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The granular reduction is to delete dispensable elements from a covering. It is an efficient method
to reduce granular structures and get rid of the redundant information from information systems.
In this paper, we develop an algorithm based on discernabilitymatrixes to compute all the granular
reducts of covering rough sets. Moreover, a discernibility matrix is simplified to the minimal
format. In addition, a heuristic algorithm is proposed as well such that a granular reduct is
generated rapidly.

1. Introduction

With the development of technology, the gross of information increases in a surprising way.
It is a great challenge to extract valuable knowledge from the massive information. Rough set
theory was raised by Pawlak [1, 2] to deal with uncertainty and vagueness, and it has been
applied to the information processing in various areas [3–8].

One of the most important topics in rough set theory is to design reduction algorithms.
The reduction of Pawlak’s rough sets is to reduce dispensable elements from a family of
equivalence relations which induce the equivalence classes, or a partition.

Covering generalized rough set [9–19] and binary relation generalized rough set [20–
26] are two main extensions of Pawlak’s rough set. The reduction theory of covering rough
sets [10, 11, 15, 23, 27, 28] plays an important role in practice. A partition is no longer a
partition if any of its elements is deleted, while a covering may still be a covering with
invariant set approximations after dropping some elements. Therefore, there are two types
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of reduction on covering rough sets. One is to reduce redundant coverings from a family of
coverings, referred to as the attribute reduction. The other is to reduce redundant elements
from a covering, noted as the granular reduction. It is to find the minimal subsets of a covering
which generate the same set approximations with the original covering. Employed to reduce
granular structures and databases as well as interactive with the attribute reduction, we think
the granular reduction should be ignored by nomeans. In this paper, we devote to investigate
granular reduction of covering rough sets.

In order to compute all attribute reducts for Pawlak’s rough sets, discernibility
matrix is initially presented [29]. Tsang et al. [15] develop an algorithm of discerni-
bility matrices to compute attribute reducts for one type of covering rough sets.
Zhu and Wang [17] and Zhu [18] build one type of granular reduction for two covering
rough set models initially. In addition, Yang et al. systematically examine the granular
reduction in [30] and the relationship between reducts and topology in [31]. Unfortunately,
no effective algorithm for granular reduction has hitherto been proposed.

In this paper, we bridge the gap by constructing an algorithm based on discernibility
matrixes which is applicable to all granular reducts of covering rough sets. This algorithm
can reduce granular structures and get rid of the redundant information from information
systems. Then a discernibility matrix is simplified to the minimal format. Meanwhile, based
on a simplification of discernibility matrix, a heuristic algorithm is proposed as well.

The remainder of this paper proceeds as follows. Section 2 reviews the relevant
background knowledge about the granular reduction. Section 3 constructs the algorithm
based on discernibility matrix. Section 4 simplifies the discernibility matrix and proposes a
heuristic algorithm. Section 5 concludes the study.

2. Background

Our aim in this section is to give a glimpse of rough set theory.
Let U be a finite and nonempty set, and let R be an equivalence relation on U. R

generates a partition U/R = {[x]R | x ∈ X} on U, where [x]R is an equivalence class of x
generated by the equivalence relation R. We call it elementary sets of R in rough set theory.
For any set X, we describe X by the elementary sets of R, and the two sets

R∗ = ∪{[x]R | [x]R ⊆ X}, R∗ = ∪{[x]R | [x]R ∩X /=∅} (2.1)

are called the lower and upper approximations of X, respectively. If R∗(X) = R∗(X), X is an
R-exact set. Otherwise, it is an R-rough set.

Let R be a family of equivalence relations, and let A ∈ R, denoted as IND(R) =
∩{R : R ∈ R}. A is dispensable in R if and only if IND(R) = IND(R − A). Otherwise, A
is indispensable in R. The family R is independent if every A ∈ R is indispensable in R.
Otherwise, R is dependent. Q ∈ P is a reduct of P if Q is independent and IND(Q) = IND(P).
The sets of all indispensable relations in P are called the core of P, denoted as CORE(P).
Evidently, CORE(P) = ∩RED(P), where RED(P) is the family of all reducts of P. The
discernibility matrix method is proposed to compute all reducts of information systems and
relative reducts of decision systems [29].

C is called a covering of U, where U is a nonempty domain of discourse, and C is a
family of nonempty subsets of U and ∪C = U.
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It is clear that a partition ofU is certainly a covering ofU, so the concept of a covering
is an extension of the concept of a partition.

Definition 2.1 (minimal description [9]). Let C be a covering of U,

MdC(x) = {K ∈ C | x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K ⇒ K = S)} (2.2)

is called the minimal description of x. When there is no confusion, we omit the C from the
subscript.

Definition 2.2 (neighborhood [9, 19]). Let C be a covering of U, and NC(x) = ∩{C ∈ C |
x ∈ C} is called the neighborhood of x. Generally, we omit the subscript C when there is no
confusion.

Minimal description and neighborhood are regarded as related information granules
to describe x, which are used as approximation elements in rough sets (as shown in
Definition 2.3). It shows that N(x) = ∩{C ∈ C | x ∈ C} = ∩Md(x). The neighborhood of
x can be seen as the minimum description of x, and it is the most precise description (more
details are referred to [9]).

Definition 2.3 (covering lower and upper approximation operations [19]). Let C be a covering
of U. The operations CLC : P(U) → P(U) and CL′C : P(U) → P(U) are defined as follows:
for all X ∈ P(U),

CLC(X) = ∪{K ∈ C | K ⊆ X} = ∪{K | ∃x, s.t. (K ∈ Md(x)) ∧ (K ⊆ X)},
CL′C(X) = {x | N(x) ⊆ X} = ∪{N(x) | N(x) ⊆ X}.

(2.3)

We call CLC the first, the second, the third, or the fourth covering lower approximation
operations and CL′C the fifth, the sixth, or the seventh covering lower approximation
operations, with respect to the covering C.

The operations FH, SH, TH, RH, IH, XH, and VH : P(U) → P(U) are defined as
follows: for all X ∈ P(U),

FHC(X) = CL(X) ∪ (∪{Md(x) | x ∈ X − CL(X)}),
SHC(X) = ∪{K | K ∈ C, K ∩X /=∅},

THC(X) = ∪{Md(x) | x ∈ X},
RHC(X) = CL(X) ∪ (∪{K | K ∩ (X − CL(X))/=∅}),

IHC(X) = CL(X) ∪ (∪{N(x) | x ∈ X − CL(X)} = ∪{N(x) | x ∈ X}),
XHC(X) = {x | N(x) ∩X /=∅},

VHC(X) = ∪{N(x) | N(x) ∩X /=∅}.

(2.4)
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FHC, SHC, THC, RHC, IHC, XHC, and VHC are called the first, the second, the third, the
fourth, the fifth, the sixth, and the seventh covering upper approximation operations with
respect to C, respectively. We leave out C at the subscript when there is no confusion.

As shown in [32], every approximation operation in Definition 2.3 may be applied
in certain circumstance. We choose the suitable approximation operation according to the
specific situation. So it is important to design the granular reduction algorithms for all of
these models.

More precise approximation spaces are proposed in [30]. As a further result, a
reasonable granular reduction of coverings is also introduced. Let MC = ∪{Md(x) | x ∈ U},
NC = {N(x) | x ∈ U}. 〈U,MC〉 is the approximation space of the first and the third types of
covering rough sets, 〈U,C〉 is the approximation space of the second and the fourth types of
covering rough sets, and 〈U,NC〉 is the approximation space of the fifth, the sixth, and the
seventh types of covering rough sets (referred to [30] for the details). In this paper, we design
the algorithm of granular reduction for the fifth, the sixth, and the seventh type of covering
rough sets.

Let C be a covering ofU, denoting a covering approximation space.MC denotes anM-
approximation space. NC represents an N-approximation space. We omit C at the subscript
when there is no confusion (referred to [30] for the details).

3. Discernibility Matrixes Based on Covering Granular Reduction

In the original Pawlak’s rough sets, a family of equivalence classes induced by equivalence
relations is a partition. Once any of its elements are deleted, a partition is no longer a partition.
The granular reduction refers to the method of reducing granular structures and to get rid of
redundant information in databases. Therefore, granular reduction is not applicable to the
original Pawlak’s rough sets. However, as one of the most extensions of Pawlak’s rough sets,
a covering is still working even subject to the omission of its elements, as long as the set
approximations are invariant. The purpose of covering granular reduction is to find minimal
subsets keeping the same set approximations. It is meaningful and necessary to develop the
algorithm for covering granular reduction.

The quintuple (U,C, CL,CH) is called a covering rough set system (CRSS), where C is
a covering ofU, CL and CH are the lower and upper approximation operations with respect
to the covering C, and 〈U,AC〉 is the approximation space. According to the categories of
covering approximation operations in [30], there are two kinds of situations as follows.

(1) If AC = C or AC = MC, then AC ⊆ C: thus; AC is the unique granular reduct of C.
There is no need to develop an algorithm to compute granular reducts for the first,
the second, the third, and the fourth type of the covering rough sets.

(2) IfAC = NC, generally,AC is not a subset of C. Consequently, an algorithm is needed
to compute all granular reducts of C for the fifth, the sixth, and the seventh type of
covering rough set models.

Next we examine the algorithm of granular reduction for the fifth, the sixth, and the
seventh type of covering rough sets. Let C be a covering of U, since NC = {N(x) | x ∈ U},
and NC is the collection of all approximation elements of the fifth, the sixth, or the seventh
type of lower/upper approximation operations. NC is called the N-approximation space
of C. Given a pair of approximation operations, the set approximations of any X ⊆ U are
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determined by the N-approximation spaces. Thus, for the fifth, the sixth, and the seventh
type of covering rough set models, the purpose of granular reduction is to find the minimal
subsets C′ of C such that NC = NC′ . The granular reducts based on the N-approximation
spaces are called theN-reducts.Nred(C) is the set of allN-reducts of C, andNI(C) is the set
of all N-irreducible elements of C (referred to [30] for the details).

In Pawlak’s rough set theory, for every pair of x, y ∈ U, if y belongs to the equivalence
class containing x, we say that x and y are indiscernible. Otherwise, they are discernible. Let
R = {R1, R2, . . . , Rn} be a family of equivalence relation onU, Ri ∈ R. Ri is indispensable in R

if and only if there is a pair of x, y ∈ U such that the relation between x and y is altered after
deleting Ri from R. The attribute reduction of Pawlak’s rough sets is to find minimal subsets
of R which keep the relations invariant for any x, y ∈ U. Based on this statement, the method
of discernibility matrix to compute all reducts of Pawlak’s rough sets was proposed in [29]. In
covering rough sets, however, the discernibility relation between x, y ∈ U is different from
that in Pawlak’s rough sets.

Let C be a covering on U, (x, y) ∈ U × U. Then we call (x, y) indiscernible if
y ∈ N(x), that is, N(y) ⊆ N(x). Otherwise, (x, y) is discernible. When C is a partition,
the new discernibility relation coincides with that in Pawlak’s. It is an extension of Pawlak’s
discernibility relation. In Pawlak’s rough sets, (x, y) is indiscernible if and only if (y, x) is
indiscernible. However, for a general covering, if N(y) ⊆ N(x) and N(y)/=N(x), that is,
y ∈ N(x) and x /∈ N(y), (y, x) is discernible while (x, y) is indiscernible. Thereafter, we call
these relations the relations of (x, y) with respect to C. The following theorem characterizes
these relations.

Proposition 3.1. Let C = {Ci | i = 1, 2, 3, . . . , n} be a covering onU, and let Cx = {Ci ∈ C | x ∈ Ci}.
(1) y ∈ N(x) if and only if Cx ⊆ Cy.

(2) y /∈ N(x) if and only if there is Ci ∈ C such that x ∈ Ci and y /∈ Ci.

Proof. (1) y ∈ N(x) = ∩Cx ⇔ for any Ci ∈ Cx, y ∈ Ci ⇔ for any Ci ∈ Cx, Ci ∈ Cy ⇔ Cx ⊆ Cy.
(2) It is evident from (1).

Theorem 3.2. Let C be a covering on U, Ci ∈ C. Then NC /=NC−{Ci} if and only if there is (x, y) ∈
U ×U whose discernibility relation with respect to C is changed after deleting Ci from C.

Proof. Suppose that NC /=NC−{Ci}, then there is at least one element x ∈ U such that
NC(x)/=NC−{Ci}(x), that is, NC(x) ⊂ NC−{Ci}(x). Since NC−{Ci}(x) − NC(x)/=∅, suppose that
y ∈ NC−{Ci}(x) − NC(x), then y ∈ NC−{Ci}(x) and y /∈ NC(x). Namely, (x, y) is discernible
with respect to C, while (x, y) is indiscernible with respect to C − {Ci}.

Suppose that there is (x, y) ∈ U ×U whose discernibility relation with respect to C is
changed after deleting Ci from C. Put differently, (x, y) is discernible with respect to C, while
(x, y) is indiscernible with respect to C − {Ci}. Then we have y ∈ NC−{Ci}(x) and y /∈ NC(x),
so y ∈ NC−{Ci}(x) −NC(x). Thus, NC(x)/=NC−{Ci}(x). It implies NC /=NC−{Ci}.

The purpose of granular reducts of a covering C is to find the minimal subsets of
C which keep the same classification ability as C or, put differently, keep NC invariant.
In Theorem 3.2, NC is kept unchanged to make the discernibility relations of any (x, y) ∈
U × U invariant. Based on this statement, we are able to compute granular reducts with
discernibility matrix.
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Definition 3.3. LetU = {x1, x2, . . . , xn}, C be a covering onU.M(U,C) is an n×nmatrix (cij)n×n
called a discernibility matrix of (U,C), where

(1) cij = ∅, xj ∈ N(xi),

(2) cij = {C ∈ C | xi ∈ C, xj /∈ C}, xj /∈ N(xi).

This definition of discernibility matrix is more concise than the one in [11, 15]
due to the reasonable statement of the discernibility relations. Likewise, we restate the
characterizations of N-reduction.

Proposition 3.4. Consider thatNI(C) = {C | cij = {C} for some cij ∈ M(U,C)}.

Proof. For anyC ∈ NI(C),NC /=NC−{C}, then there is (xi, xj) ∈ U×U such that xj ∈ NC−{C}(xi)
and xj /∈ NC(xi). It implies that xi ∈ C and xj /∈ C. Moreover, for any C′ ∈ C − {C}, since
xj ∈ NC−{C}(xi), we have xi ∈ C′ if xi ∈ C′. Thus, cij = {C}.

If cij = {C} for some cij ∈ M(U,C), then xi ∈ C and xj /∈ C. And for any C′ ∈ C − {C},
if xi ∈ C′, then xi ∈ C′, that is, xj ∈ NC−{C}(xi) and xj /∈ NC(xi), then NC−{C}(xi)/=NC(xi).
Namely, NC /=NC−{C}, which implies C ∈ NI(C).

Proposition 3.5. Suppose that C′ ⊆ C, thenNC = NC′ if and only if C′ ∩ cij /=∅ for every cij /=∅.

Proof. NC = NC′

⇔ for any (xi, xj) ∈ U ×U, xj /∈ NC(xi) if and only if xj /∈ NC′(xi),

⇔ for any (xi, xj) ∈ U ×U, there is C ∈ C such that xi ∈ C and xj /∈ C if and only if
there is C′ ∈ C′ such that xi ∈ C′ and xj /∈ C′,

⇔ for any cij /=∅, C′ /=∅.

Proposition 3.6. Suppose that C′ ⊆ C, then C′ ∈ Nred(C) if and only if C′ is a minimal set satisfying
C′ ∩ cij /=∅ for every cij /=∅.

Definition 3.7. Let U = {x1, x2, . . . , xn}, let C = {C1, C2, . . . , Cm} be a covering of U, and let
M(U,C) = (cij)n×n be the discernibility matrix of (U,C). A discernibility function f(U,C)
is a Boolean function of m Boolean variables, C1, C2, . . . , Cm, corresponding to the covering
elements C1, C2, . . . , Cm, respectively, defined as f(U,C)(C1, C2, . . . , Cm) = ∧{∨(cij) | cij ∈
M(U,C), cij /=∅}.

Theorem 3.8. Let C be a family of covering on U, let f(U,C) be the discernibility function, and
let g(U,C) be the reduced disjunctive form of f(U,C) by applying the multiplication and absorption
laws. If g(U,C) = (∧C1) ∨ · · · ∨ (∧Cl), where Ck ⊆ C, k = 1, 2, . . . , l and every element in Ck only
appears once, thenNred(C) = {C1,C2, . . . ,Cl}.

Proof. For every k = 1, 2, . . . , l, ∧Ck ≤ ∨cij for any cij ∈ M(U,C), so Ck ∩ cij /=∅. Let C′
k = Ck −

{C} for anyC ∈ Ck, then g(U,C) � ∨k−1
t=1 (∧Ct)∨(∧C′

k)∨(∨l
t=k+1(∧Ct)). If for every cij ∈ M(U,C),

we have C′
k ∩ cij /=∅, then ∧C′

k ≤ ∨cij for every cij ∈ M(U,C), that is, g(U,C) ≥ ∨k−1
t=1 (∧Ct) ∨

(∧C′
k)∨(∨l

t=k+1(∧Ct)), which is a contradiction. It implies that there is ci0j0 ∈ M(U,C) such that
C′
k
∩ ci0j0 = ∅. Thus, Ck is a reduct of C.
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Table 1

Objects C1 C2 C3 C4 C5 C6 C7

x1 ∗ ∗ ∗ ∗ ∗
x2 ∗
x3 ∗ ∗ ∗
x4 ∗ ∗ ∗ ∗ ∗ ∗
x5 ∗ ∗ ∗
x6 ∗ ∗

For any C′ ∈ Red(C), we have C′ ∩ cij /=∅ for every cij ∈ M(U,C), so f(U,C) ∧ (∧C′) =
∧(∨cij) ∧ (∧C′) = ∧C′, which implies ∧C′ ≤ f(U,C) = g(U,C). Suppose that, for every k =
1, 2, . . . , l, we have Ck − C′ /=∅, then for every k, there is Ck ∈ Ck − C′. By rewriting g(U,C) =
(∨l

k=1Ck) ∧Φ, ∧C′ ≤ ∨l
k=1Ck. Thus, there is Ck0 such that ∧C′ ≤ Ck0 , that is, Ck0 ∈ C′, which is a

contradiction. So Ck0 ⊆ C′ for some k0, since both C′ and Ck0 are reducts, and it is evident that
C′ = Ck0 . Consequently, Red(C) = {C1,C2, . . . ,Cl}.

Algorithm 3.9. Consider the following:
input: 〈U,C〉,
output: Nred(C) and NI(C)// The set of all granular reducts and the set of all N-

irreducible elements.

Step 1: M(U,C)=(cij)n×n, for each cij , let cij = ∅.

Step 2: for each xi ∈ U, compute N(xi) = ∩{C ∈ C | xi ∈ C}.

If xj /∈ N(xi), cij = {C ∈ C | xi ∈ C, xj /∈ C}.

Step 3: f(U,C)(C1, C2, . . . , Cm) = ∧{∨(cij) | cij ∈ M(U,C), cij /=∅}.

Step 4: compute f(U,C) to g(U,C) = (∧C1) ∨ · · · ∨ (∧Cl)// where Ck ⊆ C,

k = 1, 2, . . . , l, and every element in Ck only appears once.

Step 4: output Nred(C) = {C1,C2, . . . ,Cl}, NI(C) = ∩Nred(C).

Step 5: end.

The following example is used to illustrate our idea.

Example 3.10. Suppose that U = {x1, x2, . . . , x6}, where xi, i = 1, 2, . . . , 6 denote six objects,
and let Ci, i = 1, 2, . . . , 7 denote seven properties; the information is presented in Table 1, that
is, the ith object possesses the jth attribute is indicated by a ∗ in the ij-position of the table.

{x1, x2, x3} is the set of all objects possessing the attribute C1, and it is denoted by
C1 = {x1, x2, x3}. Similarly, C2 = {x1, x4}, C3 = {x3, x4, x5}, C4 = {x1, x4, x5}, C5 = {x1, x4, x6},
C6 = {x3, x4}, and C7 = {x1, x4, x5, x6}. Evidently, C = {C1, C2, C3, C4, C5, C6, C7} is a covering
on U.

Then, N(x1) = {x1}, N(x2) = {x1, x2, x3}, N(x3) = {x3}, N(x4) = {x4}, N(x5) =
{x4, x5}, and N(x6) = {x4, x6}.
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Table 2

Objects C1 C3 C4 C5

x1 ∗ ∗ ∗
x2 ∗
x3 ∗ ∗
x4 ∗ ∗ ∗
x5 ∗ ∗
x6 ∗

Table 3

Objects C1 C3 C5 C7

x1 ∗ ∗ ∗
x2 ∗
x3 ∗ ∗
x4 ∗ ∗ ∗
x5 ∗ ∗
x6 ∗ ∗

The discernibility matrix of (U,C) is exhibited as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∅ {C2, C4, C5, C7} {C2, C4, C5, C7} {C1} {C1, C2, C5} {C1, C2, C4}
∅ ∅ ∅ {C1} {C1} {C1}

{C3, C6} {C3, C6} ∅ {C1} {C1, C6} {C1, C3, C6}
{C3, C6} {C2, C3, C4, C5, C6, C7} {C2, C4, C5, C7} ∅ {C2, C5, C6} {C2, C3, C4, C6}
{C3} {C3, C4, C7} {C4, C7} ∅ ∅ {C3, C4}

∅ {C5, C7} {C5, C7} ∅ {C5} ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.1)

f(U,Δ)
(
C1, C2, C3, C4, C5, C6, C7

)

= ∧{∨(cij
) | i, j = 1, 2, . . . , 6, cij /=∅

}

= (C2 ∨ C4 ∨ C5 ∨ C7) ∧ (C2 ∨ C4 ∨ C5 ∨ C7) ∧ C1 ∧ (C1 ∨ C2 ∨ C5)

∧ (C1 ∨ C2 ∨ C4) ∧ C1 ∧ C1 ∧ C1 ∧ (C3 ∨ C6) ∧ (C3 ∨ C6) ∧ (C1) ∧ (C1 ∨ C6)

∧ (C1 ∨ C3 ∨ C6) ∧ (C3 ∨ C6) ∧ (C2 ∨ C3 ∨ C4 ∨ C5 ∨ C6 ∨ C7) ∧ (C2 ∨ C4 ∨ C5 ∨ C7)

∧ (C2 ∨ C5 ∨ C6) ∧ (C2 ∨ C3 ∨ C4 ∨ C6) ∧ C3 ∧ (C3 ∨ C4 ∨ C7) ∧ (C4 ∨ C7)

∧ (C3 ∨ C4) ∧ (C5 ∨ C7) ∧ (C5 ∨ C7) ∧ C5

= (C5 ∧ C1 ∧ C3 ∧ C4) ∨ (C5 ∧ C1 ∧ C3 ∧ C7).
(3.2)

So Nred(C) = {{C1, C3, C4, C5}, {C1, C3, C5, C7}}, NI(C) = {C1, C3, C5}. As a result,
Table 1 can be simplified into Table 2 or Table 3, and the ability of classification is invariant.
Obviously, the granular reduction algorithm can reduce data sets as shown.



Journal of Applied Mathematics 9

4. The Simplification of Discernibility Matrixes

For the purpose of finding the set of all granular reducts, we have proposed the method
by discernibility matrix. Unfortunately, it is at least an NP problem, since the discernibility
matrix in this paper is more complex than the one in [33]. Accordingly, we simplify the
discernibility matrixes in this section. In addition, a heuristic algorithm is presented to avoid
the NP hard problem.

Definition 4.1. Let M(U,C) = (cij)n×n be the discernibility matrix of (U,C). For any cij ∈
M(U,C), if there is an nonempty element ci0j0 ∈ M(U,C) − {cij} such that ci0j0 ⊆ cij , let
c′ij = ∅; otherwise, c′ij = cij , then we get a new discernibility matrix SIM(U,C) = (c′ij)n×n,
which called the simplification discernibility matrix of (U,C).

Theorem 4.2. LetM(U,C) be the discernibility matrix of (U,C), and SIM(U,C) is the simplification
discernibility matrix, C′ ⊆ C. Then C′ ∩ cij /=∅ for any nonempty element cij ∈ M(U,C) if and only
if C′ ∩ c′ij /=∅ for any nonempty element c′ij ∈ SIM(U,C).

Proof. If C′ ∩ cij /=∅ for every cij /=∅ and cij ∈ M(U,C), it is evident that C′ ∩ c′ij /=∅ for every
c′ij /=∅ and c′ij ∈ SIM(U,C).

Suppose that C′ ∩ c′ij /=∅ for every c′ij /=∅ and c′ij ∈ SIM(U,C). For any nonempty cij ∈
M(U,C), if there is an nonempty element ci0j0 ∈ M(U,C) − {cij} such that ci0j0 ⊆ cij , and
for any nonempty element ci1j1 ∈ M(U,C) − {cij , ci0j0}, ci1j1/⊆ci0j0, then c′i0j0 = ci0j0 /=∅. Since
C′ ∩ c′i0j0 /=∅, then C′ ∩ ci0j0 /=∅; thus, C′ ∩ cij /=∅. If ci0j0/⊆cij for any nonempty element ci0j0 ∈
M(U,C) − {cij}, then c′ij = cij . Since C′ ∩ c′ij /=∅, then C′ ∩ cij /=∅. Thus, C′ ∩ cij /=∅ for every
nonempty cij ∈ M(U,C).

Proposition 4.3. Suppose that C′ ⊆ C, then C′ ∈ Nred(C) if and only if C′ is a minimal set satisfying
C′ ∩ c′ij /=∅ for every c′ij /=∅ and c′ij ∈ SIM(U,C).

Proposition 4.4. Consider that ∪{c′ij | c′ij ∈ SIM(U,C)} = ∪Nred(C).

Proof. Suppose that C ∈ ∪{c′ij | c′ij ∈ SIM(U,C)}, then there is c′ij ∈ SIM(U,C) such that C ∈ c′ij
and c′ij ∩NI(C) = ∅. For any c′ij ∈ SIM(U,C), if C ∈ c′ij , let c

1
ij = {C}. Otherwise, c1ij = {Cij},

where Cij ∈ c′ij . Suppose that M1(U,C) = (c1ij)n×n; it is easy to prove that C ∈ ∪{c1ij | c1ij ∈
M1(U,C)} ∈ Nred(C). Thus, C ∈ ∪Nred(C).

Suppose that C ∈ ∪Nred(C), then there is Ck ∈ Nred(C) such that C ∈ Ck. From
Proposition 4.3, we know that Ck is a minimal set satisfying Ck ∩ c′ij /=∅ for every c′ij /=∅ and
c′ij ∈ SIM(U,C). So there is a c′ij ∈ SIM(U,C) such that C ∈ c′ij , or else C is redundant in Ck.
Thus, C ∈ ∪{c′ij | c′ij ∈ SIM(U,C)}.

In summary, ∪{c′ij | c′ij ∈ SIM(U,C)} = ∪Nred(C).

Proposition 4.5. Let SIM(U,C) = (c′ij)n×n be the simplified discernibility matrix of (U,C), then
SIM(U,C) is the minimal matrix to compute all granular reducts of C, that is, for any matrix
M0(U,C) = (dij)n×n where dij ⊆ c′ij , M0(U,C) can compute all granular reducts of C if and only if
dij = c′ij for 1 ≤ i, j ≤ n.

Proof. If dij = c′ij for 1 ≤ i, j ≤ n, then M0(U,C) = SIM(U,C), and M0(U,C) can compute all
granular reducts of C.
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Suppose that there is a nonempty c′i0j0 ∈ SIM(U,C) such that di0j0 ⊂ c′i0j0. If |c′i0j0| =
1, suppose that c′i0j0 = {C0}, then di0j0 = ∅. From the definition of the simplification
discernibility matrix, we know that C0 /∈ c′ij for any c′ij ∈ SIM(U,C) − {c′i0j0}, then C0 /∈ dij

for any dij ∈ M0(U,C). So M0(U,C) cannot compute any granular reducts of C. If |c′i0j0| ≥ 2,
we suppose that di0j0 /=∅. Then there is a C ∈ (c′i0j0 − di0j0), and let c1i0j0 = {C}. For any
c′ij ∈ SIM(U,C)−{c′i0j0}, ifC ∈ c′ij , let c

1
ij = ∅. Otherwise, let c1ij = {Cij}whereCij ∈ c′ij−c′i0j0. Let

M1(U,C) = (c1ij)n×n and C′ = ∪{c1ij | c1ij ∈ M1(U,C)}, and it is easy to prove that C′ ∈ Nred(C).
However, C′ ∩ di0j0 = ∅, that is, M0(U,C) cannot compute all granular reducts of C. Thus, if
M0(U,C) can compute all granular reducts of C, then dij = c′ij for 1 ≤ i, j ≤ n.

From the above propositions, we know that the simplified discernibility matrix is
the minimal discernibility matrix which can compute the same reducts as the original one.
Hereafter, we only examine simplified discernibility matrixes instead of general discernibility
matrixes. The following example is used to illustrate our idea.

Example 4.6. The discernibility matrix of (U,C) in Example 3.10 is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∅ {C5} ∅ {C1} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

{C3} ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ {C4, C7} ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

f(U,Δ)
(
C1, C2, C3, C4, C5, C6, C7

)
= ∧

{
∨
(
c′ij

)
| i, j = 1, 2, . . . , 6, cij /=∅

}

= C5 ∧ C1 ∧ C3 ∧ (C4 ∨ C7)

= (C5 ∧ C1 ∧ C3 ∧ C4) ∨ (C5 ∧ C1 ∧ C3 ∧ C7).

(4.1)

SoNred(C) = {{C1, C3, C4, C5}, {C1, C3, C5, C7}}, NI(C) = {C1, C3, C5}.

From the above example, it is easy to see that simplified discernibility matrix can
simplify the computing processes remarkably. Especially when C is a consistent covering
proposed in [30], that is, Nred(C) = {NI(C)}, the unique reduct Nred(C) = {∪{c′ij | c′ij ∈
SIM(U,C)}}.

Unfortunately, although the simplified discernibility matrixes are more simple, the
processes of computing reducts by discernibility function are still NP hard. Accordingly, we
develop a heuristic algorithm to obtain a reduct from a discernibility matrix directly.

LetM(U,C) = (cij)n×n be a discernibilitymatrix.We denote the number of the elements
in cij by |cij |. For anyC ∈ C, ||C|| denotes the number of cij which containC. Let cij ∈ M(U,C),
if for any C ∈ NI(C), C /∈ cij , then c′ij = cij . Since ∪{c′ij | |c′ij | ≥ 2} = ∪Nred(C) − NI(C), if
|c′ij | ≥ 2, then the elements in c′ij may either be deleted from C or be preserved. Suppose
that C0 ∈ ∪{c′ij | |c′ij | ≥ 2}, if ||C0|| ≥ ||C|| for any C ∈ ∪{c′ij | |c′ij | ≥ 2}, C0 is called the
maximal element with respect to the simplified discernibility matrix SIM(U,C). The heuristic
algorithm to get a reduct from a discernibility matrix directly proceeds as follows.
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Algorithm 4.7. Consider the following:
input: 〈U,C〉,
output: granular reducts red

Step 1: M(U,C)=(cij)n×n, for each cij , let cij = ∅.

Step 2: for each xi ∈ U, compute N(xi) = ∩{C ∈ Cxi ∈ C}.
If xj /∈ N(xi),

cij = {C ∈ C | xi ∈ C, xj /∈ C}//get the discernibility matrix.

Step 3: for each cij ∈ M(U,C),
if there is a nonempty element ci0j0 ∈ M(U,C) − {cij} such that

ci0j0 ⊆ cij , let cij = ∅ // get the simplified discernibility matrix.

Step 4: for each Ci ∈ ∪M(U,C), compute ||Ci|| and select the maximal

element C0 of SIM(U,C).
For each cij ∈ M(U,C),
if C0 ∈ cij ,

let cij = {C0}.
Step 5: if there is cij ∈ M(U,C) such that |cij | � 2,

return to Step 3;

else

output red = ∪M(U,C).
Step 5: end.

Example 4.8. The simplified discernibility matrix of (U,C) in Example 3.10 is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∅ {C5} ∅ {C1} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

{C3} ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ {C4, C7} ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2)

For amaximal elementC4 of SIM(U,C), let c153 = {C4}, thenwe getM1(U,C) as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∅ {C5} ∅ {C1} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

{C3} ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ {C4} ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3)

Thus, {C1, C3, C4, C5} = ∪{c1ij | c1ij ∈ M1(U,C)} is a granular reduct of C.
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For amaximal elementC7 of SIM(U,C), let c153 = {C7}, thenwe getM2(U,C) as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∅ {C5} ∅ {C1} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

{C3} ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ {C7} ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)

Thus, {C1, C3, C5, C7} = ∪{c2ij | c2ij ∈ M2(U,C)} is also a granular reduct of C.

From the above example, we show that the heuristic algorithm can avoid the NP hard
problem and generate a granular reduct from the simplified discernability matrix directly.
With the heuristic algorithm, the granular reduction theory based on discernability matrix is
no longer limited to the theoretic level but applicable in practical usage.

5. Conclusion

In this paper, we develop an algorithm by discernability matrixes to compute all the granular
reducts with covering rough sets initially. A simplification of discernibility matrix is proposed
for the first time. Moreover, a heuristic algorithm to compute a granular reduct is presented
to avoid the NP hard problem in granular reduction such that a granular reduct is generated
rapidly.
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