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Impulsive differential systems are an important class of mathematical models for many practical
systems in physics, chemistry, biology, engineering, and information science that exhibit impulsive
dynamical behaviors due to abrupt changes at certain instants during the dynamical processes.
This paper studies the controllability and observability of linear piecewise constant impulsive
systems. Necessary and sufficient criteria for reachability and controllability are established, res-
pectively. It is proved that the reachability is equivalent to the controllability under some mild
conditions. Then, necessary and sufficient criteria for observability and determinability of such
systems are established, respectively. It is also proved that the observability is equivalent to the
determinability under somemild conditions. Our criteria are of the geometric type, and they can be
transformed into algebraic type conveniently. Finally, a numerical example is given to illustrate the
utility of our criteria.

1. Introduction

In recent years, there has been increasing interest in the analysis and synthesis of impulsive
systems, or impulsive control systems, due to their significance both in theory and in applica-
tions [1–15].

Different from another type of systems associated with the impulses, that is, the
singular systems or the descriptor systems, impulsive control systems are described by
impulsive ordinary differential equations. Many real systems in physics, chemistry, biology,
engineering, and information science exhibit impulsive dynamical behaviors due to abrupt
changes at certain instants during the continuous dynamical processes. This kind of impul-
sive behaviors can be modelled by impulsive systems.
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Controllability and observability of impulsive control systems have been studied by
a number of papers [4, 6, 12, 13, 15, 16]. Leela et al. [4] investigated the controllability of a
class of time-invariant impulsive systems with the assumption that the impulses of impulsive
control are regulated at discontinuous points. Lakshmikantham andDeo [12] improved Leela
et al.’s [4] results. Then, George et al. [13] extended the results to the linear impulsive
systems with time-varying coefficients and nonlinear perturbations. Benzaid and Sznaier [6]
studied the null controllability of the linear impulsive systems with the control impulses
only acting at the discontinuous points. Guan et al. [15] investigated the controllability and
observability of linear time-varying impulsive systems. Sufficient and necessary conditions
for controllability and observability are established and their applications to time-invariant
impulsive control systems are also discussed. Xie and Wang [16] investigated controllability
and observability of a simple class of impulsive systems. Necessary and sufficient conditions
are obtained.

Controllability and observability are the two most fundamental concepts in modern
control theory [17–19]. They have close connections to pole assignment, structural decompo-
sition, quadratic optimal control and observer design, and so forth. In this paper, we aim to
derive necessary and sufficient criteria for controllability and observability of linear piecewise
constant impulsive control systems. We first investigate the reachability of such systems and
a geometric type necessary and sufficient condition is established. Then, we investigate the
controllability and an equivalent condition is established as well. Moreover, it is shown that
the controllability is not equivalent to reachability for such systems in general case but is
equivalent under some extra conditions. Next, we investigate the observability and deter-
minability of such systems, and get similar results as the controllability and reachability case.

This paper is organized as follows. Section 2 formulates the problem and presents
the preliminary results. Sections 3 and 4 investigate reachability and controllability,
respectively. Observability and determinability are investigated in Section 5. Section 6
contains a numerical example. Finally, we provide the conclusion in Section 7.

2. Preliminaries

Consider the piecewise linear impulsive system given by

ẋ(t) = Akx(t) + Bku(t), t ∈ [tk−1, tk),

x
(
t+k
)
= Ekx

(
t−k
)
+ Fku(tk),

y(t) = Ckx(t) +Dku(t), t ∈ [tk−1, tk),

x
(
t+0
)
= x0, t0 ≥ 0,

(2.1)

where k = 1, 2, . . . , Ak, Bk, Ck,Dk, Ek, and Fk are the known n× n, n× p, p × n, q × p, n× n, and
n × p constant matrices; x(t) ∈ R

n is the state vector, and u(t) ∈ R
p the input vector, y(t) ∈ R

q

the output vector; x(t+) := limh→ 0+x(t + h), x(t−) := limh→ 0−x(t − h), and the discontinuity
points are

t1 < t2 < · · · < tk < · · · , lim
k→∞

tk = ∞, (2.2)

where t0 < t1 and x(t−k) = x(tk), which implies that the solution of (2.1) is left-continuous at
tk.
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First, we consider the solution of the system (2.1).

Lemma 2.1. For any t ∈ (tk−1, tk], k = 1, 2, . . ., the general solution of the system (2.1) is given by

x(t) = exp[Ak(t − tk−1)]

{
1∏

i=k−1
Ei exp(Aihi)x(t0)

+
k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(

Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti)

)

+Ek−1

∫ tk−1

tk−2
exp[Ak−1(tk−1 − s)]Bk−1u(s)ds + Fk−1u(tk−1)

}

+
∫ t

tk−1
exp[Ak(t − s)]Bku(s)ds,

(2.3)

where hk = tk − tk−1, k = 1, 2, . . . .

Proof. For t ∈ (t0, t1], we have

x(t) = exp[A1(t − t0)]x(t0) +
∫ t

t0

exp[A1(t − s)]B1u(s)ds. (2.4)

For t = t+1 , we have

x
(
t+1
)
= E1

(

exp(A1h1)x(t0) +
∫ t1

t0

exp[A1(t1 − s)]B1u(s)ds

)

+ F1u(t1). (2.5)

Similarly, for t ∈ (ti−1, ti], i = 2, 3, . . . , k, we have

x(t) = exp[Ai(t − ti−1)]x
(
t+i−1
)
+
∫ t

ti−1
exp[Ai(t − s)]Biu(s)ds. (2.6)

And, for t = t+i , i = 2, 3, . . . , k, we have

x
(
t+i
)
= Ei

(

exp(Aihi)x(ti−1) +
∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds

)

+ Fiu(ti). (2.7)

Thus, by (2.4), (2.5), (2.6), and (2.7), it is easy to verify (2.3).

If tf ∈ (t0, t1], then we are just concerned with a linear time-invariant system.
Controllability and observability criteria can be found in standard text books [18, 19]. Thus, in
the remainder of the paper, we will only be concerned with the case tf ∈ (tk−1, tk], k = 2, 3, . . . .
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Now, we give some mathematical preliminaries as the basic tools in the following dis-
cussion.

Given matrices A ∈ R
n×n and B ∈ R

n×p, denote Im(B) as the range of B, that is,
Im(B) = {y | y = Bx, for all x ∈ R

n×n}, and denote 〈A | B〉 as the minimal invariant subspace
ofA on Im(B), that is, 〈A | B〉 = Im(B)+Im(AB)+ · · ·+Im(An−1B). Given a linear subspace
W ⊆ R

n, denote W⊥ as the orthogonal complement ofW, that is, W⊥ = {x | xTW = 0}.
The following lemma is a generalization of Theorem 7.8.1 in [17], which is the starting

point for deriving the criteria of reachability and controllability.

Lemma 2.2. Given matrices A,E ∈ R
n×n, B, F ∈ R

n×p, for any 0 ≤ t0 < tf < +∞, one has

{

x | x = E

∫ tf

t0

exp
[
A
(
tf − s

)]
Bu(s)ds + Fu

(
tf
)
, ∀ piecewise continuous u

}

= E〈A | B〉 + Im(F).

(2.8)

Proof. See Appendix A.

Lemma 2.3. Given two matrices A ∈ R
n×n, C ∈ R

q×n, two scalars t0 < tf , and a vector x ∈ R
n, the

following two statements are equivalent:

(a) C exp[A(t − t0)]x = 0, t ∈ [t0, tf],

(b) xT〈AT | CT〉 = 0.

Proof. See Appendix B.

Lemma 2.4. Given a matrix A ∈ R
n×n and a linear subspace W ⊆ R

n, the following two statements
are equivalent:

(a) Im(A) ⊆ W,

(b) ATW⊥ = 0.

Proof. See Appendix C.

3. Reachability

In this section, we first investigate the reachability of system (2.1).

Definition 3.1 (reachability). The system (2.1) is said to be (completely) reachable on [t0, tf]
(t0 < tf) if, for any terminal state xf ∈ R

n, there exists a piecewise continuous input u(t) :
[t0, tf] → R

p such that the system (2.1) is driven from x(t0) = 0 to x(tf) = xf . Moreover,
the set of all the reachable states on [t0, tf] is said to be the reachable set on [t0, tf], denoted as
R[t0, tf].
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Theorem 3.2. For the system (2.1), the reachable set on [t0, tf], where tf ∈ (tk−1, tk], is given by

R[t0, tf
]
= exp

[
Ak

(
tf − tk−1

)]k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(Ei〈Ai | Bi〉 + Im(Fi))

+ exp
[
Ak

(
tf − tk−1

)]
(Ek−1〈Ak−1 | Bk−1〉 + Im(Fk−1)) + 〈Ak | Bk〉.

(3.1)

Proof. By Lemma 2.1, letting x(t0) = 0, we have

x(t) = exp[Ak(t − tk−1)]

⎧
⎨

⎩

k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)

×
(

Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti)

)

+ Ek−1

∫ tk−1

tk−2
exp[Ak−1(tk−1 − s)]Bk−1u(s)ds + Fk−1u(tk−1)

⎫
⎬

⎭

+
∫ t

tk−1
exp[Ak(t − s)]Bku(s)ds.

(3.2)

It follows that

R[t0, tf
]
=

⎧
⎨

⎩
x | x = exp

[
Ak

(
tf − tk−1

)]

×
⎧
⎨

⎩

k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(

Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti)

)

+Ek−1

∫ tk−1

tk−2
exp[Ak−1(tk−1 − s)]Bk−1u(s)ds + Fk−1u(tk−1)

⎫
⎬

⎭

+
∫ tf

tk−1
exp
[
Ak

(
tf − s

)]
Bku(s)ds, ∀ piecewise continuous u

⎫
⎬

⎭

= exp
[
Ak

(
tf − tk−1

)]
⎛

⎝
k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)

×
{

x | x = Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti),

∀ piecewise continuous u

}
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+

{

x | x = Ek−1

∫ tk−1

tk−2
exp[Ak−1(tk−1 − s)]Bk−1u(s)ds + Fk−1u(tk−1)

∀ piecewise continuous u

}⎞

⎠

+

{

x | x =
∫ tf

tk−1
exp
[
Ak

(
tf − s

)]
Bku(s)ds, ∀ piecewise continuous u

}

.

(3.3)

By Lemma 2.2, we get

R[t0, tf
]
= exp

[
Ak

(
tf − tk−1

)]
⎛

⎝
k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(Ei〈Ai | Bi〉 + Im(Fi))

+Ek−1〈Ak−1 | Bk−1〉 + Im(Fk−1)

⎞

⎠

+ 〈Ak | Bk〉.

(3.4)

This is just (3.1).

Since we have obtained the geometric form of the reachable set, we can establish a
geometric type criterion as follows.

Theorem 3.3. The system (2.1) is reachable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(Ei〈Ai | Bi〉 + Im(Fi)) + Ek−1〈Ak−1 | Bk−1〉 + Im(Fk−1) + 〈Ak | Bk〉 = R

n.

(3.5)

Proof. Since

R[t0, tf
]
= exp

[
Ak

(
tf − tk−1

)]

×
⎛

⎝
k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(Ei〈Ai | Bi〉 + Im(Fi)) + Ek−1〈Ak−1 | Bk−1〉 + Im(Fk−1)

⎞

⎠

+ 〈Ak | Bk〉

= exp
[
Ak

(
tf − tk−1

)]
⎛

⎝
k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(Ei〈Ai | Bi〉 + Im(Fi))

+ Ek−1〈Ak−1 | Bk−1〉 + Im(Fk−1) + 〈Ak | Bk〉
⎞

⎠

(3.6)
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and the matrix exp[Ak(tf − tk−1)] is nonsingular, the proof directly follows from Theorem
3.2.

Remark 3.4. Theorem 3.3 is a geometric type condition. By simple transformation, we can get
an algebraic type condition. In fact, for i = 1, 2, . . . , denote

Qi =
[
Bi,AiBi, . . . , A

n−1
i Bi

]
, (3.7)

for i = 1, 2, . . . , k − 2, denote

Hi =

⎡

⎣
i+1∏

j=k−1
Ej exp

(
Ajhj

)
EiQi,

i+1∏

j=k−1
Ej exp

(
Ajhj

)
Fi

⎤

⎦,

Hk−1 = [Ek−1Qk−1, Fk−1],

(3.8)

and, finally, denote

Q[t0,tf ] = [H1,H2, . . . ,Hk−1, Qk]. (3.9)

Then, it is easy to verify that

exp
[
Ak

(
tf − tk−1

)]Im
(
Q[t0,tf ]

)
= R[t0, tf

]
. (3.10)

Thus, we get the following algebraic type criterion.

Corollary 3.5. The system (2.1) is reachable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

rank
(
Q[t0,tf ]

)
= n. (3.11)

4. Controllability

In this section, we investigate the controllability of system (2.1).

Definition 4.1 (controllability). The system (2.1) is said to be (completely) controllable on
[t0, tf] (t0 < tf) if, for any initial state x0 ∈ R

n, there exists a piecewise continuous input
u(t) : [t0, tf] → R

p such that the system (2.1) is driven from x(t0) = x0 to x(tf) = 0. Moreover,
the set of all the controllable states on [t0, tf] is said to be the controllable set on [t0, tf], denoted
as C[t0, tf].
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First, we show the relationship between the controllable set and the reachable set.

Theorem 4.2. For the system (2.1), if Ei is nonsingular, for i = 1, . . . , k − 1, then the controllable set
on [t0, tf], where tf ∈ (tk−1, tk], satisfies

(

exp[Ak(t − tk−1)]
1∏

i=k−1
Ei exp(Aihi)

)

C[t0, tf
] ⊆ R[t0, tf

]
. (4.1)

Proof. By Lemma 2.1, letting x(tf) = 0, we have

0 = exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)x(t0) exp

[
Ak

(
tf − tk−1

)]

×
⎧
⎨

⎩

k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)

×
(

Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti)

)

+Ek−1

∫ tk−1

tk−2
exp[Ak−1(tk−1 − s)]Bk−1u(s)ds + Fk−1u(tk−1)

⎫
⎬

⎭

+
∫ tf

tk−1
exp
[
Ak

(
tf − s

)]
Bku(s)ds.

(4.2)

It is equivalent to

− exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)x(t0)

= exp
[
Ak

(
tf − tk−1

)]
⎧
⎨

⎩

k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)

×
(

Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti)

)

+Ek−1

∫ tk−1

tk−2
exp[Ak−1(tk−1 − s)]Bk−1u(s)ds + Fk−1u(tk−1)

⎫
⎬

⎭

+
∫ tf

tk−1
exp
[
Ak

(
tf − s

)]
Bku(s)ds.

(4.3)
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This implies that

(

exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)

)

x(t0) ∈ R[t0, tf
]
. (4.4)

Hence,

(

exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)

)

C[t0, tf
] ⊆ R[t0, tf

]
. (4.5)

Based on Theorem 4.2, we can establish a criterion for controllability of the system
(2.1) as follows.

Theorem 4.3. The system (2.1) is controllable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

Im
(

1∏

i=k−1
Ei exp(Aihi)

)

⊆
k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)
(Ei〈Ai | Bi〉 + Im(Fi)) + Ek−1〈Ak−1 | Bk−1〉 + Im(Fk−1) + 〈Ak | Bk〉.

(4.6)

Proof. First, it is easy to prove that (4.6) is equivalent to

Im
(

exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)

)

⊆ R[t0, tf
]
. (4.7)

Necessity: since the system is controllable, we have

C[t0, tf
]
= R

n. (4.8)

Then, by Theorem 4.2, we get

R[t0, tf
] ⊇
(

exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)

)

R
n

= Im
(

exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)

)

.

(4.9)

Sufficiency: suppose that (4.7) holds. For any x ∈ R
n, we have

(

exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)

)

x ∈ R[t0, tf
]
. (4.10)
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This implies that there exists a piecewise continuous function u(t), t ∈ [t0, tf], such that

0 = exp
[
Ak

(
tf − tk−1

)] 1∏

i=k−1
Ei exp(Aihi)x

× exp
[
Ak

(
tf − tk−1

)]
⎧
⎨

⎩

k−2∑

i=1

i+1∏

j=k−1
Ej exp

(
Ajhj

)

×
(

Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti)

)

+Ek−1

∫ tk−1

tk−2
exp[Ak−1(tk−1 − s)]Bk−1u(s)ds + Fk−1u(tk−1)

⎫
⎬

⎭

+
∫ tf

tk−1
exp
[
Ak

(
tf − s

)]
Bku(s)ds.

(4.11)

Then, we know that x ∈ C[t0, tf]. Hence, the system (2.1) is controllable.

In the general case, for system (2.1), controllability is not equivalent to reachability.
But under some mild conditions, we can show that they are equivalent.

Corollary 4.4. For the system (2.1), if Ei is nonsingular, i = 1, 2, . . . , k − 1, then the following state-
ments are equivalent:

(a) the system is reachable,

(b) the system is controllable,

(c)
∑k−2

i=1
∏i+1

j=k−1Ej exp(Ajhj)(Ei〈Ai | Bi〉+Im(Fi))+Ek−1〈Ak−1 | Bk−1〉+Im(Fk−1)+〈Ak |
Bk〉 = R

n.

Proof. Since Ei is nonsingular, i = 1, 2, . . . , k − 1, we have that

exp[Ak(t − tk−1)]
1∏

i=k−1
Ei exp(Aihi) (4.12)

is nonsingular. It follows that

(

exp[Ak(t − tk−1)]
1∏

i=k−1
Ei exp(Aihi)

)

C[t0, tf
]
= R[t0, tf

]
. (4.13)

It is easy to see that C[t0, tf] = R
n ⇔ R[t0, tf] = R

n.

Remark 4.5. For system (2.1), assume that Ai = A, Bi = B, i = 1, . . . , k. Then, it is easy to see
that Theorem 4.2 concludes the results of Theorem 3.4 in [15].
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Remark 4.6. For system (2.1), assume that Ei = I, Fi = 0, i = 1, . . . , k. Then, it is easy to see that
Theorem 5 in [20] is a special case of Corollary 4.4.

5. Observability and Determinability

In the above analysis, reference is made to reachability and controllability only. It should be
noticed that the observability and determinability counterparts can be addressed dualisti-
cally. In this section, we outline the relevant concepts and the corresponding criteria.

Definition 5.1 (observability). The system (2.1) is said to be (completely) observable on [t0, tf]
(t0 < tf) if any initial state x0 ∈ R

n can be uniquely determined by the corresponding system
input u(t) and the system output y(t), for t ∈ [t0, tf].

Definition 5.2 (determinability). The system (2.1) is said to be (completely) determinable on
[t0, tf] (t0 < tf) if any terminal state xf ∈ R

n can be uniquely determined by the correspond-
ing system input u(t) and the system output y(t), for t ∈ [t0, tf].

In order to investigate observability and determinability for the system (2.1), we first
investigate those of the following zero input system:

ẋ(t) = Akx(t), t ∈ [tk−1, tk),

x
(
t+k
)
= Ekx

(
t−k
)
,

y(t) = Ckx(t), t ∈ [tk−1, tk),

x
(
t+0
)
= x0, t0 ≥ 0.

(5.1)

It is obvious that observability and determinability of the system (2.1) are equivalent to those
of the system (5.1), respectively.

For the system (5.1), by Lemma 2.1, the output is given by

y(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1 exp[A1(t − t0)]x(t0), t ∈ (t0, t1],

Ci exp[Ai(t − ti−1)]
1∏

j=i−1
Ej exp

(
Ajhj

)
x(t0), t ∈ (ti−1, ti], i = 2, . . . , k.

(5.2)

Theorem 5.3. The system (5.1) is observable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

2∑

i=k

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
+
〈
AT

1 | CT
1

〉
= R

n. (5.3)

Proof. Weprove the complementary proposition of Theorem 5.3, that is, the system (5.1) is not
observable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

2∑

i=k

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
+
〈
AT

1 | CT
1

〉
� R

n. (5.4)
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Necessity: if the system (5.1) is not observable on [t0, tf], where tf ∈ (tk−1, tk], then
there exists x0 ∈ R

n, nonzero, such that y(t) ≡ 0, t ∈ [t0, tf]. This means that

C1 exp[A1(t − t0)]x0 = 0, t ∈ (t0, t1],

Ci exp[Ai(t − ti−1)]
1∏

j=i−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (ti−1, ti], i = 2, . . . , k − 1,

Ck exp[Ak(t − tk−1)]
1∏

j=k−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (tk−1, tf

]
.

(5.5)

By Lemma 2.3, we get

xT
0

〈
AT

1 | CT
1

〉
= 0,

xT
0

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
= 0, i = 2, . . . , k.

(5.6)

It follows that

xT
0

⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠ = 0. (5.7)

Then, we know that

x0 /∈
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
. (5.8)

This implies (5.4).
Sufficiency: on the contrary, if (5.4) holds, there exists x0 ∈ R

n, nonzero, such that

xT
0

⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠ = 0. (5.9)

It follows that

xT
0

〈
AT

1 | CT
1

〉
= 0,

xT
0

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
= 0, i = 2, . . . , k.

(5.10)
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By Lemma 2.3, we get

C1 exp[A1(t − t0)]x0 = 0, t ∈ (t0, t1],

Ci exp[Ai(t − ti−1)]
1∏

j=i−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (ti−1, ti], i = 2, . . . , k − 1,

Ck exp[Ak(t − tk−1)]
1∏

j=k−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (tk−1, tf

]
.

(5.11)

This means that y(t) ≡ 0, t ∈ [t0, tf]. Thus, the system (5.1) is not observable.

Remark 5.4. Theorem 5.3 is a geometric type condition. By simple transformation, we can get
an algebraic type condition. In fact, for i = 1, 2, . . . , denote

Oi =
[
CT

i ,A
T
i C

T
i , . . . ,

(
AT

i

)n−1
CT

i

]
, (5.12)

for i = 2, . . . , k, denote

Gi =
i−1∏

j=1

exp
(
AT

j hj

)
ET
j Oi, (5.13)

and, finally, denote

O[t0,tf ] = [O1, G2, . . . , Gk]. (5.14)

Then, it is easy to verify that

Im
(
O[t0,tf ]

)
=
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
. (5.15)

Thus, we get the following algebraic type criterion.

Corollary 5.5. The system (5.1) is observable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

rank
(
O[t0,tf ]

)
= n. (5.16)

Next, we establish a criterion for determinability.

Theorem 5.6. The system (5.1) is determinable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

Im
⎛

⎝
k−1∏

j=1

exp
(
AT

j hj

)
ET
j

⎞

⎠ ⊆
k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
+
〈
AT

1 | CT
1

〉
. (5.17)
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Proof. First, by Lemma 2.4, we know that (5.17) is equivalent to

1∏

j=k−1
Ej exp

(
Ajhj

)
⎛

⎝
k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
+
〈
AT

1 | CT
1

〉
⎞

⎠

⊥

= 0. (5.18)

Similar to the proof of Theorem 5.3, we prove the complementary proposition of Theorem 5.6,
that is, the system (5.1) is not determinable on [t0, tf], where tf ∈ (tk−1, tk], if and only if

1∏

j=k−1
Ej exp

(
Ajhj

)
⎛

⎝
k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
+
〈
AT

1 | CT
1

〉
⎞

⎠

⊥
/= 0. (5.19)

Necessity: if the system (5.1) is not determinable on [t0, tf], where tf ∈ (tk−1, tk], then there
exists a terminal xf ∈ R

n, nonzero, such that y(t) = 0, t ∈ [t0, tf]. Then, there exists a nonzero
x0 ∈ R

n as the initial state such that the system is driven from x(t0) = x0 to x(tf) = xf , that is,
xf = exp[Ak(tf − tk−1)]

∏1
j=k−1Ej exp(Ajhj)x0. This means that

C1 exp[A1(t − t0)]x0 = 0, t ∈ (t0, t1],

Ci exp[Ai(t − ti−1)]
1∏

j=i−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (ti−1, ti], i = 2, . . . , k − 1,

Ck exp[Ak(t − tk−1)]
1∏

j=k−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (tk−1, tf

]
.

(5.20)

By Lemma 2.3, we get

xT
0

〈
AT

1 | CT
1

〉
= 0,

xT
0

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
= 0, i = 2, . . . , k.

(5.21)

It follows that

xT
0

⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠ = 0. (5.22)

This implies that

x0 ∈
⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠

⊥

. (5.23)
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Since exp[Ak(tk−1 − tf)]xf =
∏1

j=k−1Ej exp(Ajhj)x0, we know that

exp
[
Ak

(
tk−1 − tf

)]
xf

∈
1∏

j=k−1
Ej exp

(
Ajhj

)
⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠

⊥

.
(5.24)

It implies that

1∏

j=k−1
Ej exp

(
Ajhj

)
⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠

⊥
/= 0. (5.25)

Hence, (5.19) holds.
Sufficiency: on the contrary, if (5.19) holds, then we know that

1∏

j=k−1
Ej exp

(
Ajhj

)
⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠

⊥
/= 0. (5.26)

Then, there exists a nonzero xf satisfying

exp
[
Ak

(
tk−1 − tf

)]
xf ∈

1∏

j=k−1
Ej exp

(
Ajhj

)
⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠

⊥
(5.27)

such that there exists a nonzero x0 satisfying

exp
[
Ak

(
tk−1 − tf

)]
xf = x0,

xT
0

⎛

⎝
〈
AT

1 | CT
1

〉
+

k∑

i=2

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
⎞

⎠ = 0.
(5.28)

It follows that

xT
0

〈
AT

1 | CT
1

〉
= 0,

xT
0

i−1∏

j=1

exp
(
AT

j hj

)
ET
j

〈
AT

i | CT
i

〉
= 0, i = 2, . . . , k.

(5.29)
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By Lemma 2.3, we get

C1 exp[A1(t − t0)]x0 = 0, t ∈ (t0, t1],

Ci exp[Ai(t − ti−1)]
1∏

j=i−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (ti−1, ti], i = 2, . . . , k − 1,

Ck exp[Ak(t − tk−1)]
1∏

j=k−1
Ej exp

(
Ajhj

)
x0 = 0, t ∈ (tk−1, tf

]
.

(5.30)

This means that y(t) ≡ 0, t ∈ [t0, tf]. Thus, we find a nonterminal nonzero state xf such that
the output y(t) remains zero. Hence, the system (5.1) is not determinable.

Similar to the controllability and reachability case, under some simple condition, we
can show that for the system (5.1), observability is equivalent to determinability.

Corollary 5.7. For the system (5.1), if Ei is nonsingular, i = 1, 2, . . . , k − 1, then the following state-
ments are equivalent:

(a) the system is observable,

(b) the system is determinable,

(c)
∑2

i=k
∏i−1

j=1 exp(A
T
j hj)ET

j 〈AT
i | CT

i 〉 + 〈AT
1 | CT

1 〉 = R
n.

Proof. If Ei is nonsingular, i = 1, 2, . . . , k − 1, then we know that
∏1

j=k−1Ej exp(Ajhj) is non-
singular. Hence, we get (5.3) and (5.17) are equivalent.

Remark 5.8. For system (2.1), assume that Ai = A, Bi = B, i = 1, . . . , k. Then, it is easy to see
that Theorem 4.3 concludes the results of Theorem 4.2 in [15].

Remark 5.9. For system (2.1), assume that Ei = I, Fi = 0, i = 1, . . . , k. Then, it is easy to see that
Theorem 2 in [20] is a special case of Corollary 5.7.

6. Examples

In this section, we give two numerical examples to illustrate how to utilize our criteria.

Example 6.1. Consider a 3-dimensional linear piecewise constant impulsive system with

A1 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B1 =

⎡

⎣
1
0
0

⎤

⎦, C1 =
[
0 1 0

]
,

D1 = 0, E1 =

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦, F1 =

⎡

⎣
0
1
0

⎤

⎦,
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A2 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B2 =

⎡

⎣
1
0
0

⎤

⎦, C2 =
[
1 0 0

]
,

D2 = 0, E2 =

⎡

⎣
1 1 0
1 0 0
0 0 0

⎤

⎦, F2 =

⎡

⎣
1
1
0

⎤

⎦,

A3 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B3 =

⎡

⎣
0
1
0

⎤

⎦, C3 =
[
1 0 0

]
,

D3 = 0, E3 =

⎡

⎣
0 0 0
1 0 0
0 0 0

⎤

⎦, F3 =

⎡

⎣
0
1
0

⎤

⎦,

(6.1)

where t0 = 0, t1 = 1, t2 = 2, and t3 = 3.

Now, we try to use our criteria to investigate the reachability, controllability, observ-
ability, and determinability on [0, tf], where tf ∈ (2, 3], of the system in Example 6.1.

First, we consider the reachability. By a simple calculation, we have

E2 exp(A2)(E1〈A1 | B1〉 + Im(F1)) + E2〈A2 | B2〉 + Im(F2) + 〈A3 | B3〉

= span

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦

⎫
⎬

⎭
.

(6.2)

By Theorem 3.3, the system should not be reachable. In fact, for any piecewise continuous
input u(t), t ∈ [0, tf], and any nonzero initial state x0 = [x0

1 x0
2 x0

3]
T , we have

x
(
tf
)
=

⎡

⎣
∗
∗
0

⎤

⎦. (6.3)

This fact shows that the system is indeed not reachable.
Next, we consider the controllability. By a simple calculation, we have

Im(E2 exp(A2)E1 exp(A1)
)
= span

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦

⎫
⎬

⎭
. (6.4)

It is easy to see that

Im(E2 exp(A2)E1 exp(A1)
)

⊆ E2 exp(A2)(E1〈A1 | B1〉 + Im(F1)) + E2〈A2 | B2〉 + Im(F2) + 〈A3 | B3〉.
(6.5)
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By Theorem 4.3, the system should be controllable. In fact, we can take the piecewise
constant input

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

c1, t ∈ (0, 1],
0, t ∈ (1, 2],
c3, t ∈ (2, 3].

(6.6)

Then, for any nonzero initial state x0 = [x0
1 x0

2 x0
3]

T , we have

x
(
tf
)
=

⎡

⎢
⎣

x0
1 + 0.5c1

x0
2 + 1.5c1 +

(
2 − 2tf + 0.5t2

f

)
c3

0

⎤

⎥
⎦. (6.7)

Obviously, if c1 = −2x0
1, c3 = (−x0

2 − 1.5c1)/(2− 2tf + 0.5t2
f
), then x(tf) = 0. This fact shows that

the system is indeed controllable.
Next, we consider the observability. By a simple calculation, we have

〈
AT

1 | CT
1

〉
+ exp

(
AT

1

)
ET
1

〈
AT

2 | CT
2

〉
+ exp

(
AT

1

)
ET
1 exp

(
AT

2

)
ET
2

〈
AT

3 | CT
3

〉

= span

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦

⎫
⎬

⎭
.

(6.8)

By Theorem 5.3, the system should not be observable. In fact, for any piecewise continuous
input u(t), t ∈ [0, tf], and nonzero initial state x0 = [0 0 1]T , we have

y(t) ≡ 0, t ∈ [0, tf
)
. (6.9)

This fact shows that the system is indeed not observable.
Finally, we consider the determinability. By a simple calculation, we have

E2 exp(A2)E1 exp(A1)

×
(〈

AT
1 | CT

1

〉
+ exp

(
AT

1

)
ET
1

〈
AT

2 | CT
2

〉
+ exp

(
AT

1

)
ET
1 exp

(
AT

2

)
ET
2

〈
AT

3 | CT
3

〉)

⊥

=

⎡

⎣
1
0
0

⎤

⎦ span

⎧
⎨

⎩

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭
= 0.

(6.10)
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It follows that

E2 exp(A2)E1 exp(A1)

×
(〈

AT
1 | CT

1

〉
+ exp

(
AT

1

)
ET
1

〈
AT

2 | CT
2

〉
+ exp

(
AT

1

)
ET
1 exp

(
AT

2

)
ET
2

〈
AT

3 | CT
3

〉)

⊥
= 0.

(6.11)

By Theorem 5.6, the system should be determinable. In fact, for any nonzero terminal state
xf = [xf

1 x
f

2 x
f

3 ]
T , there must exist a nonzero initial state x0 = [x0

1 x0
2 x0

3]
T such that

exp
[
A3
(
2 − tf

)]
xf = E2 exp(A2)E1 exp(A1)x0. (6.12)

It follows that

(
2 − tf

)
xf =

⎡

⎣
1 1 0
1 0 0
0 0 0

⎤

⎦x0. (6.13)

This means that xf

3 = x0
3 = 0 and |x0

1| + |x0
2|/= 0. It is easy to verify that, for any initial state x0

satisfying |x0
1| + |x0

2|/= 0, we have y(t)/≡ 0, t ∈ (0, tf). This fact shows that the system is indeed
determinable.

Example 6.2. Consider a 3-dimensional linear piecewise constant impulsive system with

A1 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B1 =

⎡

⎣
1
0
0

⎤

⎦, C1 =
[
0 1 0

]
,

D1 = 0, E1 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, F1 =

⎡

⎣
0
1
0

⎤

⎦,

A2 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B2 =

⎡

⎣
0
1
0

⎤

⎦, C2 =
[
1 0 0

]
,

D2 = 0, E2 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, F2 =

⎡

⎣
1
1
0

⎤

⎦,

A3 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B3 =

⎡

⎣
0
0
1

⎤

⎦, C3 =
[
1 0 0

]
,

D3 = 0, E3 =

⎡

⎣
1 0 0
1 1 0
0 0 1

⎤

⎦, F3 =

⎡

⎣
0
1
0

⎤

⎦,

(6.14)

where t0 = 0, t1 = 1, t2 = 2, and t3 = 3.
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Now, we try to use our criteria to investigate the reachability and controllability on
[0, tf], where tf ∈ (2, 3], of the system in Example 6.2.

First, we consider reachability. By a simple calculation, we have

E2 exp(A2)(E1〈A1 | B1〉 + Im(F1)) + E2〈A2 | B2〉 + Im(F2) + 〈A3 | B3〉

= span

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦,

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭
= R

3.
(6.15)

By Theorem 3.3, the system should be reachable. In fact, we take the piecewise constant input

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

c1, t ∈ (0, 1],
c2, t ∈ (1, 2],
c3, t ∈ (2, 3].

(6.16)

Then, letting x(0) = 0, for any nonzero terminal state x(3) = [xf

1 x
f

2 x
f

3 ]
T , we have

⎡

⎢⎢⎢
⎣

x
f

1

x
f

2

x
f

3

⎤

⎥⎥⎥
⎦

=

⎡

⎣
1 1 0
1 2 0
0 0 1

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦. (6.17)

Obviously, we can select suitable c1, c2, and c3 such that xf is any state in R
3. This fact shows

that the system is indeed reachable.
Next, by Theorem 4.3, the system should be reachable. In fact, we take the piecewise

constant input

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

c1, t ∈ (0, 1],
c2, t ∈ (1, 2],
c3, t ∈ (2, 3].

(6.18)

Then, for any nonzero initial state x(0) = [x0
1 x0

2 x0
3]

T , letting x(3) = 0, we have

0 =

⎡

⎢⎢
⎣

x0
1

x0
2

x0
3

⎤

⎥⎥
⎦ +

⎡

⎣
1 1 0
1 2 0
0 0 1

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦. (6.19)

Obviously, we can select suitable c1, c2, and c3 such that x0 is any state in R
3. This fact shows

that the system is indeed controllable.
Finally, according to the conclusion in Corollary 4.4, since the matrices E1, E2, and

E3 in Example 6.1 are singular, we know that the reachability might not be equivalent to
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the controllability in this example. However, the reachability should be equivalent to the
controllability in Example 6.2 since the matrices E1, E2, and E3 in this example are non-
singular. From the above analysis, all these statements are correct indeed.

7. Conclusion

This paper has studied the controllability and observability of linear piecewise constant
impulsive systems. Necessary and sufficient criteria for reachability and controllability have
been established, respectively. Moreover, it has been proved that the reachability is equivalent
to the controllability under some mild conditions. Then, necessary and sufficient criteria for
the observability and determinability of such systems have been established, respectively. It
has been also proved that the observability is equivalent to the determinability under some
mild conditions. Our criteria are of the geometric type, and they can be transformed into
algebraic type conveniently. Finally, a numerical example has been given to illustrate the
utility of our criteria.

Appendices

A. Proof of Lemma 2.2

By Theorem 7.8.1 in [17], we have

{

x | x =
∫ tf

t0

exp
[
A
(
tf − s

)]
Bu(s)ds, ∀ piecewise continuous u

}

= 〈A | B〉.
(A.1)

Thus, it is easy to see that

{

x | x = E

∫ tf

t0

exp
[
A
(
tf − s

)]
Bu(s)ds + Fu

(
tf
)
, ∀ piecewise continuous u

}

⊆ E〈A | B〉 + Im(F).

(A.2)

Moreover, we have

{

x | x =
∫ tE

t0

exp[A(tE − s)]Bu(s)ds, ∀ piecewise continuous u

}

= 〈A | B〉,
(A.3)

where tE = (t0+ tf)/2. Then, for any x ∈ E〈A | B〉+Im(F), there exist a piecewise continuous
function u(t), t ∈ [t0, tE], and y ∈ R

n such that

x = E

∫ tE

t0

exp[A(tE − s)]Bu(s)ds + Fy. (A.4)
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Then, we can take

v(t) =

⎧
⎪⎪⎨

⎪⎪⎩

u(t), t ∈ [t0, tE],
0, t ∈ (tE, tf

)
,

y, t = tf ,

(A.5)

such that

x = E

∫ tf

t0

exp
[
A
(
tf − s

)]
Bv(s)ds + Fv

(
tf
)
. (A.6)

This implies that

x ∈
{

x | x = E

∫ tf

t0

exp
[
A
(
tf − s

)]
Bu(s)ds + Fu

(
tf
)
, ∀ piecewise continuous u

}

. (A.7)

It follows that

{

x | x = E

∫ tf

t0

exp
[
A
(
tf − s

)]
Bu(s)ds + Fu

(
tf
)
, ∀ piecewise continuous u

}

⊇ E〈A | B〉 + Im(F).

(A.8)

By (A.2) and (A.8), we know that (2.8) holds.

B. Proof of Lemma 2.3

((a) ⇒ (b)) If C exp[A(t − t0)]x = 0, t ∈ [t0, tf], we get Cx = 0. Then, for i = 1, . . . , n − 1,
calculating the ith derivative of C exp[A(t − t0)]x with respect to t at t = t0, we get

CAix = 0. (B.1)

Thus, we know that

xT

[
CT ,CTAT , . . . , CT

(
AT
)n−1]

= 0. (B.2)

Hence, xT〈AT | CT〉 = 0.
((a) ⇐ (b)) If xT〈AT | CT〉 = 0, it follows that xT [CT ,CTAT , . . . , CT (AT )n−1] = 0. That is

CAix = 0, i = 0, 1, . . . , n − 1. (B.3)

Then, it is easy to prove that C exp[A(t − t0)]x = 0, t ∈ [t0, tf].
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C. Proof of Lemma 2.4

Given a matrix A ∈ R
n×n and a linear subspace W ⊆ R

n, the following two statements are
equivalent:

(a) Im(A) ⊆ W,

(b) ATW⊥ = 0.

((a) ⇒ (b)) Assume that Im(A) ⊆ W ((b) ⇒ (a)). It is equivalent to Im(A)
⋂W⊥ = 0.

It follows that, for any x ∈ W⊥, xTA = 0. That is, ATx = 0. This implies that ATW⊥ = 0.
((b) ⇒ (a)) Assume that ATW⊥ = 0. It follows that, for any x ∈ W⊥, ATx = 0. That is,

xTA = 0. This implies that Im(A) ⊆ W.
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