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This paper investigates the problem of robust exponential stability for uncertain linear-parameter
dependent (LPD) discrete-time system with delay. The delay is of an interval type, which means
that both lower and upper bounds for the time-varying delay are available. The uncertainty under
consideration is norm-bounded uncertainty. Based on combination of the linear matrix inequality
(LMI) technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions
for the robust exponential stability are obtained in terms of LMI. Numerical examples are given to
demonstrate the effectiveness and less conservativeness of the proposed methods.

1. Introduction

Over the past decades, the problem of stability analysis of delay discrete-time systems
has been widely investigated by many researchers. Because the existence of time delay is
frequent, a source of oscillation instability performances degradation of systems. Stability
criteria for discrete-time systems with time delay is generally divided into two classes: delay-
independent ones and delay-dependent ones. Delay-independent stability criteria tend to be
more conservative, especially for small-size delay; such criteria do not give any information
on the size of the delay. On the other hand, delay-dependent stability criteria is concerned
with the size of the delay and usually provide amaximal delay size. Moreover, robust stability
of linear continuous-time and discrete-time systems subject to time-invariant parametric
uncertainty has received considerable attention. An important class of linear time-invariant
parametric uncertain system is linear parameter-dependent (LPD) system in which the
uncertain state matrices are in the polytope consisting of all convex combination of known
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matrices. To address this problem, several results have been obtained in terms of sufficient
(or necessary and sufficient) conditions; see [1–15] and references cited therein. Most of these
conditions have been obtained via the Lyapunov theory approaches in which parameter
dependent Lyapunov functions have been employed. These conditions are always expressed
in terms of linear matrix inequalities (LMIs) which can be solved numerically by using
available tools such as LMI toolbox in MATLAB. The results have been obtained for robust
stability for LPD systems in which time delay occur in state variable such as [6, 11, 14]
present sufficient conditions for robust stability of LPD continuous-time system with delays.
However, a few results have been obtained for robust stability for LPD discrete-time systems
with delay.

In this paper, we deal with the problem of robust exponential stability for uncertain
LPD discrete-time system with interval time-varying delay. Combined with the linear matrix
inequality technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient
conditions for the robust exponential stability are obtained in terms of LMI. Finally, numerical
examples have demonstrated the effectiveness of the criteria.

2. Problem Formulation and Preliminaries

We introduce some notations and definitions that will be used throughout the paper. Z
+

denotes the set of non negative integer numbers; R
n denotes the n-dimensional space with

the vector norm ‖ · ‖; ‖x‖ denotes the Euclidean vector norm of x ∈ R
n; that is, ‖x‖2 = xTx;

Mn×r denotes the space of all matrices of (n × r)-dimensions; AT denotes transpose of the
Matrix A; A is symmetric if A = AT ; I denotes the identity matrix; λ(A) denotes the set of all
eigenvalues of A; λmax(A) = max{Reλ : λ ∈ λ(A)}; Matrix A is called semi positive definite
(A ≥ 0) if xTAx ≥ 0, for all x ∈ R

n; A is positive definite (A > 0) if xTAx > 0 for all x /= 0;
Matrix B is called semi-negative definite (B ≤ 0) if xTBx ≤ 0, for all x ∈ R

n; B is negative
definite (B < 0) if xTBx < 0 for all x /= 0; A > B means A − B > 0; A ≥ B means A − B ≥ 0; ∗
represents the elements below the main diagonal of a symmetric matrix.

Consider the following uncertain LPD discrete-time systemwith interval time-varying
delay in the state

x(k + 1) = [A(α) + ΔA(k)]x(k) + [B(α) + ΔB(k)]x(k − h(k)),

x(s) = φ(s), s = −h2, . . . ,−1, 0,
(2.1)

where k ∈ Z
+, x(k) ∈ R

n is the system state and φ(s) is a initial value at s. A(α), B(α) ∈ Mn×n

are uncertain matrices belonging to the polytope of the form

A(α) =
N∑

i=1

αiAi, B(α) =
N∑

i=1

αiBi,

N∑

i=1

αi = 1, αi ≥ 0, Ai, Bi ∈ Mn×n, i = 1, . . . ,N.

(2.2)
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ΔA(k) andΔB(k) are unknown matrices representing time-varying parameter uncertainties,
we assumed to be of the form

ΔA(k) = K(α)Δ(k)A1(α), ΔB(k) = K(α)Δ(k)B1(α),

A1(α) =
N∑

i=1

αiA
1
i , B1(α) =

N∑

i=1

αiB
1
i , K(α) =

N∑

i=1

αiKi,

N∑

i=1

αi = 1, αi ≥ 0, A1
i , B

1
i ∈ Mn×n, i = 1, . . . ,N.

(2.3)

The class of parametric uncertainties Δ(k), which satisfies

Δ(k) = F(k)[I − JF(k)]−1, (2.4)

is said to be admissible where J is a known matrix satisfying

I − JJT > 0, (2.5)

and F(k) is uncertain matrix satisfying

F(k)TF(k) ≤ I. (2.6)

In addition, we assume that the time-varying delay h(k) is upper and lower bounded. It
satisfies the following assumption of the form

h1 ≤ h(k) ≤ h2, (2.7)

where h1 and h2 are known positive integers.

Definition 2.1. The uncertain LPD discrete-time-delayed system in (2.1) is said to be robustly
exponentially stable if there exist constant scalars 0 < a < 1 and b > 0 such that

‖x(k)‖2 ≤ bak sup
−h2≤l≤0

∥∥φ(l)
∥∥2

, (2.8)

for all admissible uncertainties.

Lemma 2.2 (see [5] (Schur complement lemma)). Given constant matricesX,Y,Z of appropriate
dimensions with Y > 0. Then X + ZTY−1Z < 0 if and only if

(
X ZT

Z −Y
)

< 0 or
(−Y Z
ZT X

)
< 0. (2.9)
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Lemma 2.3 (see [2]). Given constant matrices M1,M2, and M3 of appropriate dimensions with
M1 = MT

1 . Then,

M1 +M2Δ(k)M3 +MT
3Δ(k)TMT

2 < 0, (2.10)

where Δ(k) = F(k)[I − JF(k)]−1,F(k)TF(k) ≤ I, for all k ∈ Z
+ if and only if

M1 +
[
ε−1MT

3 εM2
][ I −J
−JT I

]−1[
ε−1MT

3 εM2
]T

< 0, (2.11)

for some scalar ε > 0.

3. Main Results

In this section, we present our main results on the robust exponential stability criteria for
uncertain LPD discrete-time system with interval time-varying delays. We introduce the
following notation for later use:

Â(α) = A(α) + ΔA(k), B̂(α) = B(α) + ΔB(k), ĥ = h2 − h1 + 1. (3.1)

Lemma 3.1. For any Â(α), B̂(α), ĥ in (3.1), P(α) and Q(α) given by

P(α) =
N∑

i=1

αiPi, Q(α) =
N∑

i=1

αiQi,
N∑

i=1

αi = 1, αi ≥ 0, i = 1, . . . ,N, (3.2)

are parameter-dependent positive definite Lyapunov matrices such that

[
ÂT (α)P(α)Â(α) − P(α) + ĥQ(α) ÂT (α)P(α)B̂(α)

B̂T (α)P(α)Â(α) B̂T (α)P(α)B̂(α) −Q(α)

]
< 0, (3.3)

if and only if

⎡
⎢⎢⎢⎢⎢⎣

−P(α) + ĥQ(α) 0 A(α)TP(α) ε−1A1(α)T 0
∗ −Q(α) B(α)TP(α) ε−1B1(α)T 0
∗ ∗ −P(α) 0 εP(α)K(α)
∗ ∗ ∗ −I J
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0. (3.4)
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Proof. Consider

[
ÂT (α)P(α)Â(α) − P(α) + ĥQ(α) ÂT (α)P(α)B̂(α)

B̂T (α)P(α)Â(α) B̂T (α)P(α)B̂(α) −Q(α)

]

=

[
−P(α) + ĥQ(α) 0

0 −Q(α)

]
+

[
ÂT (α)P(α)Â(α) ÂT (α)P(α)B̂(α)
B̂T (α)P(α)Â(α) B̂T (α)P(α)B̂(α)

]

=

[
−P(α) + ĥQ(α) 0

0 −Q(α)

]
+

[
ÂT (α)
B̂T (α)

]
P(α)

[
Â(α) B̂(α)

]
.

(3.5)

We assume that

[
−P(α) + ĥQ(α) 0

0 −Q(α)

]
+

[
A

T
(α)

B
T
(α)

]
P(α)

[
A(α) B(α)

]
< 0. (3.6)

Using Lemma 2.2, we obtain

⎡
⎢⎣
−P(α) + ĥQ(α) 0 A(α)T + [K(α)Δ(k)A1(α)]

T

∗ −Q(α) B(α)T + [K(α)Δ(k)B1(α)]
T

∗ ∗ −P(α)−1

⎤
⎥⎦ < 0. (3.7)

We rewrite the latter inequality as

⎡
⎢⎣
−P(α) + ĥQ(α) 0 A(α)T

∗ −Q(α) B(α)T

∗ ∗ −P(α)−1

⎤
⎥⎦ +

⎡

⎣
0
0

K(α)

⎤

⎦Δ(k)
[
A1(α) B1(α) 0

]

+
[
A1(α) B1(α) 0

]TΔ(k)T
⎡

⎣
0
0

K(α)

⎤

⎦

T

< 0.

(3.8)

Using Lemma 2.3, inequality (3.8) holds if and only if there exists ε > 0 such that

⎡
⎢⎣
−P(α) + ĥQ(α) 0 A(α)T

∗ −Q(α) B(α)T

∗ ∗ −P(α)−1

⎤
⎥⎦

+

⎡
⎢⎣
ε−1A1(α)T 0
ε−1B1(α)T 0

0 εK(α)

⎤
⎥⎦
[
I −J
−J I

]−1
⎡
⎢⎣
ε−1A1(α)T 0
ε−1B1(α)T 0

0 εK(α)

⎤
⎥⎦

T

< 0.

(3.9)
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If we apply to (3.9), then we obtain

⎡
⎢⎢⎢⎢⎢⎣

−P(α) + ĥQ(α) 0 A(α)T ε−1A1(α)T 0
∗ −Q(α) B(α)T ε−1B1(α)T 0
∗ ∗ −P(α)−1 0 εK(α)
∗ ∗ ∗ −I J
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0. (3.10)

Premultiplying (3.10) by diag{I, I, P(α), I, I} and postmultiplying by diag{I, I, P(α), I, I}, we
get that (3.4) and the lemma is proved.

Lemma 3.2. If there exist positive definite symmetric matrices Pi, Qi, i = 1, 2, . . . ,N, and positive
real numbers ε, ζ such that

⎡
⎢⎢⎢⎢⎢⎣

−Pi + ĥQi 0 AT
i Pi ε−1A1

i

T 0
∗ −Qi BT

i Pi ε−1B1
i

T 0
∗ ∗ −Pi 0 εPiKi

∗ ∗ ∗ −I J
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< −ζI, i = 1, 2, . . . ,N,

⎡
⎢⎢⎢⎢⎢⎣

−Pi + ĥQi 0 AT
i Pj ε−1A1

i

T 0
∗ −Qi BT

i Pj ε−1B1
i

T 0
∗ ∗ −Pi 0 εPiKj

∗ ∗ ∗ −I J
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

−Pj + ĥQj 0 AT
j Pi ε−1A1

j

T 0

∗ −Qj BT
j Pi ε−1B1

j

T 0
∗ ∗ −Pj 0 εPjKi

∗ ∗ ∗ −I J
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

<
2ζI

N − 1
,

i = 1, . . . ,N − 1, j = i + 1, . . . ,N,

(3.11)

then, for any A(α), A1(α), B(α), B1(α), K(α), ĥ in (3.1), P(α) and Q(α) are parameter-dependent
positive definite Lyapunov matrices in Lemma 3.1 such that (3.4) holds.

Proof. Consider

⎡
⎢⎢⎢⎢⎢⎣

−P(α) + ĥQ(α) 0 A(α)TP(α) ε−1A1(α)T 0
∗ −Q(α) B(α)TP(α) ε−1B1(α)T 0
∗ ∗ −P(α) 0 εP(α)K(α)
∗ ∗ ∗ −I J
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

=
N∑

i=1

N∑

j=1

αiαj

⎡
⎢⎢⎢⎢⎢⎣

−Pi + ĥQi 0 AT
i Pj ε−1A1

i

T 0
∗ −Qi BT

i Pj ε−1B1
i

T 0
∗ ∗ −Pi 0 εPiKj

∗ ∗ ∗ −I J
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦
.

(3.12)



Journal of Applied Mathematics 7

Using the fact that
∑N

i=1 αi = 1, we obtain the following identities:

N∑

i=1

N∑

j=1

αiαjAiBj =
N∑

i=1

α2AiBi +
N−1∑

i=1

N∑

j=i+1

αiαj

[
AiBj +AjBi

]
,

(N − 1)
N∑

i=1

α2
i ζ − 2

N−1∑

i=1

N∑

j=i+1

αiαjζ =
N−1∑

i=1

N∑

j=i+1

[
αi − αj

]2
ζ ≥ 0.

(3.13)

Then, it follows from (3.11), (3.12), and (3.13) that (3.4) holds. The proof of the lemma is
complete.

Theorem 3.3. The system (2.1) is robustly exponentially stable if the LMI conditions (3.11) are
feasible.

Proof. Consider the following Lyapunov-Krasovskii function for system (2.1) of the form

V (x(k)) = V1(x(k)) + V2(x(k)) + V3(x(k)), (3.14)

where

V1(x(k)) = xT (k)P(α)x(k), V2(x(k)) =
k−1∑

i=k−h(k)
xT (i)Q(α)x(i),

V3(x(k)) =
−h1+1∑

j=−h2+2

k−1∑

l=k+j−1
xT (l)Q(α)x(l).

(3.15)

A Lyapunov-Krasovskii difference for the system (2.1) is defined as

ΔV (x(k)) = ΔV1(x(k)) + ΔV2(x(k)) + ΔV3(x(k)). (3.16)

Taking the difference of V1(x(k)) and V2(x(k)), the increments of V1(x(k)) and V2(x(k)) are

ΔV1(x(k)) = V1(x(k + 1)) − V1(x(k))

= xT (k + 1)P(α)x(k + 1) − xT (k)P(α)x(k)

= xT (k)ÂT (α)P(α)Â(α)x(k) + xT (k − h(k))B̂T (α)P(α)Â(α)x(k)

+ xT (k − h(k))B̂T (α)P(α)B̂(α)x(k − h(k))

+ xT (k)ÂT (α)P(α)B̂(α)x(k − h(k)) − xT (k)P(α)x(k),

(3.17)
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ΔV2(x(k)) = V2(x(k + 1)) − V2(x(k))

=
k∑

i=k+1−h(k+1)
xT (i)Q(α)x(i) −

k−1∑

i=k−h(k)
xT (i)Q(α)x(i)

= xT (k)Q(α)x(k) − xT (k − h(k))Q(α)x(k − h(k))

+
k−h1∑

i=k+1−h(k+1)
xT (i)Q(α)x(i) −

k−1∑

i=k+1−h(k+1)
xT (i)Q(α)x(i)

+
k−1∑

i=k+1−h1

xT (i)Q(α)x(i).

(3.18)

Form h(k) ≥ h1, the two last terms of the right-hand side of the latter equality yield

k−1∑

i=k+1−h1

xT (i)Q(α)x(i) −
k−1∑

i=k+1−h(k+1)
xT (i)Q(α)x(i) ≤ 0. (3.19)

Thus, we obtain

ΔV2(x(k)) ≤ xT (k)Q(α)x(k) − xT (k − h(k))Q(α)x(k − h(k))

+
k−h1∑

i=k+1−h(k+1)
xT (i)Q(α)x(i).

(3.20)

The increment of V3(x(k)) is easily computed as

ΔV3(x(k)) = V3(x(k + 1)) − V3(x(k))

=
−h1+1∑

j=−h2+2

⎡

⎣xT (k)Q(α)x(k) +
k−1∑

l=k+j−1
xT (l)Q(α)x(l) −

k−1∑

l=k+j−1
xT (l)Q(α)x(l)

⎤

⎦

= (h2 − h1)xT (k)Q(α)x(k) −
k−h1∑

i=k+1−h2

xT (i)Q(α)x(i).

(3.21)

It is easy to see that

ΔV2(x(k)) + ΔV3(x(k)) ≤ (h2 − h1 + 1)xT (k)Q(α)x(k) − xT
k−hQ(α)xk−h

+
k−h1∑

i=k+1−h(k+1)
xT (i)Q(α)x(i) −

k−h1∑

i=k+1−h2

xT (i)Q(α)x(i),
(3.22)
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for simplicity, we let x(k − h(k)) = xk−h. Since, h(k) ≤ h2, we obtain that

k−h1∑

i=k+1−h(k+1)
xT (i)Q(α)x(i) −

k−h1∑

i=k+1−h2

xT (i)Q(α)x(i) ≤ 0. (3.23)

Therefore, we conclude that

ΔV (x(k)) ≤ xT (k)ÂT (α)P(α)Â(α)x(k) + xT
k−hB̂

T (α)P(α)Â(α)x(k)

+ xT (k)ÂT (α)P(α)B̂(α)xk−h + xT
k−hB̂

T (α)P(α)B̂(α)xk−h

− xT (k)P(α)x(k) + (h2 − h1 + 1)xT (k)Q(α)x(k)

− xT
k−hQ(α)xk−h.

(3.24)

It follows form (3.24) that

ΔV (x(k)) ≤ YT

[
Δ11(α) ÂT (α)P(α)B̂(α)

B̂T (α)P(α)Â(α) B̂T (α)P(α)B̂(α) −Q(α)

]
Y, (3.25)

where Δ11(α) = ÂT (α)P(α)Â(α) − P(α) + ĥQ(α) and YT = [x(k)T x(k − h(k))T ]. By (3.11),
(3.25), and Lemma 3.1, and 3.2, we obtain

ΔV (x(k)) < −ω‖x‖2, (3.26)

where ω > 0. By (3.14), it is easy to see that

V (x(k)) ≤ β1‖x‖2 + β1ĥ
k−1∑

i=k−h2

‖x(i)‖2, (3.27)

where

β1 = max {λmax(Pi), λmax(Qi); i = 1, 2, . . . ,N}. (3.28)

It can be shown that there always exists a scalar θ > 1 satisfying

(θ − 1)β1 − λθ + h2θ
h2(θ − 1)β1ĥ = 0. (3.29)
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For any scalar θ > 1, it follows from (3.26) and (3.27) that

θk+1V (x(k + 1))− θk+1V (x(k))

= θk+1(V (x(k + 1)) − V (x(k))) + θk(θ − 1)V (x(k))

< α1(θ)θk‖x(k)‖2 + α2(θ)θk
k−1∑

i=k−h2

‖x(i)‖2,

(3.30)

where

α1(θ) = (θ − 1)β1 − λθ, α2(θ) = (θ − 1)β1ĥ. (3.31)

Therefore, for any integer T ≥ h2 + 1, summing up both sides of (3.30) from 0 to T − 1 gives

θTV (x(T)) − V (x(0)) ≤ α1(θ)
T−1∑

i=0

θi‖x(i)‖2 + α2(θ)
T−1∑

i=0

i−1∑

l=i−h2

θi‖x(l)‖2. (3.32)

For h2 ≥ 1,

T−1∑

i=0

i−1∑

l=i−h2

θi‖x(l)‖2 ≤
−1∑

l=−h2

l+h2∑

i=0

θi‖x(l)‖2 +
T−1−h2∑

l=0

l+h2∑

i=l+1

θi‖x(l)‖2

+
T−1∑

l=T−h2

T−1∑

i=l+1

θi‖x(l)‖2

≤ h2

−1∑

l=−h2

θl+h2‖x(l)‖2 + h2

T−1−h2∑

l=0

θl+h2‖x(l)‖2

+ h2

T−1∑

l=T−h2

θl+h2‖x(l)‖2

≤ h2(h2 + 1)θh2 sup
−h2≤l≤0

∥∥φ(l)
∥∥2 + h2θ

h2

T−1∑

l=1

θl‖x(l)‖2.

(3.33)

From (3.32) and (3.33), we obtain

θTV (x(T)) ≤ V (x(0)) + h2(h2 + 1)θh2α2(θ) sup
−h2≤l≤0

∥∥φ(l)
∥∥2

+
[
α1(θ) + α2(θ)h2θ

h2
]T−1∑

l=0

θl‖x(l)‖2.
(3.34)



Journal of Applied Mathematics 11

Observe

V (x(T)) ≥ γ‖x(T)‖2, V (x(0)) ≤
(
β1 + β1ĥh2

)
sup

−h2≤l≤0

∥∥φ(l)
∥∥2

,

γ = min{λmin(Pi); i = 1, 2, . . . ,N}.
(3.35)

Then, it follows from (3.29), (3.33), and (3.35) that

‖x(T)‖2 ≤
h2

[
(h2 + 1)θh2α2(θ) + β1 + β1ĥh2

]

γ

(
1
θ

)T

sup
−h2≤l≤0

∥∥φ(l)
∥∥2

. (3.36)

By Definition 2.1, this means that the system (2.1) is robustly exponentially stable. The proof
of the theorem is complete.

4. Numerical Example

Example 4.1. Consider the following uncertain LPD discrete-time system with time-varying
delays (2.1)where h(k) = 2 + cos(kπ/2), that is,. h1 = 1, h2 = 3 and

A1 =
[−0.6 0.02
0.02 −0.6

]
, A2 =

[−0.7 0.03
0.03 −0.7

]
, B1 =

[−0.6 0.02
0.02 −0.08

]
,

B2 =
[−0.8 0.03
0.03 −0.09

]
, A1

1 =
[
0.005 0.0001
0.0001 0.005

]
, A1

2 =
[
0.006 0.0002
0.0002 0.006

]
,

B1
1 =

[−0.007 0.0005
0.0005 −0.007

]
, B1

2 =
[−0.004 0.0002
0.0002 −0.004

]
,

K1 =
[
0.01 0.003
0.003 0.01

]
, K2 =

[
0.02 0.001
0.001 0.02

]
,

(4.1)

and J =
[
0.001 0
0 0.001

]
. By using LMI Toolbox in MATLAB, we use condition (3.11) in

Theorem 3.3 for this example. The solutions of LMI verify as follows of the form ε = 1,
P1 =

[
31.3635 1.2365
1.2365 29.4763

]
, P2 =

[
37.6354 0.2543
0.2543 41.3745

]
, Q1 =

[
9.4325 0.5587
0.5587 11.4534

]
, and Q2 =

[
10.8564 1.3856
1.3856 11.9781

]
(see

Figure 1).

Example 4.2. Consider the following the LPD discrete-time system with time-varying delays
(2.1) where, ΔA(k) = ΔB(k) = 0 with

A1 =
[
0.60 0
0.01 0.60

]
, A2 =

[
0.80 0
0.05 0.70

]
,

B1 =
[
0.10 0
0.20 0.10

]
, B2 =

[−0.10 0
−0.20 −0.10

]
.

(4.2)
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Figure 1: The simulation solution of the states x1(k) and x2(k) in Example 4.1 for uncertain LPD discrete-
time delayed system with initial conditions x1(k) = 2 and x2(k) = 4, k = −3,−2,−1, 0, and α1 = α2 = 1/2 by
using the method of Runge-Kutta order 4(h = 0.01) with Matlab.

Table 1: Comparison of the maximum allowed time delay h2.

Methods h2 (h1 = 2) h2 (h1 = 4) h2 (h1 = 5) h2 (h1 = 7)
Liuet al. [7] 2006 2 4 5 7
Our results 4 6 7 9

Table 1 lists the comparison of the upper-bound delay for asymptotic stability of system (2.1)
where ΔA(k) = ΔB(k) = 0 by different method. We apply Theorem 3.3 and see from Table 1
that our result is superior to those in [7, Theorem 3.2].
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