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An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations
(AXB − CYD,EXF − GYH) = (M,N), which includes Sylvester and Lyapunov matrix equations
as special cases, over generalized reflexive matrices X and Y . When the matrix equations are
consistent, for any initial generalized reflexive matrix pair [X1, Y1], the generalized reflexive
solutions can be obtained by the iterative algorithm within finite iterative steps in the absence
of round-off errors, and the least Frobenius norm generalized reflexive solutions can be obtained
by choosing a special kind of initial matrix pair. The unique optimal approximation generalized
reflexive solution pair [ ̂X, ̂Y ] to a given matrix pair [X0, Y0] in Frobenius norm can be derived
by finding the least-norm generalized reflexive solution pair [ ˜X∗, ˜Y ∗] of a new corresponding
generalized coupled Sylvester matrix equation pair (A ˜XB − C ˜YD,E ˜XF −G ˜YH) = (˜M,˜N), where
˜M = M −AX0B + CY0D,˜N = N − EX0F + GY0H. Several numerical examples are given to show
the effectiveness of the presented iterative algorithm.

1. Introduction

In this paper, the following notations are used. Let Rm×n denote the set of all m × n real
matrices. We denote by the superscript T the transpose of a matrix. In matrix space Rm×n,
define inner product as 〈A,B〉 = tr(BTA) for allA,B ∈ Rm×n, where tr(A) denotes the trace of
a matrix A. ‖A‖ represents the Frobenius norm of A. R(A) represents the column space of A.
vec(·) represents the vector operator, that is, vec(A) = (aT1 , a

T
2 , . . . , a

T
n)

T ∈ Rmn for the matrix
A = (a1, a2, . . . , an) ∈ Rm×n, ai ∈ Rm, i = 1, 2, . . . , n. A ⊗ B stands for the Kronecker product
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of matrices A and B, diag(A,B) denotes the block diagonal matrix with A and B and being
the main diagonal elements orderly. In denotes the n-order identity matrix.

Definition 1.1 (see [1, 2]). A matrix P ∈ Rn×n is said to be a generalized reflection matrix if P
satisfies that PT = P, P 2 = I.

Definition 1.2 (see [1, 2]). Let P ∈ Rn×n andQ ∈ Rn×n be two generalized reflectionmatrices. A
matrix A ∈ Rn×n is called generalized reflexive (or generalized antireflexive) with respect to
the matrix pair (P,Q) if PAQ = A (or PAQ = −A). The set of all n-by-n generalized reflexive
matrices with respect to matrix pair (P,Q) is denoted by Rn×n

r (P,Q).

The generalized reflexive and antireflexive matrices have many special properties and
usefulness in engineering and scientific computations [1–6]. In particular, let P = Q, then
a generalized reflexive matrix is called a reflexive matrix, which plays an important role in
many areas and has been studied in [7–11]. Specially, let XT = X, then a reflexive matrix X
is called a generalized bisymmetric matrix, which has been studied in [12, 13]. Moreover, let
P = Q = Jn, then a generalized reflexive matrix is the well-known centrosymmetric matrix,
which has been widely and extensively studied in [14–17].

The generalized coupled Sylvester systems play a fundamental role in the various
fields of engineering theory, particularly in control systems. The numerical solution of the
generalized coupled Sylvester systems has been addressed in a large body of literature.
Kågström and Westin [18] developed a generalized Schur method by applying the QZ
algorithm to solve (AXB − CYD, EXF − GYH) = (M,N). Ding and Chen [19] presented
an iterative least squares solutions of (AXB − CYD, EXF − GYH) = (M,N) based
on a hierarchical identification principle [20], in addition, by applying the hierarchical
identification principle, Kılıçman and Zhour [21] developed an iterative algorithm for
obtaining the weighted least-squares solution. Recently, some finite iterative algorithms have
also been developed to solve matrix equations. For more detail, we refer to [11, 13, 22–30].
Wang [31, 32] gave the bi(skew)symmetric and centrosymmetric solutions to the system
of quaternion matrix equations A1X = C1, A3XB3 = C3. Wang [33] also solved a system
of matrix equations over arbitrary regular rings with identity. Chang and Wang [34] gave
the necessary and sufficient conditions for the existence of and the expressions for the
symmetric solutions of the matrix equations AX + YA = C, AXAT + BYBT = C, and
(ATXA,BTXB) = (C,D). Ding and Chen [25] also presented the gradient-based iterative
algorithms by applying the gradient search principle and the hierarchical identification
principle for the general coupled matrix equations

∑p

j=1 AijXjBij = Mi, i = 1, 2, . . . , p. Zhou
et al. [35] proposed gradient-based iterative algorithms for solving the general coupled
matrix equations with weighted least squares solutions. Wu et al. [36, 37] gave the finite
iterative solutions to coupled Sylvester-conjugate matrix equations. Wu et al. [38] gave the
finite iterative solutions to a class of complex matrix equations with conjugate and transpose
of the unknowns. Jonsson andKågström [39] proposed recursive block algorithms for solving
the one-sided and coupled Sylvester matrix equations (AX − YB, DX − YE) = (C, F).
Jonsson and Kågström [40] also proposed recursive block algorithms for the two-sided and
generalized Sylvester and Lyapunov matrix equations. Dehghan and Hajarian [7, 8] gave
the reflexive and generalized bisymmetric matrices solutions of the generalized coupled
Sylvester matrix equations (AY−ZB, CY−ZD) = (E, F). Very recently, Dehghan andHajarian
[12] constructed an iterative algorithm to solve the generalized coupled Sylvester matrix
equations (AXB + CYD, EXF + GYH) = (M,N) over generalized bisymmetric matrices.
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Huang et al. [13] present an iterative algorithm for the generalized coupled Sylvester matrix
equations (AY − ZB, CY − ZD) = (E, F) and its optimal approximation problem over
generalized reflexivematrices solutions. In [30], the similar but different iterative algorithm is
constructed to solve the generalized coupled Sylvester matrix equations (AXB−CYD, EXF−
GYH) = (M,N) and the optimal approximation problem over reflexive matrices. However,
the generalized coupled Sylvester matrix equations (AXB − CYD, EXF − GYH) = (M,N)
and the optimal approximation over generalized reflexive matrices have not been solved.

In this paper, we will consider the following two problems.

Problem 1. Let P ∈ Rm×m, Q ∈ Rn×n, R ∈ Rs×s, and S ∈ Rt×t be generalized reflection matrices.
For given matrices A ∈ Rp×m, B ∈ Rn×q, C ∈ Rp×s, D ∈ Rt×q, M ∈ Rp×q, E ∈ Rk×m, F ∈
Rn×l, G ∈ Rk×s, H ∈ Rt×l, N ∈ Rk×l, find a pair of matrices X ∈ Rm×n

r (P,Q), Y ∈ Rs×t
r (R, S)

such that

AXB − CYD = M,

EXF −GYH = N.
(1.1)

Problem 2. When Problem 1 is consistent, let SE denote the set of the generalized reflexive
solutions of Problem 1, that is,

SE =
{

[X,Y ] | AXB − CYD = M, EXF −GYH = N, Y ∈ Rm×n
r (P,Q), Z ∈ Rs×t

r (R, S)
}

.
(1.2)

For a given matrix pair [Y0, Z0] ∈ Rm×n
r (P,Q) × Rs×t

r (R, S), find [ ̂Y, ̂Z] ∈ SE such that

∥

∥

∥

̂Y − Y0

∥

∥

∥

2
+
∥

∥

∥

̂Z − Z0

∥

∥

∥

2
= min

[Y,Z]∈SE

{

‖Y − Y0‖2 + ‖Z − Z0‖2
}

. (1.3)

The two-sided and generalized coupled Sylvester matrix equations (1.1) play a
fundamental role in wide applications in several areas, such as stability theory, control theory,
perturbation analysis, and some other fields of pure and applied mathematics. In addition,
as special type of generalized coupled Sylvester matrix equations (1.1), the generalized
Sylvester matrix equation (AX − YB, CX − YD) = (E, F) arises in computing the deflating
subspace of descriptor linear systems [18]. Wu et al. [36] presented some examples to show
a motivation for studying (1.1). Problem 2 occurs frequently in experiment design, see for
instance [41].

This paper is organized as follows. In Section 2, we will solve Problem 1 by
constructing an iterative algorithm, that is, if Problem 1 is consistent, then for an arbitrary
initial matrix pair [Y1, Z1] ∈ Rm×n

r (P,Q) × Rs×t
r (R, S), we can obtain a solution pair [Y ∗, Z∗]

of Problem 1 within finite iterative steps in the absence of round-off errors. Let X1 =
ATKBT+ETLFT+PATKBTQ+PETLFTQ and Y1 = −CTKDT−GTLHT−RCTKDTS−RGTLHTS,
where K ∈ Rp×q, L ∈ Rk×l are arbitrary matrices, or more especially, let X1 = 0 and Y1 = 0,
we can obtain the least Frobenius norm solutions of Problem 1. Then, in Section 3, we give
the optimal approximate solution pair of Problem 2 by finding the least Frobenius norm
generalized reflexive solution pair of the corresponding generalized coupled Sylvester matrix
equations. In Section 4, several numerical examples are given to illustrate the application of
our method. At last, some conclusions are drawn in Section 5.
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2. An Iterative Algorithm for Solving Problem 1

In this section, we will first introduce an iterative algorithm to solve Problem 1, then prove
that it is convergent. Then, we will give the least-norm generalized reflexive solutions of
Problem 1 when an appropriate initial iterative matrix pair is chosen.

For the purpose of simplification, we introduce the following operators:

Φ(X,Y ) = AXB − CYD,

Ψ(X,Y ) = EXF −GYH.
(2.1)

Algorithm 2.1. We have the following steps.

Step 1. Input matrices A ∈ Rp×m, B ∈ Rn×q, C ∈ Rp×s, D ∈ Rt×q, M ∈ Rp×q, E ∈ Rk×m, F ∈
Rn×l, G ∈ Rk×s, H ∈ Rt×l, N ∈ Rk×l, and four generalized reflection matrices P ∈ Rm×m, Q ∈
Rn×n, R ∈ Rs×s, S ∈ Rt×t.

Step 2. Choose two arbitrary matrices X1 ∈ Rm×n
r (P,Q), Y1 ∈ Rs×t

r (R, S). Compute

R1 = diag(M −Φ(X1, Y1),N −Ψ(X1, Y1)),

U1 =
1
2

[

AT (M −Φ(X1, Y1))BT + ET (N −Ψ(X1, Y1))FT

+PAT (M −Φ(X1, Y1))BTQ + PET (N −Ψ(X1, Y1))FTQ
]

,

V1 =
1
2

[

−CT (M −Φ(X1, Y1))DT −GT (N −Ψ(X1, Y1))HT

−RCT (M −Φ(X1, Y1))DTS − RGT (N −Ψ(X1, Y1))HTS
]

,

k := 1.

(2.2)

Step 3. If Rk = 0, then stop and [Xk, Yk] is the solution of the generalized coupled Sylvester
matrix equation (1.1); else if Rk /= 0, but Uk = 0 and Vk = 0, then stop and the generalized
coupled Sylvester matrix equations (1.1) are not consistent over generalized reflexive
matrices; else k := k + 1.

Step 4. Compute

Xk = Xk−1 +
‖Rk−1‖2

‖Uk−1‖2 + ‖Vk−1‖2
Uk−1,

Yk = Yk−1 +
‖Rk−1‖2

‖Uk−1‖2 + ‖Vk−1‖2
Vk−1,

Rk = diag(M −Φ(Xk, Yk),N −Ψ(Xk, Yk))

= Rk−1 − ‖Rk−1‖2
‖Uk−1‖2 + ‖Vk−1‖2

diag(Φ(Uk−1, Vk−1),Ψ(Uk−1, Vk−1)),
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Uk =
1
2

[

AT (M −Φ(Xk, Yk))BT + ET (N −Ψ(Xk, Yk))FT

+PAT (M −Φ(Xk, Yk))BTQ + PET (N −Ψ(Xk, Yk))FTQ
]

+
‖Rk‖2
‖Rk−1‖2

Uk−1,

Vk =
1
2

[

−CT (M −Φ(Xk−1, Yk−1))DT −GT (N −Ψ(Xk−1, Yk−1))HT

−RCT (M −Φ(Xk−1, Yk−1))DTS − RGT (N −Ψ(Xk−1, Yk−1))HTS
]

+
‖Rk‖2
‖Rk−1‖2

VK−1.

(2.3)

Step 5. Go to Step 3.
Obviously, it can be seen that Xk,Uk ∈ Rm×n

r (P,Q), Yk, Vk ∈ Rs×t
r (R, S), where k =

1, 2, . . ..

Lemma 2.2. For the sequences {Ri}, {Ui}, and {Vi} generated by Algorithm 2.1, and s ≥ 2, we have

tr
(

RT
i Rj

)

= 0, tr
(

UT
i Uj + V T

i Vj

)

= 0, i, j = 1, 2, . . . , s, i /= j. (2.4)

The proof of Lemma 2.2 is presented in Appendix A.

Lemma 2.3. Suppose [X∗, Y ∗] is an arbitrary solution pair of Problem 1, then for any initial
generalized reflexive matrix pair [X1, Y1], we have

tr
(

(X∗ −Xi)
TUi + (Y ∗ − Yi)

TVi

)

= ‖Ri‖2, k = 1, 2, . . . , (2.5)

where the sequences {Xi},{Yi}, {Ui}, {Vi}, and {Ri} are generated by Algorithm 2.1.

The proof of Lemma 2.3 is presented in Appendix B.

Remark 2.4. If there exist, a positive number k such that Uk = 0 and Vk = 0 but Rk /= 0, then
by Lemma 2.3, we have that the generalized coupled Sylvester matrix equations (1.1) are not
consistent over generalized reflexive matrices.

Theorem 2.5. Suppose that Problem 1 is consistent, then for an arbitrary initial matrix pair
[X1, Y1] ∈ Rm×n

r (P,Q)×Rs×t
r (R, S), a generalized reflexive solution pair of Problem 1 can be obtained

with finite iteration steps in the absence of round-off errors.

Proof. If Ri /= 0, i = 1, 2, . . . , pq + st, by Lemma 2.3, we have Ui /= 0, Vi /= 0, i = 1, 2, . . . , pq + st,
then we can compute [Xpq+st+1, Ypq+st+1] by Algorithm 2.1.

By Lemma 2.2, we have

tr
(

RT
pq+st+1Ri

)

= 0, i = 1, 2, . . . , pq + st,

tr
(

RT
i Rj

)

= 0, i, j = 1, 2, . . . , pq + st, i /= j.

(2.6)
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It can be seen that the set of R1, R2, . . . , Rpq+st is an orthogonal basis of the matrix
subspace

S =
{

L | L = diag(L1, L2), L1 ∈ Rp×q, L2 ∈ Rs×t}, (2.7)

which implies that Rpq+st+1 = 0, that is, [Xpq+st+1, Ypq+st+1] ∈ Rm×n
r (P,Q) × Rs×t

r (R, S) is a
solution pair of Problem 1. This completes the proof.

To show the least Frobenius norm generalized reflexive solutions of Problem 1, we first
introduce the following result.

Lemma 2.6 (see [42, Lemma 2.4]). Suppose that the consistent system of linear equation Ax = b
has a solution x∗ ∈ R(AT ), then x∗ is a unique least Frobenius norm solution of the system of linear
equation.

By Lemma 2.6, the following result can be obtained.

Theorem 2.7. Suppose that Problem 1 is consistent. If we choose the initial iterative matrices X1 =
ATKBT+ETLFT+PATKBTQ+PETLFTQ and Y1 = −CTKDT−GTLHT−RCTKDTS−RGTLHTS,
where K ∈ Rp×q, L ∈ Rk×l are arbitrary matrices, especially, X1 = 0 ∈ Rm×n(P,Q) and Y1 = 0 ∈
Rs×t(R, S), then the solution pair [Y ∗, Z∗] generated by Algorithm 2.1 is the unique least Frobenius
norm generalized reflexive solutions of Problem 1.

Proof. We know the solvability of the generalized coupled Sylvester matrix equations (1.1)
over generalized reflexive matrices is equivalent to the following matrix equations:

AXB − CYD = M,

EXF −GYH = N,

APXQB − CRYSD = M,

EPXQF −GRYSH = N.

(2.8)

Then, the system of matrix equations (2.8) is equivalent to

⎛

⎜

⎜

⎜

⎜

⎜

⎝

BT ⊗A −DT ⊗ C

FT ⊗ E −HT ⊗G

BTQ ⊗AP −DTS ⊗ CR

FTQ ⊗ EP −HTS ⊗GR

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(

vec(X)

vec(Y )

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

vec(M)

vec(N)

vec(M)

vec(N)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (2.9)
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LetX1 = ATKBT +ETLFT +PATKBTQ+PETLFTQ and Y1 = −CTKDT −GTLHT −RCTKDTS−
RGTLHTS, where K ∈ Rp×q, L ∈ Rk×l are arbitrary matrices, then

(

vec(X1)

vec(Y1)

)

=

(

vec
(

ATKBT + ETLFT + PATKBTQ + PETLFTQ
)

vec
(−CTKDT −GTLHT − RCTKDTS − RGTLHTS

)

)

=

(

B ⊗AT F ⊗ ET QB ⊗ PAT QF ⊗ PET

−D ⊗ CT −H ⊗GT −SD ⊗ RCT −SH ⊗ RGT

)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

vec(K)

vec(L)

vec(K)

vec(L)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

BT ⊗A −DT ⊗ C

FT ⊗ E −HT ⊗G

BTQ ⊗AP −DTS ⊗ CR

FTQ ⊗ EP −HTS ⊗GR

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T⎛

⎜

⎜

⎜

⎜

⎜

⎝

vec(K)

vec(G)

vec(K)

vec(G)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

BT ⊗A −DT ⊗ C

FT ⊗ E −HT ⊗G

BTQ ⊗AP −DTS ⊗ CR

FTQ ⊗ EP −HTS ⊗GR

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T
⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(2.10)

Furthermore, we can see that all Xk, Yk generated by Algorithm 2.1 satisfy

(

vec(Xk)

vec(Yk)

)

∈ R

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

BT ⊗A −DT ⊗ C

FT ⊗ E −HT ⊗G

BTQ ⊗AP −DTS ⊗ CR

FTQ ⊗ EP −HTS ⊗GR

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T
⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.11)

by Lemma 2.6, we know that [X∗, Y ∗] is the least Frobenius norm generalized reflexive
solution pair of the system of linear equations (2.9). Since vector operator is isomorphic,
[X∗, Y ∗] is the unique least Frobenius norm generalized reflexive solution pair of the system
of matrix equations (2.8), then [X∗, Y ∗] is the unique least Frobenius norm generalized
reflexive solution pair of Problem 1.

3. The Solution of Problem 2

In this section, we will show that the optimal approximate solutions of Problem 2 for a
given generalized reflexive matrix pair can be derived by finding the least Frobenius norm
generalized reflexive solutions of the corresponding generalized coupled Sylvester matrix
equations.
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When Problem 1 is consistent, the set of generalized reflexive solutions of Problem 1
denoted by SE is not empty. For a given matrix pair [X0, Y0] ∈ Rm×n

r (P,Q) × Rs×t
r (R, S), we

have
⎧

⎨

⎩

AXB − CYD = M

EXF −GYH = N
⇐⇒

⎧

⎨

⎩

A(X −X0)B − C(Y − Y0)D = M −AX0B + CY0D

E(X −X0)F −G(Y − Y0)H = N − EX0F +GY0H
(3.1)

Set ˜X = X −X0, ˜Y = Y −Y0, ˜M = M −AX0B +CY0D, ˜N = N −EX0F +GY0H, then Problem 2
is equivalent to that of finding the least Frobenius norm generalized reflexive solutions pair
[ ˜X∗, ˜Y ∗] of the corresponding generalized coupled Sylvester matrix equations

A ˜XB − C ˜YD = ˜M,

E ˜XF −G ˜YH = ˜N.
(3.2)

By using Algorithm 2.1, let initial iteration matrix ˜X1 = ATKBT + ETLFT + PATKBTQ +
PETLFTQ and ˜Y1 = −CTKDT − GTLHT − RCTKDTS − RGTLHTS, or more especially, let
˜X1 = 0 ∈ Rm×n

r (P,Q) and ˜Y1 = 0 ∈ Rs×t
r (R, S), then we can get the least Frobenius norm

generalized reflexive solution pair [ ˜X∗, ˜Y ∗] of (3.2). Thus, the generalized reflexive solution
pair of the problem 2 can be represented as [ ̂X, ̂Y ] = [ ˜X∗ +X0, ˜Y

∗ + Y0].

4. Numerical Experiments

In this section, we will show several numerical examples to illustrate our results. All the tests
are performed by MATLAB 7.8.

Example 4.1. Consider the generalized reflexive solutions of the generalized coupled
Sylvester matrix equations AXB − CYD = M,EXY −GYH = N, where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 3 −5 7 −9
2 0 4 6 −1
0 −2 9 6 −8
3 6 2 2 −3
−5 5 −22 −1 −11
8 4 −6 −9 −9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

4 8 −5 4

−1 5 −2 3

3 9 2 −6
−2 7 −8 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

6 −5 7 −9
2 4 6 −11
9 −12 3 −8
13 6 4 −15
−5 15 −13 −11
2 9 −6 −9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

7 1 8 −6
−4 5 −2 3

3 −12 0 8

1 6 9 4

−5 8 −2 9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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E =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

14 5 −1 7 1

−2 3 −2 5 4

13 4 2 −3 6

−8 1 −5 4 8

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, F =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 3 −5 8 2

−11 5 −6 2 5

13 2 7 −9 7

−9 6 −5 12 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

G =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 2 −5 8

−5 5 −7 3

2 4 9 −6
−3 7 −12 11

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 4 8 −5 4

7 −1 5 −2 3

6 3 9 2 −6
5 −2 7 −8 1

1 4 −3 −2 6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

519 1177 1701 1632

−103 1583 −100 2382

82 1800 1029 3308

−514 839 −493 2458

−753 1132 2683 −762
−1164 258 858 408

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, N =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2426 964 −2653 2092 603

−65 247 −919 291 788

−1331 1547 −17 992 712

−1684 −659 −2730 1756 −765

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.1)

Let

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 −1
0 0 0 1 0

0 0 −1 0 0

0 1 0 0 0

−1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1

0 1 0 0

0 0 −1 0

1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0

0 0 0 0 1

0 0 −1 0 0

1 0 0 0 0

0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.2)

be generalized reflection matrices.
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We will find the generalized reflexive solutions of the matrix equationsAXB −CYD =
M,EXY −GYH = N by using Algorithm 2.1. It can be verified that the matrix equations are
consistent over generalized reflexive matrices and the solutions are

X∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2 9 2 5

3 1 11 −1
7 3 −7 3

11 1 3 −1
−2 5 2 9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Y ∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

14 16 −1 3 4

9 7 0 9 7

−3 −8 −8 3 8

3 4 1 14 16

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.3)

Because of the influence of the error of calculation, the residual Ri is usually unequal to zero
in the process of the iteration, where i = 1, 2, . . .. For any chosen positive number ε; however,
small enough, for example, ε = 1.0000e − 010, whenever ‖Rk‖ < ε, stop the iteration, Xk

and Yk are regarded to be generalized reflexive solutions of the matrix equations AXB −
CYD = M, EXY −GYH = N. Choose an initially iterative matrix pair [X1, Y1] ∈ R5 × 4

r (P,Q)×
R4 × 5

r (R, S), such as

X1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 2 2 4

6 −1 3 2

7 8 −7 8

3 −2 6 1

−2 4 1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Y1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

3 4 −1 3 7

9 1 0 9 1

−3 1 −8 3 −1
3 7 1 3 4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.4)

By Algorithm 2.1, we have

X30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2.0000 9.0000 2.0000 5.0000

3.0000 1.0000 11.0000 −1.0000
7.0000 3.0000 −7.0000 3.0000

11.0000 1.0000 3.0000 −1.0000
−2.0000 5.0000 2.0000 9.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Y30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

14.0000 16.0000 −1.0000 3.0000 4.0000

9.0000 7.0000 0 9.0000 7.0000

−3.0000 −8.0000 −8.0000 3.0000 8.0000

3.0000 4.0000 1.0000 14.0000 16.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R30‖ = 2.9703e − 012 < ε.

(4.5)

So we obtain the generalized reflexive solutions of the matrix equations AXB − CYD =
M, EXY − GYH = N. The relative error of the solutions and the residual are shown in
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Figure 1, where the relative error REk = (‖Xk − X∗‖ + ‖Yk − Y ∗‖)/(‖X∗‖ + ‖Y ∗‖) and the
residual Rk = ‖Rk‖.

Let

X1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Y1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (4.6)

by Algorithm 2.1, we have

X∗ = X30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2.0000 9.0000 2.0000 5.0000

3.0000 1.0000 11.0000 −1.0000
7.0000 3.0000 −7.0000 3.0000

11.0000 1.0000 3.0000 −1.0000
−2.0000 5.0000 2.0000 9.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Y ∗ = Y30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

14.0000 16.0000 −1.0000 3.0000 4.0000

9.0000 7.0000 0 9.0000 7.0000

−3.0000 −8.0000 −8.0000 3.0000 8.0000

3.0000 4.0000 1.0000 14.0000 16.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R30‖ = 8.2565e − 012 < ε.

(4.7)

The relative error of the solutions and the residual are shown in Figure 2.

Example 4.2. Consider the unique least-norm generalized reflexive solutions of the matrix
equations in Example 4.1. Let

K =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 2

0 −1 0 1

1 −1 0 1

2 0 1 −3
0 1 2 1

−1 0 −2 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, L =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 −1 0 5

0 1 −1 3 2

1 −1 −2 0 3

2 0 1 −3 6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

X1 = ATKBT + CTLDT + PATKBTQ + PCTLDTQ,

Y1 = −ETKFT −GTLHT − RETKFTS − RGTLHTS.

(4.8)
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Figure 1: The relative error of the solutions and the residual for Example 4.1 with X1 /= 0, Y1 /= 0.

By using Algorithm 2.1, we have the least-norm generalized reflexive solutions of the matrix
equations AXB − CYD = M, EXY −GYH = N as follows:

X∗ = X30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2.0000 9.0000 2.0000 5.0000

3.0000 1.0000 11.0000 −1.0000
7.0000 3.0000 −7.0000 3.0000

11.0000 1.0000 3.0000 −1.0000
−2.0000 5.0000 2.0000 9.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Y ∗ = Y30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

14.0000 16.0000 −1.0000 3.0000 4.0000

9.0000 7.0000 0 9.0000 7.0000

−3.0000 −8.0000 −8.0000 3.0000 8.0000

3.0000 4.0000 1.0000 14.0000 16.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R30‖ = 2.3986e − 011e − 012 < ε.

(4.9)

The relative error of the solutions and the residual are shown in Figure 3.
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Figure 2: The relative error of the solutions and the residual for Example 4.1 with X1 = 0, Y1 = 0.

Example 4.3. Let SE denote the set of all generalized reflexive solutions of thematrix equations
in Example 4.1. For a given generalized reflexive matrices

X0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3 −1 2 2

3 −2 0 0

1 −3 −1 −3
0 0 3 2

−2 2 −3 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Y0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 4 −2 2 0

1 3 0 1 3

5 −2 2 −5 2

2 0 2 2 4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (4.10)

we will find [ ̂X, ̂Y ] ∈ SE, such that

∥

∥

∥

̂X −X0

∥

∥

∥ +
∥

∥

∥

̂Y − Y0

∥

∥

∥ = min
[X,Y ]∈SE

‖X −X0‖ + ‖Y − Y0‖, (4.11)

that is, find the optimal approximate generalized reflexive solution pair to the matrix pair
[X0, Y0] in SE in Frobenius norm.

Let ˜X = X −X0, ˜Y = Y − Y0, ˜M = M −AX0B + CY0D, ˜N = N − EX0F + GY0H, by the
method mentioned in Section 3, we can obtain the least-norm generalized reflexive solution
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pair [ ˜X∗, ˜Y ∗] of the matrix equations A ˜XB + C ˜YD = ˜M,E ˜XF + G ˜YH = ˜N by choosing the
initial iteration matrices ˜X1 = 0 and ˜Y1 = 0, then by Algorithm 2.1, we have that

˜X∗ = ˜X∗
30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−5.0000 10.0000 0.0000 3.0000

−0.0000 3.0000 11.0000 −1.0000
6.0000 6.0000 −6.0000 6.0000

11.0000 1.0000 −0.0000 −3.0000
−0.0000 3.0000 5.0000 10.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

˜Y ∗ = ˜Y ∗
30 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

12.0000 12.0000 1.0000 1.0000 4.0000

8.0000 4.0000 0 8.0000 4.0000

−8.0000 −6.0000 −10.0000 8.0000 6.0000

1.0000 4.0000 −1.0000 12.0000 12.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R30‖ = 6.3482e − 010 < ε = 1.0000e − 010

(4.12)

and the optimal approximate generalized reflexive solutions to the matrix pair [X0, Y0] in
Frobenius norm are

̂X = ˜X∗
30 +X0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2.0000 9.0000 2.0000 5.0000

3.0000 1.0000 11.0000 −1.0000
7.0000 3.0000 −7.0000 3.0000

11.0000 1.0000 3.0000 −1.0000
−2.0000 5.0000 2.0000 9.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

̂Y = ˜Y ∗
30 + Y0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

14.0000 16.0000 −1.0000 3.0000 4.0000

9.0000 7.0000 0 9.0000 7.0000

−3.0000 −8.0000 −8.0000 3.0000 8.0000

3.0000 4.0000 1.0000 14.0000 16.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.13)

The relative error of the solutions and the residual are shown in Figure 4, where the relative
error REk = (‖ ˜Xk +X0 −X∗‖ + ‖ ˜Yk + Y0 − Y ∗‖)/(‖X∗‖ + ‖Y ∗‖) and the residual Rk = ‖Rk‖.

5. Conclusions

In this paper, an efficient iterative algorithm is presented to solve the generalized coupled
Sylvester matrix equations AXB − CYD = M, EXY − GYH = N over generalized reflexive
matrix pair [X,Y ] ∈ Rm×n

r (P,Q) × Rs×t
r (R, S). When the matrix equations AXB − CYD =

M, EXY − GYH = N are consistent over generalized reflexive matrices X and Y , for
any generalized reflexive initial iterative matrix pair [X1, Y1] ∈ Rm×n

r (P,Q) × Rs×t
r (R, S),

the generalized reflexive solutions can be obtained by the iterative algorithm within finite
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Figure 3: The relative error of the solutions and the residual for Example 4.2.
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Figure 4: The relative error of the solutions and the residual for Example 4.3.

iterative steps in the absence of round-off errors. Let initial matrices X1 = ATKBT + ETLFT +
PATKBTQ + PETLFTQ and Y1 = −CTKDT − GTLHT − RCTKDTS − RGTLHTS, where
K ∈ Rp×q, L ∈ Rk×l are arbitrary matrices, especially, let X1 = 0 ∈ Rm×n

r (P,Q) and
Y1 = 0 ∈ Rs×t

r (R, S), the unique least-norm generalized reflexive solutions of the matrix
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equations can be derived. Furthermore, the optimal approximate solutions of AXB − CYD =
M,EXY − GYH = N for a given generalized reflexive matrix pair [X0, Y0] ∈ Rm×n

r (P,Q) ×
Rs×t

r (R, S) can be derived by finding the least-norm generalized reflexive solutions of two new
corresponding generalized coupled Sylvester matrix equations. Finally, several numerical
examples are given to illustrate that our iterative algorithm is quite effective.

The results presented in this paper generalize some previous results [7, 12, 13, 30].
When B = I, C = I, F = I, G = I, P = Q, and R = S, then our results reduce to those in [7].
When P = Q, R = S, XT = X, and YT = Y , the results in this paper reduce to those in [12].
When B = I, C = I, F = I, and G = I, then the results in this paper reduce to those in [13].
When P = Q and R = S, then the results in this paper reduce to those in [30].

Appendices

A. The Proof of Lemma 2.2

Since tr(RT
i Rj) = tr(RT

j Ri), tr(UT
i Uj) = tr(UT

j Ui), and tr(V T
i Vj) = tr(V T

j Vi) for all i, j =
1, 2, . . . , s, we only need to prove that

tr
(

RT
i Rj

)

= 0, tr
(

UT
i Uj + V T

i Vj

)

= 0, 1 ≤ j < i ≤ s. (A.1)

We prove the conclusion by induction, and two steps are required.

Step 1. We will show that

tr
(

RT
i+1Ri

)

= 0, tr
(

UT
i+1Ui + V T

i+1Vi

)

= 0, i = 1, 2, . . . , s − 1. (A.2)

To prove this conclusion, we also use induction.
For i = 1, by Algorithm 2.1, we have that

tr
(

RT
2R1

)

= tr

⎛

⎝

[

R1 − ‖R1‖2
‖U1‖2 + ‖V1‖2

diag(Φ(U1, V1),Ψ(U1, V1))

]T

R1

⎞

⎠

= ‖R1‖2 − ‖R1‖2
‖U1‖2 + ‖V1‖2

tr
(

(

diag(Φ(U1, V1),Ψ(U1, V1))
)T

×diag(M −Φ(X1, Y1),N −Ψ(X1, Y1))
)

= ‖R1‖2 − ‖R1‖2
‖U1‖2 + ‖V1‖2

× tr
(

(Φ(U1, V1))T (M −Φ(X1, Y1)) + (Ψ(U1, V1))T (N −Ψ(X1, Y1))
)

= ‖R1‖2 − ‖R1‖2
‖U1‖2 + ‖V1‖2

tr
(

UT
1A

T (M −Φ(X1, Y1))BT +UT
1E

T (N −Ψ(X1, Y1))FT

−V T
1 C

T (M −Φ(X1, Y1))DT − V T
1 G

T (N −Ψ(X1, Y1))HT
)
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= ‖R1‖2 − ‖R1‖2
‖U1‖2 + ‖V1‖2

× tr

(

UT
1

[

AT (M −Φ(X1, Y1))BT + ET (N −Ψ(X1, Y1))FT

2

+
AT (M −Φ(X1, Y1))BT + ET (N −Ψ(X1, Y1))FT

2

+
PAT (M −Φ(X1, Y1))BTQ + PET (N −Ψ(X1, Y1))FTQ

2

−PA
T (M −Φ(X1, Y1))BTQ + PET (N −Ψ(X1, Y1))FTQ

2

]

+ V T
1

[

−CT (M −Φ(X1, Y1))DT −GT (N −Ψ(X1, Y1))HT

2

+
−CT (M −Φ(X1, Y1))DT −GT (N −Ψ(X1, Y1))HT

2

+
−RCT (M −Φ(X1, Y1))DTS − RGT (N −Ψ(X1, Y1))HTS

2

−−RC
T (M −Φ(X1, Y1))DTS − RGT (N −Ψ(X1, Y1))HTS

2

])

= ‖R1‖2 − ‖R1‖2
‖U1‖2 + ‖V1‖2

× tr

(

UT
1

[

AT (M −Φ(X1, Y1))BT + ET (N −Ψ(X1, Y1))FT

2

+
PAT (M −Φ(X1, Y1))BTQ + PET (N −Ψ(X1, Y1))FTQ

2

]

+ V T
1

[

−CT (M −Φ(X1, Y1))DT −GT (N −Ψ(X1, Y1))HT

2

+
−RCT (M −Φ(X1, Y1))DTS − RGT (N −Ψ(X1, Y1))HTS

2

])

= ‖R1‖2 − ‖R1‖2
‖U1‖2 + ‖V1‖2

tr
(

UT
1U1 + V T

1 V1

)

= 0,

tr
(

UT
2U1

)

+ tr
(

V T
2 V1

)

= tr

([

AT (M −Φ(X2, Y2))BT + ET (N −Ψ(X2, Y2))FT

2

+
PAT (M −Φ(X2, Y2))BTQ + PET (N −Ψ(X2, Y2))FTQ

2
+
‖R2‖2
‖R1‖2

U1

]T

U1

⎞

⎠
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+ tr

([

−CT (M −Φ(X2, Y2))DT −GT (N −Ψ(X2, Y2))HT

2

+
−RCT (M −Φ(X2, Y2))DTS − RGT (N −Ψ(X2, Y2))HTS

2
+
‖R2‖2
‖R1‖2

V1

]T

V1

⎞

⎠

= tr

⎛

⎝

[

AT (M −Φ(X2, Y2))BT + ET (N −Ψ(X2, Y2))FT +
‖R2‖2
‖R1‖2

U1

]T

U1

⎞

⎠

+ tr

⎛

⎝

[

−CT (M −Φ(X2, Y2))DT −GT (N −Ψ(X2, Y2))HT +
‖R2‖2
‖R1‖2

V1

]T

V1

⎞

⎠

= tr
(

UT
1

[

AT (M −Φ(X2, Y2))BT + ET (N −Ψ(X2, Y2))FT
]

+V T
1

[

−CT (M −Φ(X2, Y2))DT −GT (N −Ψ(X2, Y2))HT
])

+
‖R2‖2
‖R1‖2

(

‖U1‖2 + ‖V1‖2
)

= tr
(

(M −Φ(X2, Y2))T AU1B + (N −Ψ(X2, Y2))TEU1F − (M −Φ(X2, Y2))TCV1D

−(N −Ψ(X2, Y2))TGV1H
)

+
‖R2‖2
‖R1‖2

(

‖U1‖2 + ‖V1‖2
)

= tr
(

diag
(

(M −Φ(X2, Y2))T , (N −Ψ(X2, Y2))T
)

diag(Φ(U1, V1),Ψ(U1, V1))
)

+
‖R2‖2
‖R1‖2

(

‖U1‖2 + ‖V1‖2
)

=
‖U1‖2 + ‖V1‖2

‖R1‖2
tr
(

RT
2 (R1 − R2)

)

+
‖R2‖2
‖R1‖2

(

‖U1‖2 + ‖V1‖2
)

= 0.

(A.3)

Assume that (A.2) holds for i = k − 1, that is, tr(RT
k
Rk−1) = 0, tr(UT

k
Uk−1 +V T

k
Vk−1) = 0.

When i = k, we have that

tr
(

RT
k+1Rk

)

= tr

⎛

⎝

[

Rk − ‖Rk‖2
‖Uk‖2 + ‖Vk‖2

diag(Φ(Uk, Vk),Ψ(Uk, Vk))

]T

Rk

⎞

⎠

= ‖Rk‖2 − ‖Rk‖2
‖Uk‖2 + ‖Vk‖2

tr
(

diag(Φ(Uk, Vk),Ψ(Uk, Vk))
)T

× diag(M −Φ(Xk, Yk),N −Ψ(Xk, Yk))
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= ‖Rk‖2 − ‖Rk‖2
‖Uk‖2 + ‖Vk‖2

× tr
(

(Φ(Uk, Vk))T (M −Φ(Xk, Yk)) + (Ψ(Uk, Vk))T (N −Ψ(Xk, Yk))
)

= ‖Rk‖2 − ‖Rk‖2
‖Uk‖2 + ‖Vk‖2

tr
(

UT
kA

T (M −Φ(Xk, Yk))BT +UT
kE

T (N −Ψ(Xk, Yk))FT

−V T
k C

T (M −Φ(Xk, Yk))DT − V T
k G

T (N −Ψ(Xk, Yk))HT
)

= ‖Rk‖2 − ‖Rk‖2
‖Uk‖2 + ‖Vk‖2

tr

(

UT
k

[

AT (M −Φ(Xk, Yk))BT + ET (N −Ψ(Xk, Yk))FT

2

+
AT (M −Φ(Xk, Yk))BT + ET (N −Ψ(Xk, Yk))FT

2

+
PAT (M −Φ(Xk, Yk))BTQ + PET(N −Ψ(Xk, Yk))FTQ

2

−PA
T (M −Φ(Xk, Yk))BTQ + PET (N −Ψ(Xk, Yk))FTQ

2

]

+ V T
k

[

−CT (M −Φ(Xk, Yk))DT −GT (N −Ψ(Xk, Yk))HT

2

+
−CT (M −Φ(Xk, Yk))DT −GT (N −Ψ(Xk, Yk))HT

2

+
−RCT (M −Φ(Xk, Yk))DTS − RGT (N −Ψ(Xk, Yk))HTS

2

−−RC
T(M −Φ(Xk,Yk))DTS−RGT(N−Ψ(Xk,Yk))HTS

2

])

= ‖Rk‖2 − ‖Rk‖2
‖Uk‖2 + ‖Vk‖2

tr

(

UT
k

[

AT (M −Φ(Xk, Yk))BT + ET (N −Ψ(Xk, Yk))FT

2

+
PAT (M −Φ(Xk, Yk))BTQ + PET (N −Ψ(Xk, Yk))FTQ

2

]

+ V T
k

[

−CT (M −Φ(Xk, Yk))DT −GT (N −Ψ(Xk, Yk))HT

2

+
−RCT(M−Φ(Xk, Yk))DTS−RGT (N−Ψ(Xk, Yk))HTS

2

])

= ‖Rk‖2 − ‖Rk‖2
‖Uk‖2 + ‖Vk‖2

tr
(

UT
kUk + V T

k Vk

)

= 0,

tr
(

UT
k+1Uk

)

+ tr
(

V T
k+1Vk

)
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= tr

([

AT (M −Φ(Xk+1, Yk+1))BT + ET (N −Ψ(Xk+1, Yk+1))FT

2

+
PAT (M −Φ(Xk+1, Yk+1))BTQ + PET (N −Ψ(Xk+1, Yk+1))FTQ

2

+
‖Rk+1‖2
‖Rk‖2

Uk

]T

Uk

⎞

⎠

+ tr

([

−CT (M −Φ(Xk+1, Yk+1))DT −GT (N −Ψ(Xk+1, Yk+1))HT

2

+
−RCT (M −Φ(Xk+1, Yk+1))DTS − RGT (N −Ψ(Xk+1, Yk+1))HTS

2

+
‖Rk+1‖2
‖Rk‖2

Vk

]T

Vk

⎞

⎠

= tr

⎛

⎝

[

AT (M −Φ(Xk+1, Yk+1))BT + ET (N −Ψ(Xk+1, Yk+1))FT +
‖Rk+1‖2
‖Rk‖2

Uk

]T

Uk

⎞

⎠

+ tr

⎛

⎝

[

−CT (M −Φ(Xk+1, Yk+1))DT −GT (N −Ψ(Xk+1, Yk+1))HT +
‖Rk+1‖2
‖Rk‖2

Vk

]T

Vk

⎞

⎠

= tr
(

UT
k

[

AT (M −Φ(Xk+1, Yk+1))BT + ET (N −Ψ(Xk+1, Yk+1))FT
]

+V T
k

[

−CT (M −Φ(Xk+1, Yk+1))DT −GT (N −Ψ(Xk+1, Yk+1))HT
])

+
‖Rk+1‖2
‖Rk‖2

(

‖Uk‖2 + ‖Vk‖2
)

= tr
(

(M −Φ(Xk+1, Yk+1))T AUkB + (N −Ψ(Xk+1, Yk+1))TEUkF

− (M −Φ(Xk+1, Yk+1))TCVkD

−(N −Ψ(Xk+1, Yk+1))TGVkH
)

+
‖Rk+1‖2
‖Rk‖2

(

‖Uk‖2 + ‖Vk‖2
)

= tr
(

diag
(

(M −Φ(Xk+1, Yk+1))T , (N −Ψ(Xk+1, Yk+1))T
)

diag(Φ(Uk, Vk),Ψ(Uk, Vk))
)

+
‖Rk+1‖2
‖Rk‖2

(

‖Uk‖2 + ‖Vk‖2
)

=
‖Uk‖2 + ‖Vk‖2

‖Rk‖2
tr
(

RT
k+1(Rk − Rk+1)

)

+
‖Rk+1‖2
‖Rk‖2

(

‖Uk‖2 + ‖Vk‖2
)

= 0.

(A.4)

Hence, (A.2) holds for i = k. Therefore, (A.2) holds by the principle of induction.
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Step 2. We show that

tr
(

RT
i+1Rj

)

= 0, tr
(

UT
i+1Uj + V T

i+1Vj

)

= 0, j = 1, 2, . . . , i, ∀i ≥ 1. (A.5)

When i = 1, (A.5) holds.
Assume that

tr
(

RT
i Rj

)

= 0, tr
(

UT
i Uj + V T

i Vj

)

= 0, j = 1, 2, . . . , s − 1, ∀s ≥ 2, (A.6)

then we show that

tr
(

RT
i+1Rj

)

= 0, tr
(

UT
i+1Uj + V T

i+1Vj

)

= 0, j = 1, 2, . . . , s. (A.7)

In fact, we have that

tr
(

RT
i+1Rj

)

= tr

⎛

⎝

[

Ri − ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

diag(Φ(Ui, Vi),Ψ(Ui, Vi))

]T

Rj

⎞

⎠

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

tr
(

diag(Φ(Ui, Vi),Ψ(Ui, Vi))
)T

× diag
(

M −Φ
(

Xj, Yj

)

,N −Ψ
(

Xj, Yj

))

= − ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

tr
(

(Φ(Ui, Vi))T
(

M −Φ
(

Xj, Yj

))

+ (Ψ(Ui, Vi))T
(

N −Ψ
(

Xj, Yj

))

)

= − ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

tr
(

UT
i A

T(M −Φ
(

Xj, Yj

))

BT +UT
i E

T(N −Ψ
(

Xj, Yj

))

FT

−V T
i C

T(M −Φ
(

Xj, Yj

))

DT − V T
i G

T(N −Ψ
(

Xj, Yj

))

HT
)

= − ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

tr

(

UT
i

[

AT
(

M −Φ
(

Xj, Yj

))

BT + ET
(

N −Ψ
(

Xj, Yj

))

FT

2

+
AT
(

M −Φ
(

Xj, Yj

))

BT + ET
(

N −Ψ
(

Xj, Yj

))

FT

2

+
PAT

(

M −Φ
(

Xj, Yj

))

BTQ + PET
(

N −Ψ
(

Xj, Yj

))

FTQ

2

−PA
T
(

M −Φ
(

Xj, Yj

))

BTQ + PET
(

N −Ψ
(

Xj, Yj

))

FTQ

2

]
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+ V T
i

[−CT
(

M −Φ
(

Xj, Yj

))

DT −GT
(

N −Ψ
(

Xj, Yj

))

HT

2

+
−CT

(

M −Φ
(

Xj, Yj

))

DT −GT
(

N −Ψ
(

Xj, Yj

))

HT

2

+
−RCT

(

M −Φ
(

Xj, Yj

))

DTS − RGT
(

N −Ψ
(

Xj, Yj

))

HTS

2

−−RC
T
(

M −Φ
(

Xj, Yj

))

DTS − RGT
(

N −Ψ
(

Xj, Yj

))

HTS

2

])

= − ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

tr

(

UT
i

[

AT
(

M −Φ
(

Xj, Yj

))

BT + ET
(

N −Ψ
(

Xj, Yj

))

FT

2

+
PAT

(

M −Φ
(

Xj, Yj

))

BTQ + PET
(

N −Ψ
(

Xj, Yj

))

FTQ

2

]

+ V T
i

[−CT
(

M −Φ
(

Xj, Yj

))

DT −GT
(

N −Ψ
(

Xj, Yj

))

HT

2

+
−RCT

(

M −Φ
(

Xj, Yj

))

DTS − RGT
(

N −Ψ
(

Xj, Yj

))

HTS

2

])

= − ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

tr

(

UT
i

(

Uj −
∥

∥Rj

∥

∥

2

∥

∥Rj−1
∥

∥

2
Uj−1

)

+ V T
i

(

Vj −
∥

∥Rj

∥

∥

2

∥

∥Rj−1
∥

∥

2
Vj−1

))

= − ‖Ri‖2
‖Ui‖2 + ‖Vi‖2

tr
(

UT
i Uj + V T

i Vj

)

+
‖Ri‖2

∥

∥Rj

∥

∥

2

(

‖Ui‖2 + ‖Vi‖2
)

∥

∥Rj−1
∥

∥

4

×
(

tr
(

UT
i Uj−1

)

+ tr
(

V T
i Vj−1

))

= 0.

(A.8)

From the above results, we have tr(RT
i+1Rj+1) = 0, j = 1, 2, . . . , s − 1, and

tr
(

UT
i+1Uj

)

+ tr
(

V T
i+1Vj

)

= tr

⎛

⎝

⎡

⎣

AT (M −Φ(Xi+1, Yi+1))BT + ET (N −Ψ(Xi+1, Yi+1))FT

2

+
PAT (M −Φ(Xi+1, Yi+1))BTQ + PET(N −Ψ(Xi+1, Yi+1))FTQ

2

+
‖Ri+1‖2
‖Ri‖2

Ui

]T

Uj

⎞

⎠
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+ tr

⎛

⎝

[

−CT (M −Φ(Xi+1, Yi+1))DT −GT (N −Ψ(Xi+1, Yi+1))HT

2

+
−RCT (M −Φ(Xi+1, Yi+1))DTS − RGT (N −Ψ(Xi+1, Yi+1))HTS

2

+
‖Ri+1‖2
‖Ri‖2

Vi

]T

Vj

⎞

⎠

= tr

⎛

⎝

[

AT (M −Φ(Xi+1, Yi+1))BT + ET (N −Ψ(Xi+1, Yi+1))FT +
‖Ri+1‖2
‖Ri‖2

Ui

]T

Uj

⎞

⎠

+ tr

⎛

⎝

[

−CT (M −Φ(Xi+1, Yi+1))DT −GT (N −Ψ(Xi+1, Yi+1))HT +
‖Ri+1‖2
‖Ri‖2

Vi

]T

Vj

⎞

⎠

= tr
(

UT
j

[

AT (M −Φ(Xi+1, Yi+1))BT + ET (N −Ψ(Xi+1, Yi+1))FT
]

+V T
j

[

−CT (M −Φ(Xi+1, Yi+1))DT −GT (N −Ψ(Xi+1, Yi+1))HT
])

+
‖Ri+1‖2
‖Ri‖2

[

tr
(

UT
i Uj

)

+ tr
(

V T
i Vj

)]

= tr
(

(M −Φ(Xi+1, Yi+1))TAUjB + (N −Ψ(Xi+1, Yi+1))TEUjF

− (M −Φ(Xi+1, Yi+1))TCVjD

−(N −Ψ(Xi+1, Yi+1))TGVjH
)

+
‖Ri+1‖2
‖Ri‖2

[

tr
(

UT
i Uj

)

+ tr
(

V T
i Vj

)]

= tr
(

diag
(

(M −Φ(Xi+1, Yi+1))T , (N −Ψ(Xi+1, Yi+1))T
)

diag
(

Φ
(

Uj, Vj

)

,Ψ
(

Uj, Vj

))

)

+
‖Ri+1‖2
‖Ri‖2

[

tr
(

UT
i Uj

)

+ tr
(

V T
i Vj

)]

=

∥

∥Uj

∥

∥

2 +
∥

∥Vj

∥

∥

2

∥

∥Rj

∥

∥

2
tr
(

RT
i+1

(

Rj − Rj+1
)

)

+
‖Ri+1‖2
‖Ri‖2

[

tr
(

UT
i Uj

)

+ tr
(

V T
i Vj

)]

= 0.

(A.9)

By the principle of induction, (A.5) holds.
Noting that (A.1) is implied in Steps 1 and 2 by the principle of induction. This

completes the proof.

B. The Proof of Lemma 2.3

We proof the conclusion by induction.
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For i = 1, we have that

tr
(

(X∗ −X1)
TU1 + (Y ∗ − Y1)

TV1

)

= tr

(

(X∗ −X1)
T

[

AT (M −Φ(X1, Y1))BT + ET (N −Ψ(X1, Y1))FT

2

+
PAT (M −Φ(X1, Y1))BTQ + PET (N −Ψ(X1, Y1))FTQ

2

]

+ (Y ∗ − Y1)
T

[

−CT (M −Φ(X1, Y1))DT −GT (N −Ψ(X1, Y1))HT

2

+
−RCT (M −Φ(X1, Y1))DTS − RGT (N −Ψ(X1, Y1))HTS

2

])

= tr
(

(X∗ −X1)
T
[

AT (M −Φ(X1, Y1))BT + ET (N −Ψ(X1, Y1))FT
]

+(Y ∗ − Y1)
T
[

−CT (M −Φ(X1, Y1))DT −GT (N −Ψ(X1, Y1))HT
])

= tr
(

(M −Φ(X1, Y1))TA(X∗ −X1)B + (N −Ψ(X1, Y1))TE(X∗ −X1)F

−(M −Φ(X1, Y1))TC(Z∗ − Z1)D − (N −Ψ(X1, Y1))TG(Y ∗ − Y1)H
)

= tr

((

(M −Φ(X1, Y1))T 0

0 (N −Ψ(X1, Y1))T

)

(

A(X∗ −X1)B − C(Y ∗ − Y1)D 0

0 E(X∗ −X1)F −G(Y ∗ − Y1)H

))

= tr

⎛

⎝

(

M −Φ(X1, Y1) 0

0 N −Ψ(X1, Y1)

)T(
M −Φ(X1, Y1) 0

0 N −Ψ(X1, Y1)

)

⎞

⎠

= ‖R1‖2.

(B.1)

Assume that (2.5) holds for i = k. When i = k + 1, by Algorithm 2.1, we have that

tr
(

(X∗ −Xk+1)
TUk+1 + (Y ∗ − Yk+1)

TVk+1

)

= tr

(

(X∗ −Xk+1)
T

[

AT (M −Φ(Xk+1, Yk+1))BT + ET (N −Ψ(Xk+1, Yk+1))FT

2

+
PAT (M −Φ(Xk+1, Yk+1))BTQ + PET (N −Ψ(Xk+1, Yk+1))FTQ

2

+
‖Rk+1‖2
‖Rk‖2

Uk

]
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+ (Y ∗ − Yk+1)
T

[

−CT (M −Φ(Xk+1, Yk+1))DT −GT (N −Ψ(Xk+1, Yk+1))HT

2

+
−RCT (M −Φ(Xk+1, Yk+1))DTS − RGT (N −Ψ(Xk+1, Yk+1))HTS

2

+
‖Rk+1‖2
‖Rk‖2

Vk

])

= tr
(

(X∗ −Xk+1)
T
[

AT (M −Φ(Xk+1, Yk+1))BT + ET (N −Ψ(Xk+1, Yk+1))FT
]

+(Y ∗ − Yk+1)
T
[

−CT (M −Φ(Xk+1, Yk+1))DT −GT (N −Ψ(Xk+1, Yk+1))HT
])

+
‖Rk+1‖2
‖Rk‖2

tr
(

(X∗ −Xk+1)
TUk + (Y ∗ − Yk+1)

TVk

)

= tr
(

(M −Φ(Xk+1, Yk+1))TA(X∗ −Xk+1)B + (N −Ψ(Xk+1, Yk+1))TE(X∗ −Xk+1)F

−(M −Φ(Xk+1, Yk+1))TC(Z∗ − Zk+1)D − (N −Ψ(Xk+1, Yk+1))TG(Y ∗ − Yk+1)H
)

+
‖Rk+1‖2
‖Rk‖2

tr
(

(X∗ −Xk+1)
TUk + (Y ∗ − Yk+1)

TVk

)

= tr

((

(M −Φ(Xk+1, Yk+1))T 0

0 (N −Ψ(Xk+1, Yk+1))T

)

(

A(X∗ −Xk+1)B − C(Y ∗ − Yk+1)D 0

0 E(X∗ −Xk+1)F −G(Y ∗ − Yk+1)H

))

+
‖Rk+1‖2
‖Rk‖2

tr
(

(X∗ −Xk+1)
TUk + (Y ∗ − Yk+1)

TVk

)

= tr

((

(M −Φ(Xk+1, Yk+1))T 0

0 (N −Ψ(Xk+1, Yk+1))T

)

(

M −Φ(Xk+1, Yk+1) 0

0 N −Ψ(Xk+1, Yk+1)

))

+
‖Rk+1‖2
‖Rk‖2

tr
(

(X∗ −Xk+1)
TUk + (Y ∗ − Yk+1)

TVk

)

= ‖Rk+1‖2 + ‖Rk+1‖2
‖Rk‖2

tr
(

(X∗ −Xk)
TUk + (Y ∗ − Yk)

TVk

)

− ‖Rk+1‖2
‖Uk‖2 + ‖Vk‖2

tr
(

UT
kUk + V T

k Vk

)

= ‖Rk+1‖2.

(B.2)
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Therefore, (2.5) holds for i = k + 1. Thus, (2.5) holds by the principal of induction. This
completes the proof.

Acknowledgments

The authors are very much indebted to the anonymous referees and their editors for
their constructive and valuable comments and suggestions which greatly improved the
original copy of this paper. Grateful acknowledgements are given to Professor. Alain
Miranville for his comments and suggestions that helped improve the second version of
this paper greatly. This work was partially supported by the Research Fund Project (Natural
Science 2010XJKYL018) and Natural Science Foundation of Sichuan Education Department
(12ZB289) respectively. This work is also supported by Open Fund of Geomathematics Key
Laboratory of Sichuan Province (scsxdz2011005) and Key Natural Science Foundation of
Sichuan Education Department (12ZA008).

References

[1] H.-C. Chen, “Generalized reflexive matrices: special properties and applications,” SIAM Journal on
Matrix Analysis and Applications, vol. 19, no. 1, pp. 140–153, 1998.

[2] J. L. Chen and X. H. Chen, Special Matrices, Tsing Hua University Press, 2001.
[3] F. Li, X. Hu, and L. Zhang, “The generalized reflexive solution for a class of matrix equations (AX =

B,XC = D),” Acta Mathematica Scientia. Series B. English Edition, vol. 28, no. 1, pp. 185–193, 2008.
[4] M.-l. Liang and L.-F. Dai, “The left and right inverse eigenvalue problems of generalized reflexive and

anti-reflexive matrices,” Journal of Computational and Applied Mathematics, vol. 234, no. 3, pp. 743–749,
2010.

[5] Y. Yuan and H. Dai, “Generalized reflexive solutions of the matrix equation AXB = D and an
associated optimal approximation problem,” Computers & Mathematics with Applications, vol. 56, no.
6, pp. 1643–1649, 2008.

[6] J.-C. Zhang, S.-Z. Zhou, and X.-Y. Hu, “The (P,Q) generalized reflexive and anti-reflexive solutions of
the matrix equation AX = B,” Applied Mathematics and Computation, vol. 209, no. 2, pp. 254–258, 2009.

[7] M. Dehghan and M. Hajarian, “An iterative algorithm for the reflexive solutions of the generalized
coupled Sylvester matrix equations and its optimal approximation,” Applied Mathematics and
Computation, vol. 202, no. 2, pp. 571–588, 2008.

[8] M. Dehghan and M. Hajarian, “On the reflexive and anti-reflexive solutions of the generalised
coupled Sylvester matrix equations,” International Journal of Systems Science, vol. 41, no. 6, pp. 607–
625, 2010.

[9] Z.-Y. Peng, “Newmatrix iterative methods for constraint solutions of the matrix equationAXB = C,”
Journal of Computational and Applied Mathematics, vol. 235, no. 3, pp. 726–735, 2010.

[10] Z.-Y. Peng and X.-Y. Hu, “The reflexive and anti-reflexive solutions of the matrix equation AX = B,”
Linear Algebra and its Applications, vol. 375, pp. 147–155, 2003.

[11] Z.-H. Peng, X.-H. Hu, and L. Zhang, “An efficient algorithm for the least-squares reflexive solution of
the matrix equation A1XB1 = C1, A2XB2 = C2,” Applied Mathematics and Computation, vol. 181, no. 2,
pp. 988–999, 2006.

[12] M. Dehghan and M. Hajarian, “An iterative method for solving the generalized coupled Sylvester
matrix equations over generalized bisymmetric matrices,” Applied Mathematical Modelling, vol. 34, no.
3, pp. 639–654, 2010.

[13] G. X. Huang, N. Wu, F. Yin, Z. L. Zhou, and K. Guo, “Finite iterative algorithms for solving
generalized coupled Sylvester systems C Part I: one-sided and generalized coupled Sylvester matrix
equations over generalized reflexive solutions,” Applied Mathematical Modelling, vol. 36, pp. 1589–
1603, 2012.

[14] A. L. Andrew, “Solution of equations involving centrosymmetric matrices,” Technometrics, vol. 15, pp.
405–407, 1973.



Journal of Applied Mathematics 27

[15] I. J. Good, “The inverse of a centrosymmetric matrix,” Technometrics, vol. 12, pp. 925–928, 1970.
[16] W. C. Pye, T. L. Boullion, and T. A. Atchison, “The pseudoinverse of a centrosymmetric matrix,” vol.

6, pp. 201–204, 1973.
[17] J. R. Weaver, “Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and

eigenvectors,” The American Mathematical Monthly, vol. 92, no. 10, pp. 711–717, 1985.
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