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Taking white noise into account, a stochastic nonautonomous logistic model is proposed and
investigated. Sufficient conditions for extinction, nonpersistence in the mean, weak persistence,
stochastic permanence, and global asymptotic stability are established. Moreover, the threshold
between weak persistence and extinction is obtained. Finally, we introduce some numerical
simulink graphics to illustrate our main results.

1. Introduction

The classical nonautonomous logistic equation can be expressed as follows:

dx(t)
dt

= x(t)[a(t) − b(t)x(t)]. (1.1)

for t ≥ 0 with initial value x(0) = x0 > 0, x(t) is the population size at time t, a(t) denotes the
rate of growth, and a(t)/b(t) stands for the carrying capacity at time t. We refer the reader
to May [1] for a detailed model construction. Obviously, system (1.1) has an equilibrium
x∗ = a(t)/b(t), see the following (A1). Then, system (1.1) becomes the following equation:

dx(t)
dt

= a(t)x(t)
[
1 − x(t)

x∗

]
. (1.2)

Owing to its theoretical and practical significance, the deterministic system (1.1)
and its generalization form have been extensively studied and many important results on
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the global dynamics of solutions have been founded, for example, Freedman and Wu [2],
Golpalsamy [3], Kuang [4], Lisena [5], and the references therein. In particular, the books by
Golpalsamy [3] and Kuang [4] are good references in this area.

In the real world, population dynamics is inevitably affected by environmental noise
which is an important component in an ecosystem (see e.g., [6–9]). The deterministic models
assume that parameters in the systems are all deterministic irrespective environmental
fluctuations. Hence, they have some limitations in mathematical modeling of ecological
systems, besides they are quite difficult to fitting data perfectly and to predict the
future dynamics of the system accurately [8]. May [10] pointed out the fact that due to
environmental noise, the birth rate, carrying capacity, competition coefficient, and other
parameters involved in the system exhibit random fluctuation to a greater or lesser extent.

Recall that the parameters a(t) represent the intrinsic growth rate. In practice, we
usually estimate it by an average value plus an error term. In general, by the well-
known central limit theorem, the error term follows a normal distribution and is sometimes
dependent on how much the the current population sizes differ from the equilibrium state
(see, e.g., [11–13]). In other words, we can replace the rate a(t) by an average value plus a
random fluctuation term:

a(t) −→ a(t) + α(t)(x(t) − x∗)Ḃ(t), (1.3)

where α(t) are continuous positive bounded function onR+, and α2(t) represents the intensity
of the white noise at time t; Ḃ(t) are the white noise, namely, B(t) is a Brownian motion
defined on a complete probability space (Ω,F,P) with a filtration {Ft}t∈R+

satisfying the
usual conditions (i.e., it is right continuous and increasing while F0 contains all P-null sets).
Then, by model (1.2), we obtain an Itŏ stochastic differential equation:

dx(t) = a(t)x(t)
[
1 − x(t)

x∗

]
dt + α(t)x(t)(x(t) − x∗)dB(t). (1.4)

Owing to the model (1.4) describes a population dynamics, it is necessary to investigate
the survival of the logistic population which involves extinction, persistence, and global
asymptotical stability (see, e.g., [14–16]). As far as we know, there are few results of this
aspect for model (1.4). Furthermore, up to the authors’ knowledge, all the publications have
not obtained the persistence-extinction threshold for model (1.4). The aims of this work are to
deal with the above problems one by one, which generalize the work of Wang and Liu (see,
e.g., [17, 18]) where they mainly investigated survival analysis of population model with
parameters perturbation.

Throughout the paper, we always have some assumption and notations.

(A1) It holds that a(t) and b(t) are continuous bounded function on R with b(t) > 0.
Moreover, a(t)/b(t) is a constant.
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(A2) It holds that

fu = sup
t∈R

f(t), f l = inf
t∈R

f(t), 〈x(t)〉 =
1
t

∫ t

0
x(s)ds,

f∗ = lim inf
t→+∞

f(t), f∗ = lim sup
t→+∞

f(t), R+ = (0,+∞),

R+ = [0,+∞), a = lim sup
t→+∞

1
t

∫ t

0
a(s)ds.

(1.5)

The following definitions are commonly used and we list them here.

Definition 1.1. (1) The population x(t) is said to be extinctive if limt→+∞x(t) = 0 a.s.
(2) The population x(t) is said to be nonpersistent in the mean (see e.g., Huaping and

Zhien [14]) if lim supt→+∞〈x(t)〉 = 0 a.s.
(3) The population x(t) is said to be weakly persistent (see e.g., Hallam and Ma [15])

if lim supt→+∞ x(t) > 0 a.s.
(4) The population x(t) is said to be permanence (see e.g., Jiang et al. [19]) if for

arbitrary ε > 0, there are constants β > 0,M > 0 such that lim inft→+∞ P{x(t) ≥ β} ≥ 1 − ε and
lim inft→+∞ P{x(t) ≤ M} ≥ 1 − ε.

It follows from the above definitions that stochastic permanence implies stochastic
weak persistence, extinction means stochastic nonpersistence in the mean. But generally, the
reverses are not true.

The rest of the paper is arranged as follows. In Section 2, sufficient criteria for
extinction, nonpersistence in the mean, weak persistence, and stochastic permanence of the
population are established. In Section 3, we study global asymptotic stability of positive
equilibrium. In Section 4, we work out some figures to illustrate the various theorems
obtained in Section 3 and Section 4. The last section gives the conclusions and future
directions of the research.

2. Persistence and Extinction

As x(t) in system (1.2) denotes the population size, it should be nonnegative. So, for further
study, we must firstly give some conditions under which system (1.2) has a global positive
solution. Similar to Mao et al. [20], we have the following Lemma.

Lemma 2.1. For model (1.4), with any given initial value x(0) = x0 > 0, there is a unique solution
x(t) on t ≥ 0 and the solution will remain in R+ with probability 1.

Proof. Since the coefficients of (1.4) are locally Lipschitz continuous, for any given initial value
x0 ∈ R+, there is a unique maximal local solution x(t) on t ∈ [−τM, τe), where τe is the
explosion time (cf. Mao [21, page 95]). To show this solution is global, we need to show that
τe = +∞ a.s. Let k0 > 0 be sufficiently large for

1
k0

< x0 < k0. (2.1)
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For each time integer k ≥ k0, define the stopping time:

τk = inf
{
t ∈ [0, τe) : x(t) ≤ 1

k
or x(t) ≥ k

}
, (2.2)

where throughout this paper we set inf ∅ = +∞ (as usual ∅ denotes the empty set). Clearly,
τk is increasing as k → +∞. Set τ+∞ = limk→+∞τk, whence τ+∞ ≤ τe a.s. for all t ≥ 0. In
other words, to complete the proof, all we need to show is that τ+∞ = +∞ a.s. To show this
statement, let us define a C2 function V : R+ → R+ by

V (x) =
[√

x − 1 − 0.5 ln x
]
. (2.3)

The nonnegativity of this function can be seen from

√
u − 1 − 0.5 ln u ≥ 0 on u > 0. (2.4)

Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T , we can apply the Itô formula to V (x(t))
to obtain that

dV (t) = 0.5
[
x−0.5(t) − x−1(t)

]
x(t)

[(
a(t) − a(t)

x∗ x(t)
)
dt + α(t)(x(t) − x∗)dB(t)

]

+ 0.5
[
−0.25x−1.5(t) + 0.5x−2(t)

]
α2(t)x2(t)(x(t) − x∗)2dt

=
[
−0.125α2(t)x2.5(t) + 0.25α2(t)x2(t) +

(
0.25α2(t)x∗ − 0.5a(t)

x∗

)
x1.5(t)

−
(
0.125α2(t)x∗ − 0.5a(t)

)
x0.5(t) +

(
0.5a(t)
x∗ − 0.5α2x∗

)
x(t)

+ 0.25α2(t)(x∗)2 − 0.5a(t)
]
dt + 0.5α(t)

[
x0.5(t) − 1

]
(x(t) − x∗)dB(t)

= F(x(t))dt + 0.5α(t)
[
x0.5(t) − 1

]
(x(t) − x∗)dB(t),

(2.5)

where

F(x(t)) = − 0.125α2(t)x2.5(t) + 0.25α2(t)x2(t) +
(
0.25α2(t)x∗ − 0.5a(t)

x∗

)
x1.5(t)

+
(
0.5a(t)
x∗ − 0.5α2x∗

)
x(t) −

(
0.125α2(t)x∗ − 0.5a(t)

)
x0.5(t)

+ 0.25α2(t)(x∗)2 − 0.5a(t).

(2.6)

It is easy to see that F(x(t)) is bounded, say by K, in R+. We, therefore, obtain that

dVx(t) ≤ Kdt + 0.5α(t)
[
x0.5(t) − 1

]
(x(t) − x∗)dB(t). (2.7)
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Integrating both sides from 0 to τk ∧ T , and then taking expectations, yields

EV (x(τk ∧ T)) ≤ V (x(0)) +KT. (2.8)

Note that, for every ω ∈ {τk ≤ T}, x(τk, ω) equals either k or 1/k, and hence V (x(τk, ω)) is
no less than either

√
k − 1 − 0.5 log(k), (2.9)

or

√
1
k
− 1 − 0.5 log

(
1
k

)
=

√
1
k
− 1 + 0.5 log(k). (2.10)

Consequently,

V (x(τk, ω)) ≥
[√

k − 1 − 0.5 log(k)
]
∧
⎡
⎣
√

1
k
− 1 + 0.5 log(k)

⎤
⎦. (2.11)

It then follows from (2.15) that

V (x(0)) +KT ≥ E
[
1{τk≤T}V (x(τk, ω))

]

≥ P{τk ≤ T}
⎛
⎝[√

k − 1 − 0.5 log(k)
]
∧
⎡
⎣
√

1
k
− 1 + 0.5 log(k)

⎤
⎦
⎞
⎠,

(2.12)

where 1{τk≤T} is the indicator function of {τk}. Letting k → +∞ gives

P{τ+∞ ≤ T} = 0. (2.13)

Since T > 0 is arbitrary, we must have

P{τ+∞ < +∞} = 0, (2.14)

so P{τ+∞ = +∞} = 1 as required.

From Lemma 2.1, we know that solutions of system (1.4) will remain in the positive
cone R+. This nice positive property provides us with a great opportunity to construct
different types of Lyapunov functions to discuss how the solutions vary in R+ in more details.
Now we will study the persistence and extinction of system (1.4).

Theorem 2.2. If a < 0, then the population x(t) by (1.4) goes to extinction.
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Proof. Applying Itŏ’s formula to (1.4) leads to

d lnx(t) =

[
a(t) − a(t)

x∗ x(t) − α2(t)(x(t) − x∗)2

2

]
dt + α(t)(x(t) − x∗)dB(t)· (2.15)

Integrating both sides of (2.15) from 0 to t, we have

lnx(t) − lnx0 =
∫ t

0

[
a(s) − b(s)x(s) − α2(s)(x(s) − x∗)2

2

]
ds +M(t), (2.16)

where M(t) =
∫ t
0 α(s)(x(s) − x∗)dB(s). The quadratic variation of M(s) is 〈M(t),M(t)〉 =∫ t

0 α
2(s)(x(s) − x∗)2ds. By virtue of the exponential martingale inequality (see, e.g., [22] on

page 36), for any positive constants T0, α, and β, we have

P

{
sup
0≤t≤T0

[
M(t) − α

2
〈M(t),M(t)〉

]
> β

}
≤ e−αβ. (2.17)

Choose T0 = k, α = 1, β = 2 ln k, then it follows that

P

{
sup
0≤t≤k

[
M(t) − 1

2
〈M(t),M(t)〉

]
> 2 ln k

}
≤ 1

k2
. (2.18)

Making use of Borel-Cantelli lemma (see, e.g., [22] on page 10) yields that for almost all
ω ∈ Ω, there is a random integer k0 = k0(ω) such that for k ≥ k0,

sup
0≤t≤k

[
M(t) − 1

2
〈M(t),M(t)〉

]
≤ 2 ln k. (2.19)

This is to say

M(t) ≤ 2 ln k +
1
2
〈M(t),M(t)〉 = 2 ln k +

1
2

∫ t

0
α(s)(x(s) − x∗)2ds, (2.20)

for all 0 ≤ t ≤ k, k ≥ k0 a.s. Substituting this inequality into (2.16), we can obtain that

lnx(t) − lnx0 ≤
∫ t

0

[
a(s) − a(s)

x∗ x(s)
]
ds + 2 ln k, (2.21)

for all 0 ≤ t ≤ k, k ≥ k0 a.s. In other words, we have shown that, for 0 < k − 1 ≤ t ≤ k, k ≥ k0,

t−1{lnx(t) − lnx0} ≤ t−1
∫ t

0

[
a(s) − a(s)

x∗ x(s)
]
ds + 2t−1 ln k. (2.22)
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Taking superior limit on both sides yields lim supt→+∞x(t) ≤ a. That is to say, if a < 0, one
can see that limt→+∞x(t) = 0.

Theorem 2.3. If a = 0, then the population x(t) by (1.4) is nonpersistent in the mean.

Proof. For all ε > 0, ∃T1 such that t−1
∫ t
0 a(s)ds ≤ a + ε/2 = ε/2 for t > T1, substituting this

inequality into (2.22) gives

t−1{lnx(t) − lnx0} ≤ t−1
∫ t

0

[
a(s) − a(s)x(s)

x∗

]
ds + 2t−1 ln k

≤ ε

2
− t−1

∫ t

0

a(s)x(s)
x∗ ds + 2t−1 ln k,

(2.23)

for all T1 < t ≤ k, k ≥ k0 a.s. Note that for sufficiently large t satisfying T1 < T < k − 1 ≤ t ≤ k
and k ≥ k0, we have ln k/t ≤ ε/4. In other words, we have already shown that

lnx(t) − lnx0 < εt −
∫ t

0

a(s)x(s)
x∗ ds; t > T. (2.24)

Define h(t) =
∫ t
0 x(s)ds andN = infs∈R{a(s)/x∗}, then we have

ln
(
dh

dt

)
< εt −Nh(t) + ln x0; t > T. (2.25)

Consequently,

eN
(
dh

dt

)
< x0e

εt; t > T. (2.26)

Integrating this inequality from T to t results in

N−1
[
eNh(t) − eNh(T)

]
< x0ε

−1
[
eεt − eεT

]
. (2.27)

Rewriting this inequality, one then obtains

eNh(t) < eNh(T) + x0Nε−1eεt − x0Nε−1eεT . (2.28)

Taking the logarithm of both sides leads to

h(t) < N−1 ln
{
x0Nε−1eεt + eNh(T) − x0Nε−1eεT

}
. (2.29)
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In other words, we have shown that

{
t−1

∫ t

0
x(s)ds

}
≤
{
t−1N−1 ln

{
x0Nε−1eεt + eNh(T) − x0Nε−1eεT

}}∗
. (2.30)

An application of the L’Hospital’s rule, one can derive

〈x〉∗ ≤ N−1
{
t−1 ln

[
x0Nε−1eεt

]}∗
=

ε

N
. (2.31)

Since ε is arbitrary, we have 〈x〉∗ ≤ 0, which is the required assertion.

Theorem 2.4. If a − lim inft→+∞〈(x∗α(t))2/2〉 > 0, then the population x(t) by (1.4) is weakly
persistent.

Proof. To begin with, let us show that

lim sup
t→+∞

[
t−1 lnx(t)

]
≤ 0 a.s. (2.32)

Applying Itŏ’s formula to (1.2) results in

det lnx(t) = et lnx(t)dt + etd lnx(t)

= et
[
lnx(t) + a(t) − a(t)

x∗ x(t) − α2(t)(x(t) − x∗)2

2

]
dt + etα(t)(x(t) − x∗)dB(t).

(2.33)

Thus, we have shown that

et ln x(t) − ln x0 =
∫ t

0
es
[
ln x(s) + a(s) − a(s)

x∗ x(s) − α2(s)(x(s) − x∗)2

2

]
ds +N(t), (2.34)

where

N(t) =
∫ t

0
esα(s)(x(t) − x∗)dB(s). (2.35)

Note that N(t) is a local martingale with the quadratic form:

〈N(t),N(t)〉 =
∫ t

0
e2sα2(s)(x(t) − x∗)2ds. (2.36)
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It then follows from the exponential martingale inequality (2.17) by choosing T0 = μk, α =
e−μk, β = ρeμk ln k that

P

[
sup
0≤t≤μk

[
N(t) − 0.5e−μk〈N(t),N(t)〉

]
> ρeμk ln k

]
≤ k−ρ, (2.37)

where ρ > 1 and μ > 1. In view of Borel-Cantelli lemma, for almost all ω ∈ Ω, there exists a
k0(ω) such that, for every k ≥ k0(ω),

N(t) ≤ 0.5e−μk〈N(t),N(t)〉 + ρeμk ln k, 0 ≤ t ≤ μk. (2.38)

Substituting the above inequalities into (2.34) yields

et lnx(t) − ln x0

≤
∫ t

0
es
[
lnx(s) + a(s) − a(s)

x∗ x(s) − α2(s)(x(s) − x∗)2

2

]
ds

+
e−μk

2

∫ t

0
e2sα2(s)(x(s) − x∗)2ds + ρeμk ln k

=
∫ t

0
es
[
ln x(s) + a(s) − a(s)

x∗ x(s) − α2(s)(x(s) − x∗)2
(
1 − es−μk

)
2

]
ds + ρeμk ln k.

(2.39)

It is easy to see that there exists a constant C independent of k such that

ln x(s) + a(s) − a(s)
x∗ x(s) − α2(s)(x(s) − x∗)2

(
1 − es−μk

)
2

≤ C (2.40)

for any 0 ≤ s ≤ μk and x > 0. In other words, we have

et lnx(t) − lnx0 ≤ C
(
et − 1

)
+ ρeμk ln k (2.41)

for any 0 ≤ t ≤ μk.
This is to say

lnx(t) ≤ e−t ln x0 + C
(
1 − e−t

)
+ ρe−t+μk ln k. (2.42)

Consequently, if μ(k − 1) < t ≤ μk and k ≥ k0(ω), one can observe that

t−1 lnx(t) ≤ t−1e−t ln x0 + t−1C
(
1 − e−t

)
+ t−1ρe−μ(k−1)+μk ln k, (2.43)

which becomes the desired assertion (2.32) by letting k → +∞.
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Now suppose that a > 0, we will prove lim supt→+∞ x(t) > 0 a.s. If this assertion is not
true, let F = {lim supt→+∞x(t) = 0} and suppose P(F) > 0. In view of (2.16),

lnx(t)
t

=
(lnx0)

t
+ t−1

∫ t

0

[
a(s) − a(s)

x∗ x(s) − α2(s)(x(s) − x∗)2

2

]
ds,+

M(t)
t

. (2.44)

On the other hand, for all ω ∈ F, we have limt→+∞x(t, ω) = 0. Then, the law of large
numbers for local martingales (see, e.g., [22, page 12]) indicates that limt→+∞(M(t)/t) = 0.
Substituting this equality into (2.44) results in

lim sup
t→+∞

[
t−1 ln x(t, ω)

]
= a − lim inf

t→+∞

〈
(x∗α(t))2

2

〉
> 0. (2.45)

Then, P(lim supt→+∞[t
−1 lnx(t)] > 0) > 0, which contradicts (2.32).

Remark 2.5. Theorems 2.2–2.4 have an obvious and interesting biological interpretation. It is
easy to see that the extinction and persistence of population x(t) modeled by (1.4) depend
on a and a − lim inft→+∞〈(x∗α(t))2/2〉. If a − lim inft→+∞〈(x∗α(t))2/2〉 > 0, the population
x(t) will be weakly persistent; If a < 0, the population x(t) will go to extinction. That is to
say, if lim inft→+∞〈(x∗α(t))2/2〉 = 0, then a is the threshold between weak persistence and
extinction for the population x(t).

Remark 2.6. From the condition a − lim inft→+∞〈(x∗α(t))2/2〉 > 0 in Theorems 2.4, we know
that the white noise α(t) is of disadvantage to the survival of the population.

On the other hand, it is well known that in the study of population systems, stochastic
permanence, which means that the population will survive forever, is one of the most
important and interesting topic owing to its theoretical and practical significance. So now
let us show that population x(t)modeled by (1.4) is stochastically permanent in some cases.

Theorem 2.7. If lim inft→+∞{a(t) − (αu)2(x∗)2/2} > 0, then the population x(t) by (1.4) will be
stochastic permanent.

Proof. First, we prove that for arbitrary ε > 0, there is a constant M > 0 such that
lim inft→+∞ P{x(t) ≤ M} ≥ 1 − ε. Define V (x) = xp for x ∈ R+, where 0 < p < 1. Then, it
follows from Itô formula that

dV (x) = pxp−1dx +
p
(
p − 1

)
2

xp−2(dx)2

= pxp−1
[
a(t)x

(
1 − x

x∗
)
dt + α(t)x(x − x∗)dB(t)

]

+
p
(
p − 1

)
2

xp−2α2(t)x2(x − x∗)2

= pxp−1
[
a(t)x

(
1 − x

x∗
)
dt +

p
(
p − 1

)
2

α2(t)x(x − x∗)2
]

+ α(t)xp(t)(x − x∗)dB(t).

(2.46)
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Figure 1: Stochastic extinction. The horizontal axis and the vertical axis in this and following figures
represent the time t and the populations size x(t), step size Δt = 0.001 and x(0) = 0.8.
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Figure 2: Stochastically nonpersistent in the mean, step size Δt = 0.001 and x(0) = 1.6.
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Let k0 > 0 be so large that x0 lying within the interval [1/k0, k0]. For each integer k ≥ k0,
define the stopping time τk = inf{t ≥ 0 : x(t) /∈ (1/k, k)}. Clearly, τk → +∞ almost surely as
k → +∞. Applying Itô formula again to etV (x) gives

d
(
etV (x)

)
= etV (x)dt + etdV (x)

= etxp

[
1 + p(a(t) − b(t)x) − p

(
1 − p

)
α2(t)

2
(x − x∗)2

]
dt

+ etα(t)xp(t)(x − x∗)dB(t)

= etxp

[
1 + pa(t) − p(1 − p)α2(t)

2
(x∗)2 − pb(t)x + p

(
1 − p

)
α2(t)xx∗

−p
(
1 − p

)
α2(t)

2
x2

]
dt + etα(t)xp(t)(x − x∗)dB(t)

≤ etK1dt + etα(t)xp(t)(x − x∗)dB(t),

(2.47)

where K1 is a positive constant. Integrating this inequality and then taking expectations on
both sides, one can see that

E
[
et∧τkxp(t ∧ τk)

] − x
p

0 ≤
∫ t∧τk

0
esK1ds ≤ K1

(
et − 1

)
. (2.48)

Letting k → +∞ yields

E[xp(t)] ≤ K1 + e−txp

0 . (2.49)

In other words, we have already shown that

lim sup
t→+∞

Exp ≤ K1. (2.50)

Thus, for any given ε > 0, let M = K
1/p
1 /ε1/p, by virtue of Chebyshevs inequality, we can

derive that

P{x(t) > M} = P{xp(t) > Mp} ≤ E[xp(t)]
Mp

. (2.51)

That is to say P ∗{x(t) > M} ≤ ε. Consequently, P∗{x(t) ≤ M} ≥ 1 − ε.
Next, we claim that, for arbitrary ε > 0, there is constant β > 0 such that

lim inft→+∞ P{x(t) ≥ β} ≥ 1 − ε.
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Define V1(x) = 1/x2 for x ∈ R+. Applying Itô formula to (1.2), we can obtain that

dV1(x(t)) = − 2x−3dx + 3x−4(dx)2

= 2V1(x)
[
1.5α2(t)(x − x∗)2 +

a(t)
x∗ x − a(t)

]
dt − 2α(t)(x − x∗)

x2
dB(t).

(2.52)

Since lim inft→+∞{a(t)−(αu)2(x∗)2/2} > 0, we can choose a sufficient small constant 0 < θ < 1
and ε > 0 such that a∗ − (αu)2(x∗)2/2 − θ(αu)2(x∗)2 − ε > 0.

Define

V2(x) = (1 + V1(x))θ. (2.53)

Making use of Itŏ’s formula again leads to

dV2 = θ(1 + V1(x))θ−1dV1 + 0.5θ(θ − 1)(1 + V1(x))θ−2(dV1)
2

= θ(1 + V1(x))θ−2
{
(1 + V1(x))2V1(x)

[
1.5α2(t)(x − x∗)2 +

a(t)
x∗ x − a(t)

]

+2α2(t)(θ − 1)
(x − x∗)2

x4

}
dt − θ(1 + V1(x))θ−1

2α(t)(x − x∗)
x2

dB(t)

= θ(1 + V1(x))θ−2
{
(1 + V1(x))2V1(x)

[
1.5α2(t)

(
x2 − 2xx∗ + (x∗)2

)
+
a(t)
x∗ x − a(t)

]

+ 2α2(t)(θ − 1)
(
x−2 − 2x−3x∗ + x−4(x∗)2

)}
dt

− θ(1 + V1(x))θ−1
2α(t)(x − x∗)

x2
dB(t)

= θ(1 + V1(x))θ−2
{
− 2

(
a(t) − (θ + 0.5)α2(t)(x∗)2

)
V 2
1 (x)

+
(
2a(t)
x∗ − 2α2(t)x∗ − 4θα2(t)x∗

)
V 1.5
1 (x)

+
(
−2a(t) + 3α2(t)(x∗)2 + 2α2(t)(θ + 0.5)

)
V1(x)

+
(
2a(t)
x∗ − 6α2(t)(x∗)2

)
V 0.5
1 (x) + 3α2(t)

}
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− θ(1 + V1(x))θ−1
2α(t)(x − x∗)

x2
dB(t)

≤ θ(1 + V1(x))θ−2
{
−2

(
a∗ − (αu)2(x∗)2

2
− θ(αu)2(x∗)2 − ε

)
V 2
1 (x)

+
(
2a(t)
x∗ − 2α2(t)x∗ − 4θα2(t)x∗

)
V 1.5
1 (x)

+
(
−2a(t) + 3α2(t)(x∗)2 + 2α2(t)(θ + 0.5)

)
V1(x)

+
(
2a(t)
x∗ − 6α2(t)(x∗)2

)
V 0.5
1 (x) + 3α2(t)

}

− θ(1 + V1(x))θ−1
2α(t)(x − x∗)

x2
dB(t)

(2.54)

for sufficiently large t ≥ T . Now, let η > 0 be sufficiently small satisfying

0 <
η

2θ
< a∗ − (αu)2(x∗)2

2
− θ(αu)2(x∗)2 − ε. (2.55)

Define V3(x) = eηtV2(x). By virtue of Itŏ’s formula,

dV3(x(t)) = ηeηtV2(x) + eηtdV2(x)

≤ θeηt(1 + V1(x))θ−2
{
η
(1 + V1(x))2

θ
− 2

(
a∗ − (αu)2(x∗)2

2
− θ(αu)2(x∗)2 − ε

)
V 2
1 (x)

+
(
2b(t) − 2α2(t)x∗ − 4θα2(t)x∗

)
V 1.5
1 (x)

+
(
−2a(t) + 3α2(t)(x∗)2 + 2α2(t)(θ + 0.5)

)
V1(x)

+
(
2b(t) − 6α2(t)(x∗)2

)
V 0.5
1 (x) + 3α2(t)

}
dt

− θeηt(1 + V1(x))θ−1
2α(t)(x − x∗)

x2
dB(t)
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≤ θeηt(1 + V1(x))θ−2
{
−2

(
a∗ − (αu)2(x∗)2

2
− θ(αu)2(x∗)2 − ε − η

2θ

)
V 2
1 (x)

+
(
2b(t) − 2α2(t)x∗ − 4θα2(t)x∗

)
V 1.5
1 (x)

+
(
−2a(t) + 3α2(t)(x∗)2 + 2α2(t)(θ + 0.5) +

2η
θ

)
V1(x)

+
(
2b(t) − 6α2(t)(x∗)2

)
V 0.5
1 (x) + 3α2(t) +

η

θ

}
dt

− θeηt(1 + V1(x))θ−1
2α(t)(x − x∗)

x2
dB(t)

= eηtH(x)dt − 2θeηt(1 + V1(x))θ−1
α(t)(x − x∗)

x2
dB(t)

(2.56)

for t ≥ T . Note that H(x) is upper bounded in R+, namely, H = supx∈R+
H(x) < +∞.

Consequently,

dV3(x(t)) = Heηtdt − 2θeηt(1 + V1(x))θ−1
α(t)(x − x∗)

x2
dB(t) (2.57)

for sufficiently large t. Integrating both sides of the above inequality and then taking
expectations give

E[V3(x(t))] = E
[
eηt(1 + V1(x(t)))θ

]
≤ eηT(1 + V1(x(T)))θ +

H

η

(
eηt − eηT

)
. (2.58)

That is to say

lim sup
t→+∞

E
[
V θ
1 (x(t))

]
≤ lim sup

t→+∞
E
[
(1 + V1(x(t)))θ

]
<

H

η
. (2.59)

In other words, we have already shown that

lim sup
t→+∞

E

[
1

x2θ(t)

]
≤ H

η
= M4. (2.60)

So, for any ε > 0, set β = ε1/2θ/M1/2θ
4 , by Chebyshev’s inequality, one can derive that

P
{
x(t) < β

}
= P

{
1

x2θ(t)
>

1
β2θ

}
≤ E

[
1/x2θ(t)

]
1/β2θ

, (2.61)



16 Journal of Applied Mathematics

this is to say that

lim sup
t→+∞

{
x(t) < β

} ≤ β2θM4 = ε. (2.62)

Consequently,

lim inf
t→+∞

{
x(t) ≥ β

} ≥ 1 − ε. (2.63)

This completes the whole proof.

Remark 2.8. It is easy to see that, if x∗ = 0, our Theorems 2.2–2.7 will become Theorem 2–5 in
[18], respectively. At the same time, Theorem 2.7 improves and generalizes the work of Liu
and Wang [17] and Jiang et al. [19] in some cases.

Remark 2.9. Generally, from the biological viewpoint, Theorem 2.2 means the population
will go to extinction which is the worst case. Theorem 2.3 indicates the population is rare.
Theorem 2.4 means the species will be survival, but it admits the case that lim inft→+∞ x(t) =
0, which implies that the population size is closed to zero even if the time is sufficiently
large. That is to say the survival of species could be dangerous in reality. Theorem 2.7 is more
desired than Theorems 2.2–2.4. Theorem 2.7 means that the population size will be neither
too small nor too large with large probability if the time is sufficiently large. That is to say,
with large probability, the populationwill stably exist, which is themost desired case. In other
words, that is the reasons why lim inft→+∞{a(t) − α2(t)(x∗)2/2} > 0 is used by Theorem 2.7
whereas a − lim inft→+∞〈(x∗(αu)2/2〉 > 0 and a are used in Theorem 2.2–2.3, respectively.

3. Global Stability

In this section, we suppose that the equilibrium x∗ = a(t)/b(t) is a positive constant. When
studying biologic dynamical system, one important topic is when the population will survive
forever. Since model (1.4) is the perturbation system of model (1.2) which has a positive
equilibrium x∗

2, it seems reasonable to consider that the population will have chance to
survive forever if the solution of model (1.4) is going around x∗ at the most time. We get
following results.

Theorem 3.1. If inft∈R{a(t) − α2(t)(x∗)2/2} > 0, then x∗ in (1.4) is global asymptotical stability
almost surely (a.s.), that is, limt→+∞x(t) = x∗ a.s., almost surely.

Proof. From the stability theory of stochastic functional differential equations, we only need
to find a Lyapunov function V (x, t) satisfying LV (x, t) ≤ 0, and the identity holds if and only
if z = z∗(see, e.g., [21, 23]), where z = z(t) is the solution of the one-dimensional stochastic
functional differential equation:

dz(t) = f(z(t), t)dt + g(z(t), t)dB(t), t ≥ 0. (3.1)



Journal of Applied Mathematics 17

Here, let f : R × R+ → R and g : R × R+ → R. B(t) be a one-dimensional Brownian motion
defined on the complete probability space (Ω,F,P). z∗ is the positive equilibrium position of
(3.1) and

LV (t) = Vt + Vz(z)f + 0.5 trace
[
gTVzz(z)g

]
. (3.2)

For t ∈ R+, define Lyapunov functions:

V (t) = x(t) − x∗ − x∗ ln
(
x(t)
x∗

)
. (3.3)

Applying Itŏ’s formula leads to

LV (t) = (x(t) − x∗)
[
a(t) − a(t)

x∗ x(t)
]
dt +

α2(t)x∗(x(t) − x∗)2

2

= (x(t) − x∗)
[
−a(t)

x∗ (x(t) − x∗)
]
+
α2(t)x∗(x(t) − x∗)2

2
dt

=

[
−a(t)

x∗ +
α2(t)x∗

2

]
(x(t) − x∗)2

≤ − inf
t∈R

{
a(t) − α2(t)(x∗)2

2

}
(x(t) − x∗)2

x∗ .

(3.4)

The assumption of inft∈R{a(t) − α2(t)(x∗)2/2} > 0 implies that LV (x, t) < 0 along all
trajectories in R+ except x∗. Then, the desired assertion follows immediately.

Now, let us return back to system (1.2).

Corollary 3.2. If inft∈Ra(t) > 0, then x∗ in (1.2) is global asymptotic stability.

Remark 3.3. By comparing Theorem 3.1 with Corollary 3.2, we can find that if the positive
equilibrium of the deterministic model is global asymptotic stability, then the stochastic
system will keep this nice property provided the noise is not very large.

4. Examples and Numerical Simulations

In order to conform to the results above, we numerically simulate the solution of system (1.4).
By the Milstein scheme mentioned in [24], we consider the discretized equation:

xk+1 = xk + xk[a(kΔt) − b(kΔt)xk]Δt + α(kΔt)xk

(
xk − x∗

2
)√

Δtξk

+ 0.5α2(kΔt)
(
xk − x∗

2
)k(

ξ2k − 1
)
Δt,

(4.1)

where ξk are Gaussian random variable that follows N(0, 1).
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Figure 3: Stochastically weakly persistent, step size Δt = 0.001 and x(0) = 1.1.

Let a(t) = −0.03, α(t) = 0.1 + 0.01 cos t, and x∗ = −0.04. Then, the conditions of
Theorem 2.2 are satisfied, which means that the population x(t) by (1.4) will be extinction
(see Figure 1).

Let a(t) = 0, α(t) = 0.4 + 0.2 cos t, and x∗ = 0. Then, the conditions of Theorem 2.3
hold, which implies that the population x(t) by (1.4) will be nonpersistent in the mean (see
Figure 2).

Let a(t) = 0.15, α(t) = 0.03+0.01 sin t, and x∗ = 0.2. Then, the conditions of Theorem 2.4
are satisfied. One can see that x(t) by (1.4)will be weakly persistent (see Figure 3).

Let a(t) = 0.96, α(t) = 0.05+0.01 cos t, and x∗ = 1.3. Then, the conditions of Theorem 2.7
are satisfied. That is to say, the population x(t) by (1.4) will be stochastic permanent (see
Figure 4).

Let a(t) = 1.2 and x∗ = 1. In Figure 5, we consider α(t) = 0.2. Then the corresponding
conditions of Theorem 3.1 are satisfied, which means that the positive equilibrium x∗ = 1
in (1.4) is global asymptotic stability almost surely. In Figure 6, the parameters are same as
in Figure 5 except α(t) = 0. Then the conditions of Corollary 3.2 hold, which shows that the
positive equilibrium x∗ = 1 of (1.2) is global asymptotic stability. By comparing Figure 5
with Figure 6, one can see that if the positive equilibrium of the deterministic model is
asymptotically stable, then the stochastic system will keep this nice property provided the
noise is sufficiently small.

5. Conclusions and Future Directions

In the real world, the natural growth of population is inevitably affected by random
disturbances. In this paper, we are concerned with the effects of white noise on the survival
analysis of logistic model. Firstly, we show that the system has a unique positive global
solution. Afterward, sufficient criteria for extinction, nonpersistence in the mean, weak
persistence, stochastic permanence, and global asymptotic stability of a positive equilibrium
are established. Further, the threshold between weak persistence and extinction is obtained.
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Figure 4: Seen from the two-dimensional spaces, the population x(t) will be stochastic permanent, step
size Δt = 0.001 and x(0) = 1.3.
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Figure 5: Global asymptotical stability of model (1.2), step size Δt = 0.001 and x(0) = 1.5.

Some interesting topics deserve further investigation. One may propose some realistic
but complex models. An example is to incorporate the colored noise, such as continuous-
time Markov chain, into the system. The motivation is that the population may suffer sudden
environmental changes, for example, rain falls and changes in nutrition or food resources,
and so forth. Frequently, the switching among different environments is memoryless and the
waiting time for the next switch is exponentially distributed, then the sudden environmental
changes can be modeled by a continuous-time Markov chain (see, e.g., [25–27]), and these
investigations are in progress.
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Figure 6: Global asymptotical stability of model (1.1), step size Δt = 0.001 and x(0) = 1.5.
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