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We introduce a new concept called implicit evolution system to establish the existence results of
mild and strong solutions of a class of fractional nonlocal nonlinear integrodifferential system,
then we prove the exact null controllability result of a class of fractional evolution nonlocal
integrodifferential control system in Banach space. As an application that illustrates the abstract
results, two examples are provided.

1. Introduction

In this paper, we study the fractional nonlocal integrodifferential system of the form

dαu(t)
dtα

+A(t, B1u(t))u(t) = f(t, B2u(t)) +
∫ t

0
g(t, s, B3u(s))ds, (1.1)

B4(u(0) − u0) =
∫a

0
h(u(t))dt, (1.2)

where 0 < α ≤ 1, t ∈ [0, a]. Let −A be the infinitesimal generator of a C0-semigroup in a
Banach space X, and {Bi(t) : i = 1, 2, 3, 4} is a family of linear closed operators defined on
dense sets Si ⊃ D(A), i = 1, 2, 3, 4, respectively, in X into X. It is assumed that u0 ∈ X,
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f : I × X → X, g : Δ × X → X and h : C(I : X) → X are given abstract functions. Here,
I = [0, a] and Δ = {(s, t) : 0 ≤ s ≤ t ≤ a}.

Basic researches in differential equations have showed that many phenomena in
nature are modeled more accurately using fractional derivatives and integrals; for more
detail, we can refer to [1–13] and the references therein. There are many applications where
the fractional calculus can be used, for example, viscoelasticity, electrochemistry, diffusion
processes, control theory, heat conduction, electricity, mechanics, chaos, and fractals [14].

Controllability is a fundamental concept in mathematical control theory and plays an
important role in both finite and infinite dimensional spaces, that is, systems represented
by ordinary differential equations and partial differential equations, respectively. So it is
natural to extend this concept to dynamical systems represented by fractional differential
equations. Several fractional partial differential equations and integrodifferential equations
can be expressed abstractly in some Banach spaces, in many cases, the accurate analysis,
design and assessment of systems subjected to realistic environments must take into account
the potential of random loads and randomness in the system properties. Randomness is
intrinsic to the mathematical formulation of many phenomena such as fluctuations in the
stock market or noise in communication networks. Fu studied the controllability results of
some kinds of neutral functional differential systems, see [15, 16]. In our previous work [17],
we established the controllability of fractional evolution nonlocal impulsive quasilinear delay
integrodifferential systems.

The existence results to evolution equations with nonlocal conditions in Banach space
were studied first by Byszewski [18, 19]; subsequently, many authors have been studied the
same question, see for instance [20–23].

Deng [24] indicated that, using the nonlocal condition u(0) + h(u) = u0 to describe for
instance, the diffusion phenomenon of a small amount of gas in a transparent tube can give
better result than using the usual local Cauchy problem u(0) = u0. Let us observe also that,
since Deng’s papers, the function h is considered

h(u) =
p∑

k=1

cku(tk),

(1.3)

where ck, k = 1, 2, . . . , p are given constants and 0 ≤ t1 < · · · < tp ≤ a.
In this paper, we introduce a new concept in the theory of Semigroup named “implicit

evolution system” to show the reader “what is the main difference between the solutions of
fractional (0 < α < 1) and classical (first order) homogeneous evolution equation?” which is
based on the work [17] and Pazy [25]. A new form of nonlocal condition is also presented.

Our paper is organized as follows. Section 2 is devoted to a review of some essential
results which will be used in this work to obtain our main results. In Section 3, we use
the theory of semigroups [25] in order to introduce our new concept that is called implicit
evolution system. In Section 4, we establish the existence, uniqueness, and regularity of mild
solutions of a class of fractional evolution nonlinear integrodifferential systems with nonlocal
conditions in Banach space. In Section 5, we prove the exact null controllability of a class of
fractional evolution nonlocal integrodifferential control systems; the last section deals to give
examples that provide the abstract results.
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2. Preliminary Results

Definition 2.1. The fractional integral of order α with the lower limit zero for a function f ∈
C([0,∞)) is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t − s)1−α
ds, t > 0, 0 < α < 1, (2.1)

provided the right side is pointwise defined on [0,∞), where Γ is the gamma function.
Riemann-Liouville derivative of order α with the lower limit zero for a function f ∈

C([0,∞)) can be written as

LDαf(t) =
1

Γ(1 − α)
d

dt

∫ t

0

f(s)
(t − s)α

ds, t > 0, 0 < α < 1. (2.2)

The Caputo derivative of order α for a function f ∈ C([0,∞)) can be written as

CDαf(t) = LDα(f(t) − f(0)
)
, t > 0, 0 < α < 1. (2.3)

Remark 2.2. (1) If f ∈ C1([0,∞)), then

CDαf(t) =
1

Γ(1 − α)

∫ t

0

f ′(s)
(t − s)α

ds = I1−αf ′(t), t > 0, 0 < α < 1. (2.4)

(2) The Caputo derivative of a constant is equal to zero.
(3) If f is an abstract function with values in X, then integrals which appear in

Definition 2.1 are taken in Bochner’s sense.

Definition 2.3. By a strong solution of the nonlocal Cauchy problem (1.1), (1.2), we mean a
function u with values in X such that

(i) u is a continuous function in t ∈ I and u(t) ∈ D(A),

(ii) dαu/dtα exists and continuous on (0, a], 0 < α < 1, and u satisfies (1.1) on (0, a] and
(1.2).

It is suitable to rewrite (1.1), (1.2) in the form

u(t) = u(0) +
1

Γ(α)

∫ t

0

(
t − η

)α−1

×
[
−A(η, B1u

(
η
))
u
(
η
)
+ f
(
η, B2u

(
η
))

+
∫η

0
g
(
η, s, B3u(s)

)
ds

]
dη,

(2.5)

see also [26, 27].
Let X and Y be two Banach spaces such that Y is densely and continuously embedded

in X. We denote by Z every Banach space Z(I, X) endowed with the usual norm, which is
given by ‖u‖Z = supt∈I‖u(t)‖, for u ∈ Z. The space of all bounded linear operators from X to
Y is denoted by B(X,Y ). We recall some definitions and known facts from Pazy [25].
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Definition 2.4. Let S be a linear operator in X, and let Y be a subspace of X. The operator S̃
defined by D(S̃) = {x ∈ D(S) ∩ Y : Sx ∈ Y} and S̃x = Sx for x ∈ D(S̃) is called the part of S
in Y .

Definition 2.5. Let Ω be a subset of X and for every t ∈ I and B1u ∈ Ω, and let −A(t, B1u) be
the infinitesimal generator of a C0-semigroup St,B1u(s), s ≥ 0, on X. The family of operators
{A(t, B1u), (t, B1u) ∈ I ×Ω} is stable if there are constants M ≥ 1 and ω such that

ρ(A(t, B1u)) ⊃ (ω,∞)
∥∥∥∥∥∥

k∏
j=1

R
(
λ : A

(
tj , B1u

))
∥∥∥∥∥∥ ≤ M(λ −ω)−k

(2.6)

for λ > ω every finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, 1 ≤ j ≤ k.
The stability of {A(t, B1u), (t, B1u) ∈ I ×Ω} implies that

∥∥∥∥∥∥
k∏
j=1

Stj ,B1u

(
sj
)
∥∥∥∥∥∥ ≤ M exp

⎛
⎝ω

k∑
j=1

sj

⎞
⎠, sj ≥ 0, (2.7)

and any finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, 1 ≤ j ≤ k, k = 1, 2, . . ..

Definition 2.6. Let St,B1u(s), s ≥ 0 be the C0-semigroup generated byA(t, B1u), (t, B1u) ∈ I ×Ω.
A subspace Y of X is called A(t, B1u)-admissible if Y is invariant subspace of St,B1u(s), and
the restriction of St,B1u(s) to Y is a C0-semigroup in Y .

Let Ω ⊂ X be a subset of X such that for every (t, B1u) ∈ I × Ω, A(t, B1u) is the
infinitesimal generator of a C0-semigroup St,B1u(s), s ≥ 0 on X. We make the following
assumptions.

(H1) The family {A(t, B1u), (t, B1u) ∈ I ×Ω} is stable.
(H2) Y is A(t, B1u)-admissible for (t, B1u) ∈ I ×Ω, and the family {Ã(t, B1u), (t, B1u) ∈

I ×Ω} of parts Ã(t, B1u) of A(t, B1u) in Y is stable in Y .
(H3) For (t, B1u) ∈ I×Ω,D(A(t, B1u)) ⊃ Y ,A(t, B1u) is a bounded linear operator from

Y to X and t → A(t, B1u) is continuous in the B(Y,X) norm ‖ · ‖.
(H4) There is a constant L > 0 such that

‖A(t, B1u) −A(t, B1v)‖Y →X ≤ L‖u − v‖X (2.8)

holds for every B1u, B1v ∈ Ω, and t ∈ I.

In the next section, we will introduce a new concept in the theory of semigroups.

3. Implicit Evolution System

Let Ω be a subset of X and {A(t, B1u), (t, B1u) ∈ I × Ω} a family of operators satisfying the
conditions (H1)–(H4). If u ∈ C(I : X) has values inΩ, then there is a unique evolution system
Uα(t, s;B1u), 0 < α ≤ 1, 0 ≤ s ≤ t ≤ a, in X satisfying
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(i) ‖Uα(t, s;B1u)‖ ≤ Meω(t−s) for 0 ≤ s ≤ t ≤ a, where M and ω are stability constants,

(ii) (∂α/∂tα)Uα(t, s;B1u)y = A(s, B1u(s))Uα(t, s;B1u)y for y ∈ Y and 0 ≤ s ≤ t ≤ a,

(iii) (∂α/∂sα)Uα(t, s;B1u)y = −Uα(t, s;B1u)A(s, B1u(s))y for y ∈ Y and 0 ≤ s ≤ t ≤ a.

Remark 3.1. (1) If B1 is the identity and α = 1, then U(t, s;u) is the explicit evolution system
given in Pazy [25] and in Zaidman [28].

(2) Since, in our case, U(t, s;u) is dependent of α and B1, so we call it an implicit
evolution system generated by −A(t, B1u).

(3) For nonautonomous differential equations in a Banach space, the implicit evolution
system is similar to our concept (α, u)-resolvent family.

(4)We can deduce that (1.1)-(1.2) is well posed if and only if −A(t, B1u) is the generator
of the implicit evolution system U(t, s;u).

Further, we assume the following.
(H5) For every u ∈ C(I : X) satisfying u(t) ∈ Ω for 0 ≤ t ≤ a, we have

U(t, s;u)Y ⊂ Y, 0 ≤ s ≤ t ≤ a (3.1)

and U(t, s;u) is strongly continuous in Y for 0 ≤ s ≤ t ≤ a.
(H6) Y is reflexive.
(H7) For every (t, B2u) ∈ I ×Ω, f(t, B2u) ∈ Y .
(H8) The operator [B4(t) + λαI]−1 exists in B(X) for any λ with Reλ ≤ 0 and

∥∥∥[B4(t) + λαI]−1
∥∥∥ ≤ Cα

|λ| + 1
, t ∈ I, (3.2)

where Cα is a positive constant independent of both t and λ.
(H9) h : C(I : Ω) → Y is Lipschitz continuous in X and bounded in Y , that is, there

exist constants k1 > 0 and k2 > 0 such that

‖h(u)‖Y ≤ k1,

‖h(u) − h(v)‖Y ≤ k2 max
t∈I

‖u − v‖X.
(3.3)

For the conditions (H9) and (H10), let Z be taken as both X and Y .
(H10) g : Δ × Z → Z is continuous, and there exist constants k3 > 0 and k4 > 0 such

that

∫ t

0

∥∥g(t, s, B3u) − g(t, s, B3v)
∥∥
Z ds ≤ k3‖u − v‖Z, u, v ∈ X,

k4 = max

{∫ t

0

∥∥g(t, s, 0)∥∥Z ds : (t, s) ∈ Δ

}
.

(3.4)
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(H11) f : I × Z → Z is continuous, and there exist constants k5 > 0 and k6 > 0 such
that

∥∥f(t, B2u) − f(t, B2v)
∥∥
Z ≤ k5‖u − v‖Z, u, v ∈ X,

k6 = max
t∈I

∥∥f(t, 0)∥∥Z.
(3.5)

Let us takeM0 = max ‖U(t, s;u)‖Ω(Z), 0 ≤ s ≤ t ≤ a, u ∈ Ω.
(H12) There exist positive constants r > 0 and 0 < λ < 1 such that

M0{‖u0‖ + aCαk1 + a[r(k3 + k5) + k4 + k6]} ≤ r,

λ = Ka‖u0‖Y + a2Cαk1K + aM0Cαk2 + a{K[(k3 + k5)r + k4 + k6]a +M0(k3 + k5)}.
(3.6)

By a mild solution of (1.1), (1.2), we mean a function u ∈ C(I : X) with values in Ω and
u0 ∈ X satisfying the integral equation

u(t) = U(t, 0;u)u0 +U(t, 0;u)B−1
4

∫a

0
h(u(t))dt

+
∫ t

0
U(t, s;u)

[
f(s, B2u(s)) +

∫s

0
g
(
s, η, B3u

(
η
))
dη

]
ds.

(3.7)

(H13) Further, there exists a constant K > 0 such that for every u, v ∈ C(I : X) with
values in Ω and every ω ∈ Y we have

‖U(t, s;u)ω −U(t, s;v)ω‖ ≤ K‖ω‖Y
∫ t

s

‖u(τ) − v(τ)‖dτ. (3.8)

4. Existence Results

Theorem 4.1. Let u0 ∈ Y and Ω = {u ∈ X : ‖u‖Y ≤ r}, r > 0. If −A(t, B1u) is the generator of
an implicit evolution systemU(t, s;u) and the assumptions (H5)∼(H13) are satisfied, then (1.1), (1.2)
has a unique mild solution on I.

Proof. Let S be a nonempty closed subset of C(I : X) defined by

S = {u : u ∈ C(I : X), ‖u‖Y ≤ r}, t ∈ I. (4.1)
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Consider a mapping P on S defined by

(Pu)(t) = U(t, 0;u)u0 +U(t, 0;u)B−1
4

∫a

0
h(u(t))dt

+
∫ t

0
U(t, s;u)

[
f(s, B2u(s)) +

∫s

0
g
(
s, η, B3u

(
η
))
dη

]
ds.

(4.2)

For u ∈ S, we have

‖Pu(t)‖Y ≤ ‖U(t, 0;u)u0‖ +
∥∥∥∥U(t, 0;u)B−1

4

∫a

0
h(u(t))dt

∥∥∥∥

+
∫ t

0
‖U(t, s;u)‖

{∥∥f(s, B2u(s)) − f(s, 0)
∥∥ + ∥∥f(s, 0)∥∥

+
∥∥∥∥
∫s

0

[
g
(
s, η, B3u

(
η
))−g(s, η, 0)]dη

∥∥∥∥+
∥∥∥∥
∫s

0
g
(
s, η, 0

)
dη

∥∥∥∥
}
ds.

≤ M0‖u0‖ + aM0Cαk1

+
∫ t

0
M0{k5‖u(s)‖ + k6 + k3‖u(s)‖ + k4}ds

≤ M0‖u0‖ + aM0Cαk1 + aM0{k5‖u(s)‖ + k6 + k3‖u(s)‖ + k4}
≤ M0{‖u0‖ + aCαk1 + a[r(k3 + k5) + k4 + k6]}
≤ r.

(4.3)

Thus, P maps S into itself. Now, we will show that P is a strict contraction on S which will
ensure the existence of a unique continuous function satisfying (3.7) on I.

If u, v ∈ S, then

‖Pu(t) − Pv(t)‖

≤ ‖U(t, 0;u)u0 −U(t, 0;v)u0‖ +
∥∥∥∥U(t, 0;u)B−1

4

∫a

0
h(u(t))dt −U(t, 0;v)B−1

4

∫a

0
h(v(t))dt

∥∥∥∥

+
∫ t

0

∥∥∥∥U(t, s;u)
[
f(s, B2u(s)) +

∫s

0
g
(
s, η, B3u

(
η
))
dη

]

−U(t, s;v)
[
f(s, B2v(s)) +

∫s

0
g
(
s, η, B3v

(
η
))
dη

]∥∥∥∥ds

≤ ‖U(t, 0;u)u0 −U(t, 0;v)u0‖ +
∥∥∥∥U(t, 0;u)B−1

4

∫a

0
h(u(t))dt −U(t, 0;v)B−1

4

∫a

0
h(u(t))dt

∥∥∥∥

+
∥∥∥∥U(t, 0;v)B−1

4

∫a

0
h(u(t))dt −U(t, 0;v)B−1

4

∫a

0
h(v(t))dt

∥∥∥∥
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+
∫ t

0

{∥∥∥∥U(t, s;u)
[
f(s, B2u(s)) +

∫ s

0
g
(
s, η, B3u

(
η
))
dη

]

−U(t, s;v)
[
f(s, B2u(s)) +

∫s

0
g
(
s, η, B3u

(
η
))
dη

]∥∥∥∥

+
∥∥∥∥U(t, s;v)

[
f(s, B2u(s)) +

∫ s

0
g
(
s, η, B3u

(
η
))
dη

]

−U(t, s;v)
[
f(s, B2v(s)) +

∫ s

0
g
(
s, η, B3v

(
η
))
dη

]∥∥∥∥
}
ds

≤ Ka‖u0‖Y max
τ∈I

‖u(τ) − v(τ)‖ + a2Cαk1Kmax
τ∈I

‖u(τ) − v(τ)‖

+ aM0Cαk2 max
τ∈I

‖u(τ) − v(τ)‖

+
∫ t

0

{
K

∥∥∥∥f(s, B2u(s)) +
∫s

0
g
(
s, η, B3u

(
η
))
dη

∥∥∥∥
Y

amax
τ∈I

‖u(τ) − v(τ)‖

+M0

[∥∥f(s, B2u(s)) − f(s, B2v(s))
∥∥

+
∫ s

0

∥∥g(s, η, B3u
(
η
)) − g

(
s, η, B3v

(
η
))∥∥dη

]}
ds

≤
(
Ka‖u0‖Y + a2Cαk1K + aM0Cαk2

)
max
τ∈I

‖u(τ) − v(τ)‖

+ a{K[(k3 + k5)r + k4 + k6]a +M0(k3 + k5)}max
τ∈I

‖u(τ) − v(τ)‖.
(4.4)

Thus,

‖Pu(t) − Pv(t)‖ ≤ λmax
τ∈I

‖u(τ) − v(τ)‖, (4.5)

which means that P is a strict contraction map from S into S, and therefore by the Banach
contraction principle there exists a unique fixed point u ∈ S such that Pu = u. Hence, u is a
unique mild solution of (1.1), (1.2) on I.

Theorem 4.2. Assume the following.

(i) Conditions (H1)∼(H13) hold.

(ii) The functions B2(t)ω and B3(t)ω are uniformly Hölder continuous in t ∈ I for every
element ω in S2 ∩ S3.

(iii) There are numbers L1, L2 > 0 and p, q ∈ (0, 1] such that



Journal of Applied Mathematics 9
∥∥f(t1, B2u) − f(t2, B2v)

∥∥ ≤ L1
(|t1 − t2|p + ‖B2u − B2v‖

)
,

∥∥g(s1, η, B3u
) − g

(
s2, η, B3v

)∥∥ ≤ L2|s1 − s2|q
(4.6)

for all t1, t2 ∈ I and all (s1, η), (s2, η) ∈ Δ.

Then, the problem (1.1), (1.2) has a unique strong solution on I.

Proof. Applying Theorem 4.1, the problem (1.1), (1.2) has a mild solution u ∈ S. Now, we will
show that u is a unique strong solution of the considered problem on I.

According to (ii), ‖B2u−B2v‖ is uniformlyHölder continuous in t ∈ I for every element
u in S2∩S3, also (iii) implies that t → f(t, B2u) and t → ∫ t

0 g(t, s, B3u)ds are uniformlyHölder
continuous on I ([20, 26]).

Set

V (t) = f(t, B2u) +
∫ t

0
g(t, s, B3u)ds. (4.7)

Clearly V (t) is uniformly Hölder continuous in t ∈ I.
Consider the following nonlocal Cauchy problem:

dαv(t)
dtα

+A(t, B1u(t))u(t) = V (t),

B4(u(0) − u0) =
∫a

0
h(u(t))dt.

(4.8)

From Pazy, (4.8) has a unique solution v on I given by

v(t) = U(t, 0;u)u0 +U(t, 0;u)B−1
4

∫a

0
h(u(t))dt +

∫ t

0
U(t, s;u)V (s)ds. (4.9)

Noting that [21], each term on the right hand side of (4.9) belongs toD(A), thus v(t) ∈ D(A),
using the uniqueness of V (t), we have that u(t) = v(t). Hence, u is the unique strong solution
of (1.1), (1.2) on I.

In next section, some results are obtained from Sakthivel et al. [29, 30].

5. Exactly Null Controllability Results

Consider fractional nonlocal evolution integrodifferential control system of the form

dαu(t)
dtα

+A(t, B1u(t))u(t) =
(
Φμ
)
(t) + Ψ

(
t, f(t, B2u(t)),

∫ t

0
g(t, s, B3u(s))ds

)
,

B4(u(0) − u0) =
∫a

0
h(u(t))dt,

(5.1)
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where the unknown u(·) takes values in the Banach spaceX, the control function μ belongs to
the spaces L2(I,H), a Banach space of admissible control functions with H, a Banach space.
Further, Φ is a bounded linear operator from H into X, the function Ψ : I × X × X → X is
given, and the others terms are defined as above.

For all u0 ∈ X and admissible control μ ∈ L2(I,H), the problem (5.1) admits a mild
solution given by

uμ(t) = U(t, 0;u)u0 +U(t, 0;u)B−1
4

∫a

0
h(u(t))dt

+
∫ t

0
U(t, s;u)

[
Φμ(s) + Ψ

(
s, f(s, B2u(s)),

∫s

0
g(s, τ, B3u(τ))dτ

)]
ds.

(5.2)

Definition 5.1. We will say that system (5.1) is exactly null controllable on the interval I if
for a11 u0 ∈ X, there exists a control μ ∈ L2(I,H), such that the mild solution u(t) of (5.1)
corresponding to μ verifies u(0) − B−1

4

∫a
0 h(u(t))dt = u0 and u(a) = 0.

In order to prove the controllability result, in addition, we consider the following
conditions.

(H14) Ψ : I ×X ×X → X is continuous, and there exist constantsN1 andN2 such that
for all xi, yi ∈ X, i = 1, 2, we have

∥∥Ψ(t, x1, y1
) −Ψ

(
t, x2, y2

)∥∥ ≤ N1
[‖x1 − x2‖ +

∥∥y1 − y2
∥∥],

N2 = max
t∈I

‖Ψ(t, 0, 0)‖. (5.3)

(H15) Let

ρ + aM0M1M2
(
ρ + σ

)
+ σ ≤ r, (5.4)

where σ = aM0{N1[(k3 + k5)r + k4 + k6] +N2} and ρ = M0‖u0‖ + aM0Cαk1, and let

λ =
{
Ka‖u0‖ + a2Cαk1K + aM0Cαk2

}
+ 2a

{
M0M1M2

(
ρ + ap

)}
+ a
{
Kqa + p

}
, (5.5)

where p = M0N1(k3 + k5), q = N1[(k3 + k5)r + k4 + k6] +N2, and 0 ≤ λ < 1.
(H16) The bounded linear operator W : L2(I,H) → X defined by

Wμ =
∫a

0
U(a, s;u)Φμds (5.6)

has an induced inverse operator W̃−1 which takes values in L2(I,H)/kerW and there exist
positive constants M1, M2, such that ‖Φ‖ ≤ M1 and ‖W̃−1‖ ≤ M2.
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Theorem 5.2. If hypotheses (H1)∼(H16) are satisfied, then the control nonlocal fractional integrodif-
ferential system (5.1) is exactly null controllable on I.

Proof. Let Sr = {u : u ∈ C(I : X), u(0) − B−1
4

∫a
0 h(u(t))dt = u0, ‖u‖ ≤ r, t ∈ I}.

We define an operator Q : Sr → Sr by
(
Quμ

)
(t) = U(t, 0;u)u0 +U(t, 0;u)B−1

4

∫a

0
h(u(t))dt

+
∫ t

0
U
(
t, η;u

)
ΦW̃−1

[
−U(a, 0;u)u0 −U(a, 0;u)B−1

4

∫a

0
h(u(t))dt

−
∫a

0
U(a, s;u)Ψ

(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)
ds

](
η
)
dη

+
∫ t

0
U(t, s;u)Ψ

(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)
ds.

(5.7)

Using the hypothesis (H14), for an arbitrary function u(·), we define the control

μ(t) = W̃−1
[
−U(a, 0;u)u0 −U(a, 0;u)B−1

4

∫a

0
h(u(t))dt

−
∫a

0
U(a, s;u)Ψ

(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)
ds

]
(t).

(5.8)

Using this controller, we will show that the operator Q has a fixed point. This fixed point is
then a solution of (5.2).

Clearly,Qμu(a) = 0, which means that the control μ steers system (5.1) from the initial
state u0 to origin in time a, provided we can obtain a fixed point of the nonlinear operator Q.

Now, we show that Q maps Sr into itself.
We have

∥∥(Quμ

)
(t)
∥∥

≤
∥∥∥∥U(t, 0;u)u0 +U(t, 0;u)B−1

4

∫a

0
h(u(t))dt

∥∥∥∥

+
∫ t

0

∥∥U(t, η;u)∥∥∥∥∥ΦW̃−1
∥∥∥
[∥∥∥∥U(a, 0;u)u0 +U(a, 0;u)B−1

4

∫a

0
h(u(t))dt

∥∥∥∥

+
∫a

0
‖U(a, s;u)‖

{∥∥∥∥Ψ
(
s, f(s, B2u(s)),

∫s

0
g(s, τ, B3u(τ))dτ

)

−Ψ(s, 0, 0)
∥∥∥∥ + ‖Ψ(s, 0, 0)‖

}
ds

]
dη
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+
∫ t

0
‖U(t, s;u)‖

×
{∥∥∥∥Ψ

(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)
−Ψ(s, 0, 0)

∥∥∥∥ + ‖Ψ(s, 0, 0)‖
}
ds.

≤ M0‖u0‖ + aM0Cαk1

+ aM0M1M2[M0‖u0‖ + aM0Cαk1 + aM0{N1(k5r + k6 + k3r + k4) +N2}]
+ aM0{N1(k5r + k6 + k3r + k4) +N2}

≤ r.

(5.9)

Thus, Q maps Sr into itself. Now, for u, v ∈ Sr , we have

∥∥Quμ(t) −Qvμ(t)
∥∥

≤ ‖U(t, 0;u)u0 −U(t, 0;v)u0‖ +
∥∥∥∥U(t, 0;u)B−1

4

∫a

0
h(u(t))dt −U(t, 0;v)B−1

4

∫a

0
h(v(t))dt

∥∥∥∥

+
∫ t

0

{∥∥∥∥U(t, η;u)ΦW̃−1
[
−U(a, 0;u)u0 −U(a, 0;u)B−1

4

∫a

0
h(u(t))dt

−
∫a

0
U(a, s;u)Ψ

(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)
ds

]

−U
(
t, η;v

)
ΦW̃−1

[
−U(a, 0;v)u0 −U(a, 0;v)B−1

4

∫a

0
h(v(t))dt

−
∫a

0
U(a, s;v)Ψ

(
s, f(s, B2v(s)),

∫s

0
g(s, τ, B3v(τ))dτ

)
ds

]∥∥∥∥
}
dη

+
∫ t

0

∥∥∥∥U(t, s;u)Ψ
(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)

−U(t, s;v)Ψ
(
s, f(s, B2v(s)),

∫s

0
g(s, τ, B3v(τ))dτ

)∥∥∥∥ds.

≤ ‖U(t, 0;u)u0 −U(t, 0;v)u0‖ +
∥∥∥∥U(t, 0;u)B−1

4

∫a

0
h(u(t))dt −U(t, 0;v)B−1

4

∫a

0
h(u(t))dt

∥∥∥∥

+
∥∥∥∥U(t, 0;v)B−1

4

∫a

0
h(u(t))dt −U(t, 0;v)B−1

4

∫a

0
h(v(t))dt

∥∥∥∥

+
∫ t

0

{∥∥∥∥U(t, η;u)ΦW̃−1
[
−U(a, 0;u)u0 −U(a, 0;u)B−1

4

∫a

0
h(u(t))dt
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−
∫a

0
U(a, s;u)Ψ

(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)
ds

]

−U
(
t, η;v

)
ΦW̃−1

[
−U(a, 0;v)u0 −U(a, 0;v)B−1

4

∫a

0
h(v(t))dt

−
∫a

0
U(a, s;v)Ψ

(
s, f(s, B2v(s)),

∫ s

0
g(s, τ, B3v(τ))dτ

)
ds

]∥∥∥∥
}
dη

+
∫ t

0

{∥∥∥∥U(t, s;u)Ψ
(
s, f(s, B2u(s)),

∫s

0
g(s, τ, B3u(τ))dτ

)

−U(t, s;v)Ψ
(
s, f(s, B2u(s)),

∫s

0
g(s, τ, B3u(τ))dτ

)∥∥∥∥

+
∥∥∥∥U(t, s;v)Ψ

(
s, f(s, B2u(s)),

∫ s

0
g(s, τ, B3u(τ))dτ

)

−U(t, s;v)Ψ
(
s, f(s, B2v(s)),

∫s

0
g(s, τ, B3v(τ))dτ

)∥∥∥∥
}
ds.

≤
(
Ka‖u0‖ + a2Cαk1K + aM0Cαk2

)
max
τ∈I

‖u(τ) − v(τ)‖

+ 2a{M0M1M2[M0‖u0‖ + aM0Cαk1 + aM0N1(k5 + k3)]}max
τ∈I

‖u(τ) − v(τ)‖

+ a{aK[N1(k5r + k6 + k3r + k4) +N2] +M0N1(k5 + k3)}max
τ∈I

‖u(τ) − v(τ)‖

≤ λmax
τ∈I

‖u(τ) − v(τ)‖.
(5.10)

Therefore, Q is a contraction mapping, and hence there exists a unique fixed point u ∈ X,
such that Qu(t) = u(t). Any fixed point of Q is a mild solution of (5.1) on I which satisfies
u(a) = 0. Thus, system (5.1) is exactly null controllable on I.

6. Examples

To illustrate the abstract results, we give the following examples.

Example 6.1. Consider the nonlinear integropartial differential equation of fractional order

∂αu(x, t)
∂tα

+
∑
|q|≤2m

aq

(
x, t; bqu(x, t)

)
D

q
xu(x, t) = F(x, t,w1) +

∫ t

0
G(x, t, s,w2(s))ds, (6.1)
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with nonlocal condition

u(x, 0) +
p∑

k=1

cku(x, tk) = g(x), (6.2)

where 0 < α ≤ 1, 0 ≤ t1 < · · · < tp ≤ a, x ∈ Rn, Dq
x = D

q1
x1 · · ·D

qn
xn
, Dxi = ∂/∂xi, q = (q1, . . . , qn) is

an n-dimensional multi-index, |q| = q1 + · · · + qn, and wi, i = 1, 2, is given by

wi(x, t) =
∑

|q|≤2m−1
bqi(x, t)D

q
xu(x, t) +

∫
Ω

∑
|q|≤2m−1

cqi(x, t)D
q
yu
(
y, t
)
dy. (6.3)

Let L2(Rn) be the set of all square integrable functions on Rn. We denote by Cm(Rn) the set of
all continuous real-valued functions defined onRn which have continuous partial derivatives
of order less than or equal to m. By Cm

0 (R
n), we denote the set of all functions f ∈ Cm(Rn)

with compact supports. LetHm(Rn) be the completion of Cm
0 (R

n) with respect to the norm

∥∥f∥∥2m =
∑
|q|≤m

∫
Rn

∣∣∣Dq
xf(x)

∣∣∣2dx. (6.4)

It is supposed that the following hold.
(i) The operator A = −∑|q|≤2m aq(x, t; bqu(x, t))D

q
x is uniformly elliptic on Rn. In other

words, all the coefficients aq, |q| = 2m, are continuous and bounded on Rn, and there is a
positive number c such that

(−1)m+1
∑
|q|=2m

eq
(
x, t; bq

)
ξq ≥ c|ξ|2m, (6.5)

for all x ∈ Rn and all ξ /= 0, ξ ∈ Rn, ξq = ξ
q1
1 · · · ξqnn , and |ξ|2 = ξ21 + · · · + ξ2n.

(ii) All the coefficients aq, |q| = 2m, satisfy a uniform Hölder condition on Rn. Under
these conditions, the operator A with domain of definition D(A) = H2m(Rn) generates an
evolution operator defined on L2(Rn), and it is well known that H2m(Rn) is dense in X =
L2(Rn) and the initial function g(x) is an element in Hilbert space H2m(Rn), see [26, page
438]. Applying Theorem 4.1, this achieves the proof of the existence of mild solutions of the
problem (6.1), (6.2). In addition,

(iii) If the coefficients bq, cq, |q| ≤ 2m − 1 satisfy a uniform Hölder condition on Rn and
the operators F and G satisfy.

There are numbers L1, L2 ≥ 0 and λ1, λ2 ∈ (0, 1) such that

∑
|q|≤2m−1

∫
Rn

∣∣∣F(x, t,Dq
xw1

)
− F
(
x, s,D

q
xw

∗
1

)∣∣∣2dx ≤ L1

(
|t − s|λ1 + ∣∣w1 −w∗

1

∣∣2dx),

∑
|q|≤2m−1

∫
Rn

∣∣∣G(x, t, η,Dq
xw2

)
−G
(
x, s, η,D

q
xw2

)∣∣∣2dx ≤ L2|t − s|λ2 ,
(6.6)
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for all t, s ∈ I, (t, η), (s, η) ∈ Δ, and all x ∈ Rn. Applying Theorem 4.2, we deduce that (6.1),
(6.2) has a unique strong solution.

The second example is concerned with the controllability result.

Example 6.2. Consider the fractional nonlocal evolution integropartial differential control
system of the form

∂αu(x, t)
∂tα

+ a(x, t, (bu)(x, t))
∂2u(x, t)

∂x2
= ζ(x, t) + Υ

(
t, μ1(t, u(x, t)),

∫ t

0
μ2(t, s, u(x, t))ds

)
,

u(x, 0) +
p∑

k=1

cku(x, tk) = g(x), x ∈ [0, π],

u(0, t) = u(π, t) = 0, t ∈ I,

(6.7)

where 0 < α ≤ 1, 0 ≤ t1 < · · · < tp ≤ a, and the functions a(x, t, ·), b(x, t) are continuous.
Let us take

X = L2[0, π], Sr =
{
y ∈ L2[0, π] :

∥∥y∥∥ ≤ r
}
. (6.8)

Put (Φμ)(x)(t) = ζ(x, t), x ∈ [0, π]where μ(t) = ζ(·, t) and ζ : [0, π]×I → [0, π] is continuous.
We defineA(t, ·) : X → X by (A(t, ·)w)(x) = a(x, t, ·)w′′ with domainD(A) = {w ∈ X :

w,w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0}. Assume that −A(t, ·) generates
an evolution system U(t, s, ·) such that for every positive numbers n1 and n2, ‖U(t, s, ·)‖ ≤ n1

and ‖U(t, s, ·)A(s, ·)‖ ≤ n2.
Also, define B1(t) : D(B1) = S1 → X by (B1(t)z)(x) = b(x, t)z, for all z ∈ X and

x ∈ [0, π].
Assume that the linear operator W that is given by

Wμ(x) =
∫a

0
U(a, s;u)ζ(x, s)ds, x ∈ [0, π], (6.9)

has a bounded invertible operator W̃−1 in L2(I,H)/kerW .
Let us assume that the nonlinear functions Υ, μ1, and μ2 satisfy the following Lipschitz

conditions

∥∥Υ(t, z1, y1
) − Υ

(
t, z2, y2

)∥∥ ≤ c1
[‖z1 − z2‖ +

∥∥y1 − y2
∥∥],

∥∥μ1(t, x1) − μ1(t, x2)
∥∥ ≤ c2‖x1 − x2‖,

∫ t

0

∥∥μ2(t, s, v1) − μ2(t, s, v2)
∥∥ds ≤ c3‖v1 − v2‖,

(6.10)

where cj > 0, j = 1, 2, 3, xi, yi, zi, vi ∈ X, i = 1, 2, and s, t ∈ I.
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All the conditions stated in Theorem 5.2 are satisfied. Hence, system (6.7) is exactly
null controllable on I.
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