0.0298, 0.0313), (0.0298, 0.0314, 0.0329)] [(0.2494, 0.2626, 0.2757), (0.2520, 0.2652, 0.2785)]

A3 [(0.4227, 0.4449, 0.4672), (0.4469, 0.4704, 0.4940)] [(0.3024, 0.3183, 0.3342), (0.3276, 0.3448, 0.3620)]

A4 [(0.3471, 0.3654, 0.3836), (0.3538, 0.3724, 0.3910)] [(0.1764, 0.1857, 0.1949), (0.1814, 0.1910, 0.2005)]

A5 [(0.0838, 0.0882, 0.0926), (0.0931, 0.0980, 0.1029)] [(0.3780, 0.3978, 0.4177), (0.3906, 0.4111, 0.4317)]

A6 [(0.2652, 0.2791, 0.2931), (0.2719, 0.2862, 0.3005)] [(0.2394, 0.2520, 0.2646), (0.2419, 0.2546, 0.2674)]

c7 c8

A1 [(0.2279, 0.2399, 0.2518), (0.2302, 0.2423, 0.2544)] [(0.3612, 0.3802, 0.3992), (0.3664, 0.3857, 0.4050)]

A2 [(0.2866, 0.3016, 0.3167), (0.2877, 0.3028, 0.3180)] [(0.2674, 0.2814, 0.2955), (0.2717, 0.2860, 0.3004)]

A3 [(0.2733, 0.2877, 0.3021), (0.2750, 0.2895, 0.3040)] [(0.3603, 0.3792, 0.3982), (0.3682, 0.3876, 0.4069)]

A4 [(0.2871, 0.3022, 0.3174), (0.2877, 0.3028, 0.3180)] [(0.0991, 0.1043, 0.1095), (0.1017, 0.1070, 0.1124)]

A5 [(0.2866, 0.3016, 0.3167), (0.2877, 0.3028, 0.3180)] [(0.2647, 0.2787, 0.2926), (0.2717, 0.2860, 0.3004)]

A6 [(0.2756, 0.2901, 0.3046), (0.2762, 0.2907, 0.3053)] [(0.1753, 0.1845, 0.1938), (0.1797, 0.1892, 0.1968)]

the well exploration field, and one organizer (G3) of oil company. Since the perspective of the
decision makers may be not given the same importance, a weighted vector

kω =
(
kω̃1,

kω̃2, . . . ,
kω̃n

)
(5.2)

is introduced to denote the importance weight for the criteria regarding the opinion of the
decision maker Gk with k = 1, 2, 3. Next, determine the weighted vector of criteria by virtue
of fuzzy AHP, which is suitable for dealing with the uncertainty associated with the mapping
of human judgment to a number by natural language. Following the fuzzy AHP approach
provided in Section 2, for the purpose of weighting the criteria of refractured well selection,
the factors and sub-factors are determined by the group decision makers as follows. The
factors affecting refractured well selection are composed of the properties of objective thing
(PO) and the productive features (PF), and the sub-factors consist of all the criteria of well
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Table 4: Local weights and pairwise comparison matrix of factors.

Factors PO PF Local weights for decision maker G1

PO (1, 1, 1) (1, 3/2, 2) (0.4142, 0.6000, 0.8284)
PF (1/2, 2/3, 1) (1, 1, 1) (0.2929, 0.4000, 0.5858)
Factors PO PF Local weights for decision maker G2

PO (1, 1, 1) (2/5, 1/2, 2/3) (0.2638, 0.3333, 0.4396)
PF (3/2, 2, 5/2) (1, 1, 1) (0.5108, 0.6667, 0.8514)
Factors PO PF Local weights for decision maker G3

PO (1, 1, 1) (1, 1, 1) (0.5000, 0.5000, 0.5000)
PF (1, 1, 1) (1, 1, 1) (0.5000, 0.5000, 0.5000)

Table 5: Local weights and pairwise comparison matrix of subfactors belonging to PO.

c1 c2 c3 c4 c5 Local weights for G1

c1 (1, 1, 1) (3/2, 2, 5/2) (1, 3/2, 2) (1, 3/2, 2) (3/2, 2, 5/2) (0.1841, 0.2984, 0.4555)

c2 (2/5, 1/2,
2/3)

(1, 1, 1) (1/2, 2/3, 1) (1/2, 2/3, 1) (1, 1, 1) (0.0988, 0.1423, 0.2206)

c3 (1/2, 2/3, 1) (1, 3/2, 2) (1, 1, 1) (1, 1, 1) (1, 3/2, 2) (0.1363, 0.2085, 0.3157)

c4 (1/2, 2/3, 1) (1, 3/2, 2) (1, 1, 1) (1, 1, 1) (1, 3/2, 2) (0.1363, 0.2085, 0.3157)

c5 (2/5, 1/2,
2/3)

(1, 1, 1) (1/2, 2/3, 1) (1/2, 2/3, 1) (1, 1, 1) (0.0988, 0.1423, 0.2206)

c1 c2 c3 c4 c5 Local weights for G2

c1 (1, 1, 1) (1, 3/2, 2) (1/2, 1, 3/2) (1/2, 1, 3/2) (1, 3/2, 2) (0.1146, 0.2285, 0.3895)

c2 (1/2, 2/3, 1) (1, 1, 1) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1, 1, 1) (0.0912, 0.1358, 0.2134)

c3 (2/3, 1, 2) (3/2, 2, 5/2) (1, 1, 1) (1, 1, 1) (3/2, 2, 5/2) (0.1639, 0.2564, 0.4159)

c4 (2/3, 1, 2) (3/2, 2, 5/2) (1, 1, 1) (1, 1, 1) (1/2, 1, 3/2) (0.1316, 0.2232, 0.3755)

c5 (1/2, 2/3, 1) (1, 1, 1) (2/5, 1/2, 2/3) (2/3, 1, 2) (1, 1, 1) (0.1010, 0.1560, 0.2658)

c1 c2 c3 c4 c5 Local weights for G3

c1 (1, 1, 1) (2/7,1/3, 2/5) (2, 5/2, 3) (2, 5/2, 3) (5/2, 3, 7/2) (0.1825, 0.2467, 0.3312)

c2 (5/2, 3, 7/2) (1, 1, 1) (5/2, 3, 7/2) (5/2, 3, 7/2) (5/2, 3, 7/2) (0.3080, 0.4118, 0.5436)

c3 (1/3, 2/5,
1/2)

(2/7, 1/3, 2/5) (1, 1, 1) (1, 3/2, 2) (1, 3/2, 2) (0.0925, 0.1344, 0.1908)

c4 (1/3, 2/5,
1/2)

(2/7, 1/3, 2/5) (1/2, 2/3, 1) (1, 1, 1) (1, 1, 1) (0.0805, 0.1054, 0.1446)

c5 (2/7, 1/3,
2/5)

(2/7, 1/3, 2/5) (1/2, 2/3, 1) (1, 1, 1) (1, 1, 1) (0.0780, 0.1016, 0.1383)

selection for refracturing, where the criteria c1, c2, c3, c4, and c5 belong to PO and the criteria
c6, c7, and c8 belong to PF. Pairwise comparisonmatrices used to calculate weights for factors
and sub-factors are formed by each decision member, respectively, see Tables 4, 5, 6, and 7.

For two normalized triangular fuzzy numbers A and B, its greatest value is H =
(1, 1, 1). So, we can compare the size of A and B by comparing the distances d(A,H) and
d(B,H). If it shows that distance from A to H is farther than distance from B to H; that
is, d(A,H) > d(B,H), then we say B is larger than A or B is more important than A; that is,



Journal of Applied Mathematics 15

Table 6: Local weights and pairwise comparison matrix of subfactors belonging to PF.

c6 c7 c8 Local weights for G1

c6 (1, 1, 1) (1/2, 2/3, 1) (1/2, 2/3, 1) (0.1790, 0.2500, 0.3802)
c7 (1, 3/2, 2) (1, 1, 1) (1, 1, 1) (0.2841, 0.3750, 0.4791)
c8 (1, 3/2, 2) (1, 1, 1) (1, 1, 1) (0.2841, 0.3750, 0.4791)

c6 c7 c8 Local weights for G2

c6 (1, 1, 1) (2/3, 1, 2) (1/2, 2/3, 1) (0.1766, 0.2809, 0.5187)
c7 (1/2, 1, 3/2) (1, 1, 1) (5/2, 3, 7/2) (0.2744, 0.4638, 0.7155)
c8 (1, 3/2, 2) (2/7, 1/3, 2/5) (1, 1, 1) (0.1678, 0.2552, 0.3821)

c6 c7 c8 Local weights for G3

c6 (1, 1, 1) (1, 3/2, 2) (2/7, 1/3, 2/5) (0.1725, 0.2281, 0.3070)
c7 (1/2, 2/3, 1/2) (1, 1, 1) (2/7, 1/3, 2/5) (0.1369, 0.1741, 0.1934)
c8 (5/2, 3, 7/2) (5/2, 3, 7/2) (1, 1, 1) (0.4824, 0.5978, 0.7625)

Table 7: Computed global weights for sub-factors.

Criteria Decision maker G1 Decision maker G2 Decision maker G3

c1 (0.0763, 0.1790, 0.3774) (0.0302, 0.0762, 0.1710) (0.0913, 0.1234, 0.1656)
c2 (0.0409, 0.0854, 0.1828) (0.0241, 0.0453, 0.0937) (0.1540, 0.2059, 0.2718)
c3 (0.0565, 0.1251, 0.2616) (0.0432, 0.0855, 0.1826) (0.0462, 0.0672, 0.0954)
c4 (0.0565, 0.1251, 0.2616) (0.0347, 0.0744, 0.1649) (0.0402, 0.0527, 0.0723)
c5 (0.0409, 0.0854, 0.1828) (0.0267, 0.0520, 0.1167) (0.0390, 0.0508, 0.0692)
c6 (0.0524, 0.1000, 0.2227) (0.0902, 0.1873, 0.4416) (0.0862, 0.1141, 0.1535)
c7 (0.0832, 0.1500, 0.2806) (0.1401, 0.3092, 0.6091) (0.0685, 0.0870, 0.0967)
c8 (0.0832, 0.1500, 0.2806) (0.0857, 0.1702, 0.3254) (0.2412, 0.2989, 0.3812)

B > A. Therefore, by Table 7, the ordering for the criteria according to the importance weights
given by each decision maker is the following:

G1 : c1 > c7 = c8 > c3 = c4 > c6 > c2 = c5;

G2 : c7 > c6 > c8 > c3 > c1 > c4 > c5 > c2;

G3 : c8 > c2 > c1 > c6 > c7 > c3 > c4 > c5.

(5.3)

It is shown that G1 seeks to maximize the effective permeability c1, which is one of the
important parameters in evaluating reservoir. G2 stress optimizing the productive features
including formation pressure c7, producing pressure drop c6, and then oil production daily
c8. G3 seeks to maximize the output of production c8.

Next, the proposed fuzzy TOPSIS procedure is applied to determine final ranking for
the alternatives. Taking decision maker 1 as an example, by using Tables 3 and 7, Step 2
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in Section 3 constructs a weighted fuzzy normalized decision matrix 1B̃ shown in Table 8.
Step 3 identifies the positive ideal solution 1S+ and negative ideal solution 1S− as follows:

1S+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(0.0307, 0.0759, 0.1679), (0.0319, 0.0789, 0.1747)],
[(0.0189, 0.0416, 0.0934), (0.0213, 0.0467, 0.1050)],
[(0.0171, 0.0399, 0.0876), (0.0185, 0.0432, 0.0949)],
[(0.0118, 0.0275, 0.0603), (0.0124, 0.0288, 0.0633)],
[(0.0012, 0.0025, 0.0057), (0.0012, 0.0027, 0.0060)],
[(0.0092, 0.0186, 0.0434), (0.0095, 0.0191, 0.0447)],
[(0.0239, 0.0453, 0.0890), (0.0239, 0.0454, 0.0892)],
[(0.0300, 0.0570, 0.1120), (0.0306, 0.0581, 0.1142)],

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1S− =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(0.0005, 0.0012, 0.0027), (0.0007, 0.0018, 0.0040)],
[(0.0034, 0.0075, 0.0168), (0.0043, 0.0093, 0.0210)],
[(0.0114, 0.0266, 0.0584), (0.0128, 0.0299, 0.0657)],
[(0.0171, 0.0398, 0.0874), (0.0177, 0.0412, 0.0904)],
[(0.0173, 0.0380, 0.0854), (0.0183, 0.0402, 0.0903)],
[(0.0198, 0.0398, 0.0930), (0.0205, 0.0411, 0.0961)],
[(0.0190, 0.0360, 0.0707), (0.0191, 0.0363, 0.0714)],
[(0.0082, 0.0156, 0.0307), (0.0085, 0.0161, 0.0315)],

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5.4)

where J1 = {c1, c2, c3, c7, c8} and J2 = {c4, c5, c6}.
Steps 3, 4, and 5 in Section 3 calculate the distances 1d+

i ,
1d−

i and the relative closeness
1p(Ai) with i = 1, . . . , 6. And the results with the application of the proposed fuzzy
TOPSIS for another decision makers G2 and G3 can be obtained by similar calculation. These
results are shown in Table 9. The most promising alternative for refracturing measurement
according to G1 (1p(A1) = 0.7150), G2 (2p(A1) = 0.6382), and G3 (3p(A1) = 0.8103) is
the alternative A1, possibly due to the optimal relative closeness and higher performance
ratings for the criteria c1, c2, and c8. Moreover, these criteria are just stressed by
the three decision makers. The second-best alternative may be A3, which has higher
performance ratings for the criteria c1, c2, and c8. However, from the viewpoint of the
cost criteria (that is to say, the less its value for cost criterion, the better the criterion),
A3 has higher cost criteria c4([50, 51]), c5([11.35, 12]), c6([12, 13]) than A1’s cost criteria
c4([49, 50]), c5([6.48, 6.5]), c6([8.9, 9.1]). In addition, A4 and A5 are the most preferable ones
in the view of three decision makers due to the suitable amount of performance ratings on
benefit criteria. However, the alternative A2 is considered the worst alternative, possibly
due to its rather poor effective permeability [0.2, 0.3]. From Table 2, the minimum and
maximum for skin factor are presented by A2 and A3, respectively. Because skin factor is
the least importance weight among all the alternatives for decision makers, A2 remains a
weak alternative. The latter discordance between A2 and A6 among decision makers might
be explained by differences in various criteria, where A2 has the lowest rating [0.2,0.3] with
respect to the criterion c1, but A6 has the lowest rating [4,4.5] with respect to the criterion
c3, the criteria c2, c5, c7, and c8 of alternative A2 are superior to that of alternative A6, and
the criteria c4 and c6 of alternative A6 are superior to that of alternative A2. As a result of
the discordances among opinions in group decision making, we shall further aggregate the
obtained results from all the decision makers.

Next, suppose λ = (λ1, λ2, λ3) = (1/3, 1/3, 1/3) be the importance weight vector of
decision makers, which means that all decision makers have the same importance. Then the
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Table 8: A weighted fuzzy normalized decision matrix.

c1 c2
A1 [(0.0246, 0.0607, 0.1344), (0.0270, 0.0668, 0.1478)] [(0.0189, 0.0416, 0.0934), (0.0213, 0.0467, 0.1050)]
A2 [(0.0005, 0.0012, 0.0027), (0.0007, 0.0018, 0.0040)] [(0.0108, 0.0238, 0.0535), (0.0117, 0.0257, 0.0577)]
A3 [(0.0265, 0.0655, 0.1451), (0.0275, 0.0680, 0.1505)] [(0.0104, 0.0229, 0.0514), (0.0113, 0.0248, 0.0556)]
A4 [(0.0111, 0.0273, 0.0605), (0.0123, 0.0303, 0.0672)] [(0.0068, 0.0149, 0.0336), (0.0080, 0.0175, 0.0394)]
A5 [(0.0307, 0.0759, 0.1679), (0.0319, 0.0789, 0.1747)] [(0.0034, 0.0075, 0.0168), (0.0043, 0.0093, 0.0210)]
A6 [(0.0098, 0.0243, 0.0537), (0.0111, 0.0273, 0.0605)] [(0.0055, 0.0121, 0.0273), (0.0064, 0.0140, 0.0315)]

c3 c4
A1 [(0.0157, 0.0366, 0.0803), (0.0171, 0.0399, 0.0876)] [(0.0144, 0.0336, 0.0738), (0.0147, 0.0343, 0.0754)]
A2 [(0.0157, 0.0366, 0.0803), (0.0171, 0.0399, 0.0876)] [(0.0168, 0.0391, 0.0859), (0.0174, 0.0405, 0.0889)]
A3 [(0.0137, 0.0319, 0.0701), (0.0143, 0.0332, 0.0730)] [(0.0147, 0.0343, 0.0754), (0.0150, 0.0350, 0.0769)]
A4 [(0.0137, 0.0319, 0.0701), (0.0171, 0.0399, 0.0876)] [(0.0162, 0.0377, 0.0829), (0.0165, 0.0384, 0.0844)]
A5 [(0.0171, 0.0399, 0.0876), (0.0185, 0.0432, 0.0949)] [(0.0171, 0.0398, 0.0874), (0.0177, 0.0412, 0.0904)]
A6 [(0.0114, 0.0266, 0.0584), (0.0128, 0.0299, 0.0657)] [(0.0118, 0.0275, 0.0603), (0.0124, 0.0288, 0.0633)]

c5 c6
A1 [(0.0099, 0.0217, 0.0488), (0.0099, 0.0218, 0.0489)] [(0.0118, 0.0236, 0.0552), (0.0120, 0.0241, 0.0564)]
A2 [(0.0012, 0.0025, 0.0057), (0.0012, 0.0027, 0.0060)] [(0.0131, 0.0263, 0.0614), (0.0132, 0.0265, 0.0620)]
A3 [(0.0173, 0.0380, 0.0854), (0.0183, 0.0402, 0.0903)] [(0.0158, 0.0318, 0.0744), (0.0172, 0.0345, 0.0806)]
A4 [(0.0142, 0.0312, 0.0701), (0.0145, 0.0318, 0.0715)] [(0.0092, 0.0186, 0.0434), (0.0095, 0.0191, 0.0447)]
A5 [(0.0034, 0.0075, 0.0169), (0.0038, 0.0084, 0.0188)] [(0.0198, 0.0398, 0.0930), (0.0205, 0.0411, 0.0961)]
A6 [(0.0108, 0.0238, 0.0536), (0.0111, 0.0244, 0.0549)] [(0.0125, 0.0252, 0.0589), (0.0127, 0.0255, 0.0595)]

c7 c8
A1 [(0.0190, 0.0360, 0.0707), (0.0191, 0.0363, 0.0714)] [(0.0300, 0.0570, 0.1120), (0.0305, 0.0579, 0.1136)]
A2 [(0.0238, 0.0452, 0.0889), (0.0239, 0.0454, 0.0892)] [(0.0222, 0.0422, 0.0829), (0.0226, 0.0429, 0.0843)]
A3 [(0.0227, 0.0432, 0.0848), (0.0229, 0.0434, 0.0853)] [(0.0300, 0.0569, 0.1117), (0.0306, 0.0581, 0.1142)]
A4 [(0.0239, 0.0453, 0.0890), (0.0239, 0.0454, 0.0892)] [(0.0082, 0.0156, 0.0307), (0.0085, 0.0161, 0.0315)]
A5 [(0.0238, 0.0452, 0.0889), (0.0239, 0.0454, 0.0892)] [(0.0220, 0.0418, 0.0821), (0.0226, 0.0429, 0.0843)]
A6 [(0.0229, 0.0435, 0.0855), (0.0230, 0.0436, 0.0857)] [(0.0146, 0.0277, 0.0544), (0.0150, 0.0284, 0.0557)]

Table 9: Application of the fuzzy TOPSIS for decision makers with weights.

Alt. 1d+
i

1d−
i

1p(Ai) Rank 2d+
i

2d−
i

2p(Ai) Rank 3d+
i

3d−
i

3p(Ai) Rank
A1 0.0800 0.2006 0.7150 1 0.0754 0.1330 0.6382 1 0.0392 0.1674 0.8103 1
A2 0.1882 0.0759 0.2873 6 0.1213 0.0707 0.3683 6 0.1549 0.0906 0.3690 5
A3 0.1436 0.2141 0.5985 2 0.1182 0.1492 0.5580 2 0.1116 0.1394 0.5553 2
A4 0.2285 0.1693 0.4256 4 0.1558 0.1272 0.4496 4 0.2233 0.1557 0.4109 4
A5 0.1292 0.1854 0.5893 3 0.1290 0.1504 0.5384 3 0.1603 0.1244 0.4371 3
A6 0.2190 0.1420 0.3934 5 0.1574 0.1203 0.4331 5 0.2119 0.1235 0.3683 6

weighted relative closeness matrix is calculated and shown in Table 10. The group positive
ideal solutions and group negative ideal solutions are also calculated by utilizing TOPSIS.
Finally Step 9 in Section 3 presents the final ranking for refractured well selection. According
to the preference order of δG(Ai), the final ranking of these alternatives is A1 > A3 > A5 >
A4 > A6 > A2. It shows that alternative A1 is the best one and A3 is the second by Table 10,
which could be explainedmainly by sufficient oil production daily and effective permeability.
Indeed these criteria are more attractive for decision makers.
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Table 10: The weighted relative closeness matrix, group positive (negative) ideal solution, and ranking.

Alternatives (1/3) · 1p(Ai) (1/3) · 2p(Ai) (1/3) · 3p(Ai) d+
Gi

d−
Gi

δG Ranking

A1 0.2383 0.2127 0.2701 0 0.2239 1.0000 1
A2 0.0958 0.1228 0.1230 0.2237 0.0002 0.0010 6
A3 0.1995 0.1860 0.1851 0.0972 0.1365 0.5842 2
A4 0.1419 0.1499 0.1370 0.1760 0.0553 0.2392 4
A5 0.1964 0.1795 0.1457 0.1354 0.1178 0.4652 3
A6 0.1311 0.1444 0.1228 0.1946 0.0414 0.1756 5

Table 11: Theweighted relative closenessmatrix by using importanceweight λ = (0.2, 0.2, 0.6) and ranking.

Alternatives 0.2 · 1p(Ai) 0.2 · 2p(Ai) 0.6 · 3p(Ai) d+
Gi

d−
Gi

δG Ranking

A1 0.1430 0.1276 0.4862 0 0.2838 1.0000 1
A2 0.0575 0.0737 0.2214 0.2834 0.0004 0.0015 6
A3 0.1197 0.1116 0.3332 0.1556 0.1338 0.4623 2
A4 0.0851 0.0899 0.2465 0.2494 0.0410 0.1412 4
A5 0.1179 0.1077 0.2623 0.2262 0.0807 0.2629 3
A6 0.0787 0.0866 0.2210 0.2760 0.0249 0.0827 5

Table 12: The increasing daily oil production of the alternatives after refracturing.

Alternatives A1 A2 A3 A4 A5 A6

The increasing oil production (t/d) 10.6 1.3 8.0 5.1 7.8 1.6

By changing the importance weights of the group decision makers, the ranking of the
alternatives may be modified. Now, by virtue of the TOPSIS, another different important
weight vector λ = (0.2, 0.2, 0.6) is chosen to calculate the weighted relative closeness matrix,
group positive ideal solution, and group negative ideal solution, and to determine the final
ranking for refractured well selection in Table 11. The scenario pays the most of attention to
the organizer of oil company and leave two experts from the well exploration field equally
important.

After two months for refracturing, the increasing daily oil production of these
alternatives is presented in Table 12. Therefore, according to the decreasing order of the
increasing oil production daily, the final ranking of these alternatives is A1 > A3 > A5 >
A4 > A6 > A2, which reaches an agreement on the results of the proposed methodology. It
is proven by practice that the proposed method is of great reliability and suitable for solving
refractured well-selection problem.

If we utilize the AHP [24] and TOPSIS [2] to evaluate the alternatives for refracturing
measurement, the preference order of alternatives may not be in accordance with the result
obtained from the proposed fuzzy methodology. In fact, suppose the input data be the
medium of every element from Table 2, and global weights for criteria with respect to each
decision maker are calculated as shown in Table 13.

Then the TOPSIS is applied to rank the alternatives on a basis of input weights by AHP.
The corresponding results are shown in Table 14. When the group decision makers have the
same importance; that is, λ = (1/3, 1/3, 1/3) is assigned to the importance weight vector
of decision makers, the preference order determined by AHP and TOPSIS methodology is
A1 > A3 > A5 > A2 > A6 > A4. If λ = (0.2, 0.2, 0.6) is assigned to the importance weight vector
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Table 13: Computed global weights for criteria through AHP.

Criteria c1 c2 c3 c4 c5 c6 c7 c8
Decision maker G1 0.180 0.085 0.125 0.125 0.085 0.100 0.150 0.150
Decision maker G2 0.076 0.045 0.086 0.074 0.052 0.187 0.310 0.170
Decision maker G3 0.123 0.206 0.067 0.053 0.051 0.114 0.087 0.299

Table 14: Application of the TOPSIS to rank the alternatives.

Alternatives A1 A2 A3 A4 A5 A6
1p(Ai) 0.7662 0.3905 0.6307 0.3350 0.6537 0.3435
Ranking 1 4 3 6 2 5
2p(Ai) 0.7250 0.5528 0.6107 0.4519 0.5190 0.4453
Ranking 1 3 2 5 4 6
3p(Ai) 0.8836 0.4833 0.6421 0.2471 0.4484 0.2677
Ranking 1 3 2 6 4 5
δG with λ = (0.2, 0.2, 0.6) 1.0000 0.3614 0.6230 0.0033 0.3411 0.0315
Group ranking 1 3 2 6 4 5
δG with λ = (1/3, 1/3, 1/3) 1.0000 0.3156 0.6347 0.0080 0.4372 0.0272
Group ranking 1 4 2 6 3 5

of decision makers, then the preference order is A1 > A3 > A2 > A5 > A6 > A4. It shows
that the results are not in accordance with the field study, although the best and second-best
alternatives are the same as those through the field study.

The AHP and TOPSIS methods are regarded as viable approaches in solving a decision
problem when precise performance ratings are available. However, it has the constraints in
the conditions of inaccurate or vague performance ratings. For this case study, the application
of fuzzy AHP and fuzzy TOPSIS methodology can copy with the well-selection problem for
refracturing measurement effectively.

6. Conclusions

When considering the fact that, in many cases, multicriteria decision-making problems are
affected by uncertainty and taking into account the subjective preferences of the group
decision makers, we introduce interval-typed fuzzy numbers to express the values of these
criteria. Therefore, in this paper, a new model for multicriteria decision-making problem is
constructed by integrating fuzzy AHP with fuzzy TOPSIS, where the fuzzy AHP is used to
analyze the structure of the selection problem and to determine weights of the criteria in the
form of triangular fuzzy numbers, and fuzzy TOPSIS with interval-typed triangular fuzzy
numbers is proposed to determine final ranking for refractured well selection. Furthermore,
the algorithm allows finding the best alternatives.

From the field study, the proposed method is proven to be of great reliability and
significance for well selection during refracturing treatment. Since the computation processes
are straightforward and understandable, it is believed that themethod can be applied to solve
other complex and fuzzyMCGDMproblemswith amore amount of alternatives, criteria, and
group decision makers.
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[25] M. Daǧdeviren and I. Yüksel, “Developing a fuzzy analytic hierarchy process (AHP) model for
behavior-based safety management,” Information Sciences, vol. 178, no. 6, pp. 1717–1733, 2008.

[26] S. M. Miri Lavasani, Z. Yang, J. Finlay, and J. Wang, “Fuzzy risk assessment of oil and gas offshore
wells,” Process Safety and Environmental Protection, vol. 89, pp. 277–294, 2011.

[27] Y. B. Ju and A. H. Wang, “Emergency alternative evaluation under group decision makers: a method
of incorporating DS/AHPwith extended TOPSIS,” Expert Systems with Applications, vol. 39, pp. 1315–
1323, 2012.

[28] T. L. Saaty and L. T. Tran, “On the invalidity of fuzzifying numerical judgments in the analytic
hierarchy process,”Mathematical and Computer Modelling, vol. 46, no. 7-8, pp. 962–975, 2007.

[29] C. C. Sun, “A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods,”
Expert Systems with Applications, vol. 37, no. 12, pp. 7745–7754, 2010.

[30] A. T. Gumus, “Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP
and TOPSIS methodology,” Expert Systems with Applications, vol. 36, no. 2, pp. 4067–4074, 2009.

[31] F. Torfi, R. Z. Farahani, and S. Rezapour, “Fuzzy AHP to determine the relative weights of evaluation
criteria and Fuzzy TOPSIS to rank the alternatives,” Applied Soft Computing Journal, vol. 10, no. 2, pp.
520–528, 2010.
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