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Let F
(2ν+δ+l)
q be a (2ν+δ+l)-dimensional vector space over the finite field Fq. In this paperwe assume

that Fq is a finite field of odd characteristic, and O2ν+δ+l, Δ(Fq) the singular orthogonal groups of
degree 2ν + δ + l over Fq. Let M be any orbit of subspaces under O2ν+δ+l, Δ(Fq). Denote by L the
set of subspaces which are intersections of subspaces in M, where we make the convention that
the intersection of an empty set of subspaces of F

(2ν+δ+l)
q is assumed to be F

(2ν+δ+l)
q . By ordering L

by ordinary or reverse inclusion, two lattices are obtained. This paper studies the questions when
these lattices L are geometric lattices.

1. Introduction

Let Fq be a finite field with q elements, where q is an odd prime power. We choose a fixed
nonsquare element z in F

∗
q := Fq \ {0}. Let F

(2ν+δ+l)
q be a (2ν + δ + l)-dimensional row vector

space over the finite field Fq, and let O2ν+δ+l,Δ(Fq) be one of the singular orthogonal groups
of degree 2ν + δ + l over Fq. There is an action of O2ν+δ+l,Δ(Fq) on F

(2ν+δ+l)
q defined as follows:

F
(2ν+δ+l)
q ×O2ν+δ+l,Δ

(
Fq

) −→ F
(2ν+δ+l)
q ,

((x1, x2, . . . , x2ν+δ+l), T) �−→ (x1, x2, . . . , x2ν+δ+l)T.
(1.1)

Let P be an m-dimensional subspace of F
(2ν+δ+l)
q (1 ≤ m ≤ 2ν + δ + l), and v1, v2, . . . , vm be
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a basis of P . Then, the m × (2ν + δ + l) matrix:

⎛

⎜
⎜
⎜
⎝

v1

v2
...
vm

⎞

⎟
⎟
⎟
⎠

(1.2)

is called a matrix representation of P . We usually denote a matrix representation of the m-
dimensional subspace P still by P . The above action induces an action on the set of subspaces
of F

(2ν+δ+l)
q , that is, a subspace P is carried by T ∈ O2ν+δ+l,Δ(Fq) into the subspace PT . The

set of subspaces of F
(2ν+δ+l)
q is partitioned into orbits under O2ν+δ+l,Δ(Fq). Clearly, {0} and

{F(2ν+δ+l)
q } are two trivial orbits. Let M be any orbit of subspaces under O2ν+δ+l,Δ(Fq). Denote

the set of subspaces which are intersections of subspaces in M by L(M) and call L(M) the
set of subspaces generated byM. We agree that the intersection of an empty set of subspaces
is F

(2ν+δ+l)
q . Then, F

(2ν+δ+l)
q ∈ L(M). Partially ordering L(M) by ordinary or reverse inclusion,

we get two posets and denote them by LO(M) and LR(M), respectively. Clearly, for any two
elements P,Q ∈ LO(M),

P ∧Q = P ∩Q, P ∨Q = ∩{R ∈ LO(M) : R ⊇ 〈P,Q〉}, (1.3)

where 〈P,Q〉 is a subspace generated by P and Q. Therefore, LO(M) is a finite lattice.
Similarly, for any two elements P,Q ∈ LR(M),

P ∧Q = ∩{R ∈ LR(M) : R ⊇ 〈P,Q〉}, P ∨Q = P ∩Q, (1.4)

so LR(M) is also a finite lattice. Both LO(M) and LR(M) are called the lattices generated by
M.

The results on the geometricity of lattices generated by subspaces in d-bounded
distance-regular graphs can be found in Guo et al. [1]; on the geometricity and the
characteristic polynomial of lattices generated by orbits of flats under finite affine-classical
groups can be found in Wang and Feng [2], Wang and Guo [3]; on inclusion relations,
the geometricity and the characteristic polynomial of lattices generated by orbits of
subspaces under finite nonsingular classical groups and a characterization of subspaces
contained in lattices can be found in Huo [4–6], Huo and Wan [7, 8]; on inclusion
relations, the geometricity and the characteristic polynomial of lattices generated by orbits
of subspaces under finite singular symplectic groups, singular unitary groups, and singular
pseudosymplectic groups and a characterization of subspaces contained in lattices can be
found in Gao and You [9–12]. In [13], the authors studied the various lattices LO(M)
and LR(M) generated by different orbits M of subspaces under singular orthogonal group
O2ν+δ+l,Δ(Fq). The study contents include the inclusion relations between different lattices,
the characterization of subspaces contained in a given lattice LR(M) (resp., LO(M)), and the
characteristic polynomial ofLR(M). The purpose of this paper is to study the questions when
LR(M) (resp., LO(M)) are geometric lattices.
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2. Preliminaries

In the following, we recall some definitions and facts on ordered sets and lattices (see [8, 14]).
Let A be a partially ordered set, and a, b ∈ A. We say that b covers a and write a < · b,

if a < b and there exists no c ∈ A such that a < c < b. An element m ∈ A is called the minimal
element if there exists no elements a ∈ A such that a < m. If A has a unique minimal element,
denote it by 0 and we say that A is a poset with 0.

Let A be a poset with 0 and a ∈ A. If all maximal ascending chains starting from 0
with endpoint a have the same finite length, this common length is called the rank r(a) of a.
If rank r(a) is defined for every a ∈ A, A is said to have the rank function r : A → N, where
N is the set consisting of all positive integers and 0.

A posetA is said to satisfy the Jordan-Dedekind (JD) condition if any twomaximal chains
between the same pair of elements of A have the same finite length.

Proposition 2.1 ([14, Proposition 2.1]). LetA be a poset with 0. IfA satisfies the JD condition then
A has the rank function r : A → N which satisfies

(i) r(0) = 0,

(ii) a < · b ⇒ r(b) = r(a) + 1.

Conversely, ifA admits a function r : A → N satisfying (i) and (ii), thenA satisfies the JD condition
with r as its rank function.

Let A be a poset with 0. An element a ∈ A is called an atom of A if 0 < · a. A lattice L with 0
is called an atomic lattice (or a point lattice) if every element a ∈ L \ {0} is a supremum of atoms, that
is, a = sup{b ∈ L | 0 < ·b ≤ a}.

Definition 2.2 ([14, page 46]). A lattice L is called a semimodular lattice if for all a, b ∈ L,

a ∧ b < ·a =⇒ b < ·a ∨ b. (2.1)

Proposition 2.3 ([14, Theorem 2.27]). Let L be a lattice with 0. Then, L is a semimodular lattice if
and only if L possesses a rank function r such that for all x, y ∈ L

r
(
x ∧ y

)
+ r
(
x ∨ y

) ≤ r(x) + r
(
y
)
. (2.2)

Definition 2.4 ([14, page 52]). A lattice L is called a geometric lattice if it is

G′
1 an atomic lattice,

G′
2 a semimodular lattice,

G3 without infinite chains in L.

According to Definition 2.2, Proposition 2.3, and Definition 2.4, we can obtain the
following proposition.

Proposition 2.5. Let L be a lattice with 0. Then, L is a geometric lattice if and only if

G1 for every element a ∈ L \ {0}, a = sup{b ∈ L | 0 < ·b ≤ a},
G2 L possesses a rank function r and for all x, y ∈ L, (2.2) holds,
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G3 without infinite chains in L.

Let

S2ν+δ,Δ =

⎛

⎝
0 I(ν)

I(ν) 0
Δ

⎞

⎠, Sl =
(
S

0(l)

)
, (2.3)

where S = S2ν+δ,Δ, δ = 0, 1, or 2, and

Δ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ, if δ = 0,
1 or z, if δ = 1,
(
1

−z

)

, if δ = 2.
(2.4)

The set of all (2ν + δ + l) × (2ν + δ + l) nonsingular matrices T over Fq satisfying

TSlT
t = Sl (2.5)

forms a groupwhich will be called the singular orthogonal group of degree 2ν+δ+l, rank 2ν+δ,
and with definite partΔ over Fq and denoted byO2ν+δ+l,Δ(Fq). Clearly,O2ν+δ+l,Δ(Fq) consists
of all (2ν + δ + l) × (2ν + δ + l) nonsingular matrices of the form:

T =
(
T11 T12
0 T22

)
2ν + δ

l
,

2ν + δ l

(2.6)

where T11STt
11 = S, and T22 is nonsingular.

Two n × n matrices A and B are called to be cogredient if there exists a nonsingular
matrix P such that PAPt = B.

Anm-dimensional subspace P is said to be a subspace of type (m, 2s+ γ, s,Γ), if PSlP
t is

cogredient toM(m, 2s+ γ, s,Γ), where the matrixM(m, 2s+ γ, s,Γ), respectively, is as follows

M(m, 2s, s) =

⎛

⎝
0 I(s)

I(s) 0
0(m−2s)

⎞

⎠, if γ = 0,

M(m, 2s + 1, s, 1) =

⎛

⎜⎜
⎝

0 I(s)

I(s) 0
1

0(m−2s−1)

⎞

⎟⎟
⎠, if γ = 1

(2.7)
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or

M(m, 2s + 1, s, z) =

⎛

⎜
⎜
⎝

0 I(s)

I(s) 0
z

0(m−2s−1)

⎞

⎟
⎟
⎠, if γ = 1,

M(m, 2s + 2, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 I(s)

I(s) 0
1

−z
0(m−2s−2)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, if γ = 2.

(2.8)

Let e1, e2, . . . , e2ν+δ, e2ν+δ+1, . . . , e2ν+δ+l be a basis of F
(2ν+δ+l)
q , where

ei = (0, . . . , 0, 1, 0, . . . , 0), (2.9)

1 is in the ith position. Denote by E the l-dimensional subspace of F
(2ν+δ+l)
q generated by

e2ν+δ+1, e2ν+δ+2, . . . , e2ν+δ+l. An m-dimensional subspace P is called a subspace of type (m, 2s +
γ, s,Γ, k) if

(i) P is a subspace of type (m, 2s + γ, s,Γ),

(ii) dim(P ∩ E) = k.

Denote the set of all subspaces of type (m, 2s + γ, s,Γ, k) in F
(2ν+δ+l)
q by M(m, 2s +

γ, s,Γ, k; 2ν+δ+ l,Δ). By [15, Theorem 6.28], we know that M(m, 2s+γ, s,Γ, k; 2ν+δ+ l,Δ) is
nonempty if and only if

k ≤ l,

2s + γ ≤ m − k ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν + s +min
{
δ, γ
}
,

if γ /= δ or γ = δ and Γ = Δ,

ν + s,

if γ = δ = 1 and Γ/=Δ,

(2.10)

or

min
{
l,m − 2s − γ

} ≥ k ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
{
0, m − ν − s −min

{
δ, γ
}}

,

if γ /= δ or γ = δ and Γ = Δ,

max{0, m − ν − s},
if γ = δ = 1 and Γ/=Δ.

(2.11)

Moreover, if M(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) is nonempty, then it forms an orbit of
subspaces underO2ν+δ+l,Δ(Fq). LetL(m, 2s+γ, s,Γ, k; 2ν+δ+l,Δ) denote the set of subspaces
which are intersections of subspaces in M(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ), where we make the
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convention that the intersection of an empty set of subspaces of F
(2ν+δ+l)
q is assumed to be

F
(2ν+δ+l)
q . Partially ordering L(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) by ordinary or reverse inclusion,

we get two finite lattices and denote them byLO(m, 2s+γ, s,Γ, k; 2ν+δ+ l,Δ) andLR(m, 2s+
γ, s,Γ, k; 2ν + δ + l,Δ), respectively.

The case LR(m− l, 2s+ γ, s,Γ; 2ν + δ,Δ) has been discussed in [8]. So, we only discuss
the case 0 ≤ k < l in this paper.

By [13], we have the following results.

Theorem 2.6. Let 2ν + δ + l > m ≥ 1, 0 ≤ k < l, assume that (m, 2s + γ, s,Γ, k) satisfies conditions
(2.10) and (2.11). Then,

LR(m, 2s + r, s,Γ, k; 2ν + δ + l,Δ) ⊃ LR

(
m1, 2s1 + γ1, s1,Γ1, k1; 2ν + δ + l,Δ

)
(2.12)

if and only if

k1 ≤ k < l,

2(m − k) − 2(m1 − k1) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
2s + γ

) − (2s1 + γ1
)
+
∣∣γ − γ1

∣∣ ≥ 2
∣∣γ − γ1

∣∣,

if γ1 /= γ or γ1 = γ and Γ1 = Γ,
(
2s + γ

) − (2s1 + γ1
)
+ 2 ≥ 4,

if γ1 = γ = 1 and Γ1 /=Γ.

(2.13)

Theorem 2.7. Let 2ν + δ + l > m ≥ 1, 0 ≤ k < l. Assume that (m, 2s + γ, s,Γ, k) satisfies condition
(2.10), then LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) consists of F

(2ν+δ+l)
q and all the subspaces of type

(m1, 2s1 + γ1, s1,Γ1, k1), where (m1, 2s1 + γ1, s1,Γ1, k1) satisfies condition (2.13).

Theorem 2.8. Let 2ν + δ + l > m ≥ 1, 0 ≤ k < l, and (m, 2s + γ, s,Γ, k) satisfy

2s + γ ≤ m − k ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν + s +min
{
δ, γ
}
,

if γ /= δ or γ = δ and Γ = Δ,

ν + s,

if γ = δ = 1 and Γ/=Δ.

(2.14)

For any X ∈ LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ), define

r(X) =

{
dimX, if X /= F

(2ν+δ+l)
q ,

m + 1, if X = F
(2ν+δ+l)
q ,

(2.15)

then r : LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) → N is a rank function of the lattice LO(m, 2s +
γ, s,Γ, k; 2ν + δ + l,Δ).
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Theorem 2.9. Let 2ν + δ + l > m ≥ 1, 0 ≤ k < l, and (m, 2s + γ, s,Γ, k) satisfy (2.14). For any
X ∈ LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ), define

r ′(X) =

{
m + 1 − dimX, if X /=F

(2ν+δ+l)
q ,

0, if X = F
(2ν+δ+l)
q ,

(2.16)

then r ′ : LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) → N is a rank function of the lattice LR(m, 2s +
γ, s,Γ, k; 2ν + δ + l,Δ).

3. The Geometricity of Lattices LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ)

Theorem 3.1. Let 2ν + δ + l > m ≥ 1, 0 ≤ k < l, assume that (m, 2s + γ, s,Γ, k) satisfies conditions
(2.10) and (2.11). Then

(i) each ofLO(k+1, 0, 0, φ, k; 2ν+δ+l,Δ) andLO(k+1, 1, 0,Γ, k; 2ν+δ+l,Δ) (Γ = 1 or z)
is a finite geometric lattice, when k = 0, and is a finite atomic lattice, but not a geometric
lattice when 0 < k < l;

(ii) when 2 ≤ m− k ≤ 2ν + δ − 1, LO(m, 2s+ γ, s,Γ, k; 2ν + δ + l,Δ) is a finite atomic lattice,
but not a geometric lattice.

Proof. By Theorem 2.8, the rank function of LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) is defined
by formula (2.15), we will show the condition G1 of Proposition 2.5 holds for LO(m, 2s +
γ, s,Γ, k; 2ν + δ + l,Δ). {0} ∈ LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) and it is the minimal element,
so all 1-dim subspaces inLO(m, 2s+γ, s,Γ, k; 2ν+δ+l,Δ) are atoms ofLO(m, 2s+γ, s,Γ, k; 2ν+
δ + l,Δ).

Let U ∈ LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) \ {{0},F(2ν+δ+l)
q }, by Theorem 2.7, U is a

subspace of type (m1, 2s1 + γ1, s1,Γ1, k1) and satisfies condition (2.13). If m1 = 1, then U is an
atom of LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ). Assume m1 ≥ 2, then

USlU
t =
[
S2s1+γ1,Γ1 , 0

(m1−k1−2s1−γ1), 0(k1)
]
, (3.1)

where Γ1 = φ, (1), (z), or [1,−z].
Let Ui be an ith (1 ≤ i ≤ m1) row vector of U, then 〈Ui〉 is a subspace of type

(1, 0, 0, φ, 0), (1, 1, 0, 1, 0), (1, 1, 0, z, 0), or (1, 0, 0, 0, 1), and 〈Ui〉 ⊂ U. By Theorem 2.7, we know
〈Ui〉 ∈ LO(m, 2s+γ, s,Γ, k; 2ν+δ+l,Δ), so 〈Ui〉 is an atom ofLO(m, 2s+γ, s,Γ, k; 2ν+δ+l,Δ),
and U = ∨m1

i=1〈Ui〉, hence, U is a union of atoms in LO(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ). Since
|M(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ)| ≥ 2, there exist W1,W2 ∈ M(m, 2s + γ, s,Γ, k; 2ν + δ +
l,Δ),W1 /=W2, such that F

(2ν+δ+l)
q = W1 ∨ W2. W1,W2 are unions of atoms in LO(m, 2s +

γ, s,Γ, k; 2ν+δ+ l,Δ), hence, F(2ν+δ+l)
q is a union of atoms inLO(m, 2s+ γ, s,Γ, k; 2ν+δ+ l,Δ),

therefore, G1 holds.
In the following, we prove (i) and (ii).
The Proof of (i). We only prove the formula (2.2) holds forLO(k+1, 1, 0,Γ, k; 2ν+δ+l,Δ).

The other can be obtained in the similar way. We consider two cases:
(a) k = 0.LO(k+1, 1, 0,Γ, k; 2ν+δ+ l,Δ) consists of F

(2ν+δ+l)
q , {0} and subspaces of type

(1, 1, 0,Γ, 0). LetU,W ∈ LO(1, 1, 0,Γ, 0; 2ν+δ+l,Δ), ifU,W are F
(2ν+δ+l)
q , {0}, respectively, then
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U∨V = F
(2ν+δ+l)
q ,U∧W = {0}, so r(U∨W)+r(U∧W) = r(U)+r(W). IfU = W is {0} or F

(2ν+δ+l)
q ,

the other is a subspace of type (1, 1, 0,Γ, 0), thenU∧W is {0} or subspace of type (1, 1, 0,Γ, 0),
U ∨W is a subspace of type (1, 1, 0,Γ, 0) or F

(2ν+δ+l)
q , so r(U ∨W) + r(U ∧W) = r(U) + r(W).

If U and W are subspaces of type (1, 1, 0,Γ, 0), then U ∧ W = {0}, U ∨ W = F
(2ν+δ+l)
q , so

r(U ∨W) + r(U ∧W) = r(U) + r(W).
Hence, (2.2) holds andLO(k+1, 1, 0,Γ, k; 2ν+δ+ l,Δ) is a finite geometric lattice when

k = 0.
(b) 0 < k < l. Let U = 〈e1 + (Γ/2)eν+1〉, W = 〈es+1 + (Γ/2)eν+s+1〉, where s ≤ ν − 1, then

U,W ∈ LO(k + 1, 1, 0,Γ, k; 2ν + δ + l,Δ). When q = 3(mod 4) or q = 1(mod 4), then −1 is a
nonsquare element or a square element, respectively. Thus, [Γ,Γ] is cogredient to either [1,−z]
or S2·1, and 〈U,W〉 is a subspace of type (2, 2, 0,Γ, 0), where Γ = [1,−z], or a subspace of type
(2, 2, 1, φ, 0). So 〈U,W〉 /∈ LO(k + 1, 1, 0,Γ, k; 2ν + δ + l,Δ), and we have U ∨ W = F

(2ν+δ+l)
q ,

U ∧W = {0}. By the definition of rank function, r(U ∨W) = k + 1 + 1 = k + 2, r(U ∧W) = 0,
r(U) = r(W) = 1, we have r(U ∨W) + r(U ∧W) = k + 2 > r(U) + r(W) = 2.

Hence, LO(k + 1, 1, 0,Γ, k; 2ν + δ + l,Δ) is a finite atomic lattice, but not a geometric
lattice when 0 < k < l.

The Proof of (ii). We will show there existU,W ∈ LO(m, 2s+ γ, s,Γ, k; 2ν+δ+ l,Δ) such
that the formula (2.2) does not hold. As to γ = 0, 1, or 2, we only show the proof of γ = 1,
others can be obtained in the similar way. We distinguish the following three cases.

(a) δ = 0, or δ = 1, Γ/=Δ. Then, the formula (2.10) is changed into 2s+1 ≤ m−k ≤ ν+s.
Let σ = ν + s −m + k, we distinguish the following two subcases.

(a.1)m− k − 2s− 1 ≥ 1. Fromm− k − 2s− 1 ≥ 1 andm− k ≤ ν + s, we have s+ 2 ≤ ν. Let

U =

⎛

⎜⎜⎜⎜⎜
⎝

I(s) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 I(s) 0 0 0 0 0 0
0 1 0 0 0 0 Γ/2 0 0 0 0 0
0 0 0 I(σ1) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I(k) 0

⎞

⎟⎟⎟⎟⎟
⎠

,

s 1 1 σ1 σ s 1 1 σ1 σ k l − k

W =
〈
es+2 +

(
Γ
2

)
eν+s+2

〉
,

(3.2)

where σ1 = m − k − 2s − 2, thenU is a subspace of type (m − 1, 2s + 1, s,Γ, k),W is a subspace
of type (1, 1, 0,Γ, 0). When q = 3(mod 4) or q = 1(mod 4), then −1 is a nonsquare element or
a square element, respectively, thus [Γ,Γ] is cogredient to either [1,−z] or S2·1, and 〈U,W〉
is a subspace of type (m, 2s + 2, s,Γ, k) or type (m, 2(s + 1), s + 1, φ, k). Consequently, U,W ∈
LO(m, 2s+ 1, s,Γ, k; 2ν +δ + l,Δ), 〈U,W〉 /∈ LO(m, 2s+ 1, s,Γ, k; 2ν +δ + l,Δ). Thus, we have
U∨W = F

(2ν+δ+l)
q , U∧W = {0}, r(U∨W) = m+1, r(U∧W) = 0, r(U) = m−1, r(W) = 1. Then,

r(U ∨W) + r(U ∧W) = m + 1 > r(U) + r(W) = m − 1 + 1 = m. (3.3)
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(a.2) m − k − 2s − 1 = 0. From 2 ≤ m − k ≤ 2ν + δ − 1, we have s + 1 ≤ ν, s ≥ 1. Let

U =

⎛

⎜
⎜
⎝

I(s−1) 0 0 0 0 0 0 0 0
0 0 0 0 I(s) 0 0 0 0
0 0 1 0 0 Γ/2 0 0 0
0 0 0 0 0 0 0 I(k) 0

⎞

⎟
⎟
⎠,

s − 1 1 1 σ s 1 σ k l − k

W =
〈
es+1 −

(
Γ
2

)
eν+s+1

〉
,

(3.4)

thenU is a subspace of type (m−1, 2(s−1)+1, s−1,Γ, k),W is a subspace of type (1, 1, 0,−Γ, 0),
〈U,W〉 is a subspace of type (m, 2s, s, φ, k). Consequently, U,W ∈ LO(m, 2s + 1, s,Γ, k; 2ν +
δ+ l,Δ), 〈U,W〉 /∈ LO(m, 2s+1, s,Γ, k; 2ν+δ+ l,Δ). Thus, we haveU∨W = F

(2ν+δ+l)
q , U∧W =

{0}, r(U ∨W) = m + 1, r(U ∧W) = 0, r(U) = m − 1, r(W) = 1. Then,

r(U ∨W) + r(U ∧W) = m + 1 > r(U) + r(W) = m − 1 + 1 = m. (3.5)

Therefore, there exist U,W ∈ LO(m, 2s + 1, s,Γ, k; 2ν + δ + l,Δ) such that formula (2.2) does
not hold.

(b) δ = 1,Γ = Δ. Then, the formula (2.10) is changed into 2s + 1 ≤ m − k ≤ ν + s + 1. Let
σ = ν + s −m + k + 1, we distinguish the following two subcases.

(b.1)m − k − 2s − 1 ≥ 1. Fromm − k − 2s − 1 ≥ 1, and 2 ≤ m − k ≤ 2ν, we have s + 1 ≤ ν.
Let

U =

⎛

⎜⎜⎜⎜⎜
⎝

I(s) 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I(s) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 I(σ1) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I(k) 0

⎞

⎟⎟⎟⎟⎟
⎠

,

s 1 σ1 σ s 1 σ1 σ 1 k l − k

W =
〈
es+1 +

(
Δ
2

)
eν+s+1

〉
,

(3.6)

where σ1 = m − k − 2s − 2, thenU is a subspace of type (m − 1, 2s + 1, s,Δ, k),W is a subspace
of type (1, 1, 0,Δ, 0). When q = 3(mod 4) or q = 1(mod 4), similar to the proof of the case
(a.1), 〈U,W〉 is a subspace of type (m, 2s + 2, s,Γ, k) or (m, 2(s + 1), s + 1, φ, k). Consequently,
U,W ∈ LO(m, 2s + 1, s,Δ, k; 2ν + 1 + l,Δ), 〈U,W〉 /∈ LO(m, 2s + 1, s,Δ, k; 2ν + 1 + l,Δ), and
the formula (2.2) does not hold.
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(b.2)m − k − 2s − 1 = 0. From 2 ≤ m − k ≤ 2ν, we have s + 1 ≤ ν. Let

U =

⎛

⎜
⎜
⎝

I(s−1) 0 0 0 0 0 0 0 0 0
0 0 0 0 I(s) 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 I(k) 0

⎞

⎟
⎟
⎠,

s − 1 1 1 σ − 1 s 1 σ − 1 1 k l − k

W =
〈
es+1 +

(
Δ
2

)
eν+s+1

〉
,

(3.7)

thenU is a subspace of type (m−1, 2(s−1)+1, s−1,Δ, k),W is a subspace of type (1, 1, 0,Δ, 0),
when q = 3(mod 4) or q = 1(mod 4), 〈U,W〉 is subspace of type (m, 2(s − 1) + 2, s − 1,Γ, k)
or (m, 2s, s, φ, k). Similar to the proof of the case (a.1), the formula (2.2) does not hold for U
and W .

(c) δ = 2. Then, the formula (2.10) is changed into 2s + 1 ≤ m − k ≤ ν + s + 1. Let
σ = ν + s −m + k + 1, we distinguish the following two subcases.

(c.1)m − k − 2s − 1 ≥ 1. Fromm − k − 2s − 1 ≥ 1, andm − k ≤ 2ν + 1, we have s + 1 ≤ ν.
Let

U =

⎛

⎜⎜⎜⎜⎜
⎝

I(s) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I(s) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 x y 0 0
0 0 I(σ1) 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I(k) 0

⎞

⎟⎟⎟⎟⎟
⎠

,

s 1 σ1 σ s 1 σ1 σ 1 1 k l − k

W =
〈
es+1 +

(
Γ
2

)
eν+s+1

〉
,

(3.8)

where σ1 = m − k − 2s − 2 and x2 − zy2 = Γ, thenU is a subspace of type (m − 1, 2s + 1, s,Γ, k),
W is a subspace of type (1, 1, 0,Γ, 0). But when q = 3(mod 4) or q = 1(mod 4), similar to the
proof of the case (a.1), 〈U,W〉 is a subspace of type (m, 2s+2, s,Γ, k) or (m, 2(s+1), s+1, φ, k).
Consequently, U,W ∈ LO(m, 2s + 1, s,Γ, k; 2ν + δ + l,Δ), 〈U,W〉 /∈ LO(m, 2s + 1, s,Γ, k; 2ν +
δ + l,Δ), and the formula (2.2) does not hold.

(c.2) m − k − 2s − 1 = 0. From 2 ≤ m − k ≤ 2ν + 1, we have s ≥ 1 and m ≥ 3. We choose
(a, b) and (c, d) being two linearly independent solutions of the equation x2 − zy2 = Γ. Let

U =

⎛

⎜⎜
⎝

I(s−1) 0 0 0 0 0 0 0 0
0 0 0 I(s) 0 0 0 0 0
0 0 0 0 0 a b 0 0
0 0 0 0 0 0 0 I(k) 0

⎞

⎟⎟
⎠,

s − 1 1 σ s σ 1 1 k l − k

W = 〈ce2ν+1 + de2ν+2〉,

(3.9)
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thenU is a subspace of type (m−1, 2(s−1)+1, s−1,Γ, k),W is a subspace of type (1, 1, 0,Γ, 0).
Let

A =
(
a b
c d

)(
1

−z
)(

a b
c d

)t

, (3.10)

because det A = −(ad − bc)2z, hence, A is cogredient to [1,−z]. Then,

(
U
W

)
Sl

(
U
W

)t

(3.11)

is cogredient to

[
S2(s−1)+2,Δ, o(m−k−2s), o(k)

]
. (3.12)

Therefore, 〈U,W〉 is a subspace of type (m, 2(s − 1) + 2, s − 1,Γ, k). Similar to the proof of the
case (a.2), the formula (2.2) does not hold for U and W .

4. The Geometricity of Lattices LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ)

Theorem 4.1. Let 2ν + δ + l > m ≥ 1, 0 ≤ k < l, assume that (m, 2s + γ, s,Γ, k) satisfies conditions
(2.10) and (2.11). Then,

(i) each of LR(k + 1, 0, 0, φ, k; 2ν + δ + l,Δ), LR(k + 1, 1, 0,Γ, k; 2ν + δ + l,Δ) (Γ = 1 or z)
andLR(2ν+δ+k− 1, 2s+ γ, s,Γ, k; 2ν+δ+ l,Δ) is a finite geometric lattice when k = 0,
and is a finite atomic lattice, but not a geometric lattice when 0 < k < l;

(ii) when 2 ≤ m− k ≤ 2ν + δ − 2, LR(m, 2s+ γ, s,Γ, k; 2ν + δ + l,Δ) is a finite atomic lattice,
but not a geometric lattice.

Proof. By Theorem 2.9, the rank function of LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) is defined
by formula (2.16), F

(2ν+δ+l)
q is the minimal element of LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ),

all subspaces of type (m, 2s + γ, s,Γ, k) in LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ) are atoms of
LR(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ).

The Proof of (i). By [8], LR(k + 1, 0, 0, φ, k; 2ν +δ + l,Δ), LR(k + 1, 1, 0,Γ, k; 2ν +δ + l,Δ),
andLR(2ν+δ+k−1, 2s+ γ, s,Γ, k; 2ν+δ+ l,Δ) are finite geometric lattices when k = 0; in the
following, we will show that they are finite atomic lattices, but not geometric lattices when
0 < k < l.

(a) Let

U = 〈eν+1, e2ν+δ+1, e2ν+δ+2, . . . , e2ν+δ+k〉,
W = 〈e1, e2ν+δ+2, e2ν+δ+3, . . . , e2ν+δ+k+1〉.

(4.1)

Then, both U and W are subspaces of type (k + 1, 0, 0, φ, k), and U ∩ W = 〈e2ν+δ+2,
e2ν+δ+3, . . . , e2ν+δ+k〉, 〈U,W〉 is a subspace of type (k + 3, 2, 1, φ, k + 1). Consequently,
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〈U,W〉 /∈ LR(k+1, 0, 0, φ, k; 2ν+δ+l,Δ), r ′(U∧W) = r ′(F(2ν+δ+l)
q ) = 0, r ′(U∨W) = r ′(U∩W) =

k + 2 − (k − 1) = 3, r ′(U) = r ′(W) = k + 2 − (k + 1) = 1. Thus,

r ′(U ∧W) + r ′(U ∨W) > r ′(U) + r ′(W). (4.2)

That is, (2.2) does not hold for U and W . Hence, LR(k + 1, 0, 0, φ, k; 2ν + δ + l,Δ) are not
geometric lattices when 0 < k < l.

(b) Let

U =
〈
e1 +

(
Γ
2

)
eν+1, e2ν+δ+1, e2ν+δ+2, . . . , e2ν+δ+k

〉
,

W =
〈
es+1 +

(
Γ
2

)
eν+s+1, e2ν+δ+2, e2ν+δ+3, . . . , e2ν+δ+k+1

〉
.

(4.3)

Then, both U and W are subspaces of type (k + 1, 1, 0,Γ, k), and U ∩ W =
〈e2ν+δ+2, e2ν+δ+3, . . . , e2ν+δ+k〉, 〈U,W〉 is a subspace of type (k+3, 2, 0,Γ, k+1) or (k+3, 2, 1, φ, k+
1) when q = 3(mod 4) or q = 1(mod 4). Consequently, 〈U,W〉 /∈ LR(k + 1, 1, 0,Γ, k; 2ν + δ +
l,Δ), r ′(U∧W) = r ′(F(2ν+δ+l)

q ) = 0, r ′(U∨W) = r ′(U∩W) = k+2− (k−1) = 3, r ′(U) = r ′(W) =
k + 2 − (k + 1) = 1. Thus,

r ′(U ∧W) + r ′(U ∨W) > r ′(U) + r ′(W). (4.4)

That is, (2.2) does not hold for U and W . Hence, LR(k + 1, 1, 0,Γ, k; 2ν + δ + l,Δ) are not
geometric lattices when 0 < k < l.

(c) From the condition (2.10), the following hold.

(i) If γ = δ = 1,Γ/=Δ, then 2ν + δ − 1 ≤ ν + s, that is, ν ≤ s, ν = s, hence 2ν + 1 ≤ 2ν, and
it is a contradiction.

(ii) If γ = δ,Γ = Δ, then 2ν + δ − 1 ≤ ν + s + δ, that is, ν − 1 ≤ s, hence s = ν, or s = ν − 1.
When s = ν, from 2s + γ ≤ 2ν + δ − 1, we obtain 2ν + δ ≤ 2ν + δ − 1, and it is a
contradiction. When s = ν − 1, we have 2ν + δ − 2 ≤ 2ν + δ − 1. That is, in this
situation, ν − 1 = s holds.

(iii) If γ /= δ, then 2ν + δ − 1 ≤ ν + s +min{δ, γ} ≤ ν + s + δ, that is, ν − 1 ≤ s, hence s = ν,
or s = ν − 1. When s = ν, we have 2ν + γ ≤ 2ν + δ − 1, then γ ≤ δ − 1. When s = ν − 1,
we have 2ν + γ − 2 ≤ 2ν + δ − 1, then γ − 1 ≤ δ.

From the discussion above, we know that
(c.1) If s = ν, then γ ≤ δ − 1, and we have δ = 1, γ = 0; δ = 2, γ = 0, and δ = 2, γ = 1

three possible cases. For LR(2ν + δ + k − 1, 2ν + γ, ν,Γ, k; 2ν + δ + l,Δ), here we just give the
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proof of the case δ = 2, γ = 1, others can be obtained in the similar way. We choose (a, b) and
(c, d) being two linearly independent solutions of the equation x2 − zy2 = Γ. Let

U =

⎛

⎜
⎜
⎝

I(ν) 0 0 0 0 0
0 I(ν) 0 0 0 0
0 0 a b 0 0
0 0 0 0 I(k) 0

⎞

⎟
⎟
⎠,

ν ν 1 1 k l − k

W =
(
0 0 c d 0 0 0
0 0 0 0 0 0 1

)
,

ν ν 1 1 k l − k − 1 1

(4.5)

then U is a subspace of type (2ν + k + 1, 2ν + 1, ν,Γ, k), W is a subspace of type (2, 1, 0,Γ, 1),
and 〈U,W〉 is a subspace of type (2ν + k + 3, 2ν + 2, ν,Γ, k + 1). Consequently,U,W ∈ LR(2ν +
k + 1, 2ν + 1, ν,Γ, k; 2ν + δ + l,Δ), 〈U,W〉 /∈ LR(2ν + k + 1, 2ν + 1, ν,Γ, k; 2ν + δ + l,Δ). Thus,
we have U ∨W = {0}, U ∧W = F

(2ν+δ+l)
q , r ′(U ∨W) = r ′(U ∩W) = 2ν + k + 2, r ′(U ∧W) =

0, r ′(U) = 2ν + k + 2 − 2ν − k − 1 = 1, r ′(W) = 2ν + k + 2 − 2 = 2ν + k. Then,

r ′(U ∧W) + r ′(U ∨W) > r ′(U) + r ′(W). (4.6)

That is, (2.2) does not hold forU andW . Hence, LR(2ν + k + 1, 2ν + 1, ν, 1, k; 2ν + δ + l,Δ) are
not geometric lattices when 0 < k < l.

(c.2) If s = ν − 1, then we have γ /= δ, γ − 1 ≤ δ; or γ = δ, Γ = Δ. As to LR(2ν + δ + k −
1, 2(ν − 1) + γ, ν − 1,Γ, k; 2ν + δ + l,Δ), we consider δ = 0, δ = 1, and δ = 2 three cases. Here
we just give the proof of the case δ = 1, and we also discuss the following three subcases:

(c.2.1) δ = 1, γ = 0. For LR(2ν + k, 2(ν − 1), ν − 1, φ, k; 2ν + δ + l,Δ), let

U =

⎛

⎜⎜
⎝

I(ν−1) 0 0 0 0 0 0
0 0 I(ν) 0 0 0 0
0 0 0 0 I(k) 0 0
0 0 0 0 0 0 1

⎞

⎟⎟
⎠,

ν − 1 1 ν 1 k l − k − 1 1

W =
(

0 1 0 0 0 0 0
0 0 0 1 0 0 0

)
,

ν − 1 1 ν 1 k l − k − 1 1

(4.7)

thenU is a subspace of type (2ν+k, 2(ν−1), ν−1, φ, k+1),W is a subspace of type (2, 1, 0,Δ, 0),
and 〈U,W〉 is a subspace of type (2ν + k + 2, 2ν + 1, ν,Δ, k + 1). If ν = 1, then s = 0, and as
to W , from the condition (2.10), we obtain 2 ≤ 1, that is, it is a contradiction. Consequently,
ν ≥ 2, andU,W ∈ LR(2ν+k, 2(ν−1), ν−1, φ, k; 2ν+δ+ l,Δ),〈U,W〉 /∈ LR(2ν+k, 2(ν−1), ν−
1, φ, k; 2ν + δ + l,Δ). Thus, we have U ∨W = {0}, U ∧W = F

(2ν+δ+l)
q , r ′(U ∨W) = r ′(U ∩W)
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= 2ν + k + 1, r ′(U ∧W) = 0, r ′(U) = 2ν + k + 1 − 2ν − k = 1, r ′(W) = 2ν + k + 1 − 2 = 2ν + k − 1.
Then,

r ′(U ∧W) + r ′(U ∨W) > r ′(U) + r ′(W). (4.8)

That is, (2.2) does not hold forU andW . Hence,LR(2ν+k, 2(ν−1), ν−1, φ, k; 2ν+δ+ l,Δ) are
not geometric lattices when 0 < k < l.

(c.2.2) δ = 1, γ = 1, Γ = Δ. For LR(2ν + k, 2(ν − 1) + 1, ν − 1,Δ, k; 2ν + δ + l,Δ), let

U =

⎛

⎜
⎜
⎝

I(ν−1) 0 0 0 0 0 0
0 0 I(ν) 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 I(k) 0 0

⎞

⎟
⎟
⎠,

ν − 1 1 ν 1 k l − k − 1 1

W =
(

0 1 0 0 0 0 0
0 0 0 1 0 0 1

)
,

ν − 1 1 ν 1 k l − k − 1 1

(4.9)

thenU is a subspace of type (2ν+k, 2(ν−1)+1, ν−1,Δ, k),W is a subspace of type (2, 1, 0,Δ, 0),
and 〈U,W〉 is a subspace of type (2ν +k + 2, 2ν + 1, ν,Δ, k + 1). Consequently,U,W ∈ LR(2ν +
k, 2(ν−1)+1, ν−1,Δ, k; 2ν+δ+ l,Δ),〈U,W〉 /∈ LR(2ν+k, 2(ν−1)+1, ν−1,Δ, k; 2ν+δ+ l,Δ).
Thus, we haveU∨W = {0},U∧W = F

(2ν+δ+l)
q , r ′(U∨W) = r ′(U∩W) = 2ν+k+1, r ′(U∧W) = 0,

r ′(U) = 2ν + k + 1 − 2ν − k = 1, r ′(W) = 2ν + k + 1 − 2 = 2ν + k − 1. Then,

r ′(U ∧W) + r ′(U ∨W) > r ′(U) + r ′(W). (4.10)

That is, (2.2) does not hold for U and W . Hence, LR(2ν + k, 2(ν − 1) + 1, ν − 1,Δ, k; 2ν + δ +
l,Δ) are not geometric lattices when 0 < k < l.

(c.2.3) δ = 1, γ = 2. See the proof of the Theorem 7 in [12].
The Proof of (ii). Let U ∈ M(m, 2s + γ, s,Γ, k; 2ν + δ + l,Δ), then

USlU
t =
[
Λ1, 0m−k−2s−γ , 0(k)

]
, (4.11)

where Λ1 = S2s+γ,Γ. Hence, there exists a (2ν + δ + l −m) × (2ν + δ + l)matrix Z such that

(
U
Z

)
Sl

(
U
Z

)t

=
[
Λ1, S2(m−k−2s−γ),Λ∗, 0(k), 0(l−k)

]
, (4.12)

where Λ∗ takes values in Table 1 as follows.
In Table 1 as follows

∑
i = S2(ν+s−m+k+i), i = 0, 1, or 2.

As to δ = 0; δ = 1,Δ = 1; δ = 1,Δ = z, and δ = 2 four cases, we only show the proof
of the case δ = 0, others can be obtained in the similar way. We also distinguish the following
three subcases.
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Table 1

δ = 0 δ = 1,Δ = 1 δ = 1,Δ = z δ = 2
γ = 0 Σ0 [Σ0, 1] [Σ0, z] [Σ0, 1,−z]
γ = 1,Γ = 1 [Σ0,−1] Σ1 [Σ0,−1, z] [Σ1,−z]
γ = 1,Γ = z [Σ0,−z] [Σ0, 1,−z] Σ1 [Σ1,−1]
γ = 2 [Σ0, 1,−z] [Σ1, z] [Σ1, 1] Σ2

(a) If γ = 0, then Λ1 = S2s,Λ∗ = S2(ν−m+k+s). Let u1, u2, . . . , us, v1, v2, . . . , vs, us+1, . . . ,
um−k−s,w1, . . . , wk and vs+1, . . . , vm−k−s, um−k−s+1, . . . , uν, vm−k−s+1, . . . , vν, wk+1, . . . , wl be row
vectors of U and Z, respectively,

W = 〈vν−m+k+s+1, . . . , vν−s, uν−s+1, . . . , uν, vν−s+1, . . . , vν,w1, . . . , wk〉, (4.13)

thenW ∈ M(m, 2s, s, φ, k; 2ν + l).
Fromm−k ≤ 2ν−2, we know s < ν. Ifm−k = 2s, thenm−k−s = s < ν, so uν, vν /∈ U. If

m−k > 2s, then s < ν−1, so vν−1, vν /∈ U. In a word, dim〈U,W〉 ≥ m+2,dim(U∩W) ≤ m−2.
That is, U ∧ W = F

(2ν+l)
q , r ′(U ∧ W) = 0, r ′(U ∨ W) ≥ m + 1 − (m − 2) = 3, r ′(U) = r ′(W) =

m + 1 −m = 1. Consequently, r ′(U ∧W) + r ′(U ∨W) > r ′(U) + r ′(W).
(b) If γ = 1, then Λ1 = S2s+1,Γ,Λ∗ = S2(ν−m+k+s)+1,−Γ, and Γ = (1) or (z). Let u1, u2, . . . ,

us, v1, v2, . . . , vs, ω, us+1, . . . , um−k−s−1, w1, . . . , wk and vs+1, . . . , vm−k−s−1, um−k−s, . . . , uν−1,
vm−k−s, . . . , vν−1, ω∗, wk+1, . . . , wl be row vectors ofU and Z, respectively

W =
〈
vν−m+k+s+1, . . . , vν−s−1, uν−s, . . . , uν−2, vν−s, . . . , vν−2, ω,ω∗,

(
1
2

)
Γuν−1 + vν−1, w1, . . . , wk

〉
,

(4.14)

because ((1/2)Γuν−1 + vν−1)S2ν((1/2)Γuν−1 + vν−1)
t = Γ, and

⎛

⎝

(
1
2

)
Γ
(
−1
2

)
Γ

1 1

⎞

⎠
(
ω
ω∗

)
S2ν

(
ω
ω∗

)t
⎛

⎝

(
1
2

)
Γ
(
−1
2

)
Γ

1 1

⎞

⎠

t

= S 2·1, (4.15)

then W ∈ M(m, 2s + 1, s,Γ, k; 2ν + l). From the conditions 2s + 1 ≤ m − k ≤ 2ν − 2 and
m − k ≤ ν + s, we can obtain m − k − s − 1 ≤ ν − 1 and s ≤ ν − 1, hence (1/2)Γuν−1 + vν−1 /∈ U.
Obviously, ω∗ /∈ U. Similar to the proof of the case (a), r ′(U∧W)+ r ′(U∨W) > r ′(U)+ r ′(W).

(c) If γ = 2, then Λ1 = S2s+2,Γ,Λ∗ = S2(ν−m+k+s)+2,Γ, and Γ = [1,−z]. Let u1, u2,
. . . , us, v1, v2, . . . , vs, ω1, ω2, us+1, . . . , um−k−s−2, w1, . . . , wk and vs+1, . . . , vm−k−s−2, um−k−s−1, . . . ,
uν−2, vm−k−s−1, . . . , vν−2, ω∗

1, ω
∗
2, wk+1, . . . , wl be row vectors of U and Z, respectively,

W =
〈
vν−m+k+s+1, . . . , vν−s−2, uν−s−1, . . . , uν−2, vν−s−1, . . . , vν−2, ω∗

1, ω
∗
2, w1, . . . , wk

〉
, (4.16)

then W ∈ M(m, 2s + 2, s,Γ, k; 2ν + l). Obviously, ω∗
1, ω

∗
2 /∈ U. Similar to the proof of the case

(a), r ′(U ∧W) + r ′(U ∨W) > r ′(U) + r ′(W).
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From the discussion above, we know that when 2 ≤ m − k ≤ 2ν − 2, LR(m, 2s +
γ, s,Γ, k; 2ν + l) is a finite atomic lattice, but not a geometric lattice.
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