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An existing model is extended to assess the impact of some antimalaria control measures, by re-
formulating the model as an optimal control problem. This paper investigates the fundamental
role of three type of controls, personal protection, treatment, and mosquito reduction strategies
in controlling the malaria. We work in the nonlinear optimal control framework. The existence
and the uniqueness results of the solution are discussed. A characterization of the optimal control
via adjoint variables is established. The optimality system is solved numerically by a competitive
Gauss-Seidel-like implicit difference method. Finally, numerical simulations of the optimal control
problem, using a set of reasonable parameter values, are carried out to investigate the effectiveness
of the proposed control measures.

1. Introduction

Malaria is a tropical infectious disease, transmitted from infected person to susceptible one
through Anopheles female mosquito each time the infected mosquito takes a blood meal, and
it is prevalent mainly in Africa and some parts of Asia [1]. Clinical symptoms such as fever,
pain, chills, and sweats may develop a few days after an infected mosquito bite. Malaria is
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the cause of the death of over 1 million people each year and many more are infected with
the disease. Scientists of several countries are trying to create an effective vaccine to prevent
malaria, but it has been difficult. Yet it still poses a major problem throughout much of the
world. One of the most important public health programs in many countries is the program
to control or to eliminate malaria. This is because malaria is regarded as a very dangerous
disease that may lead to death [2].

In the absence of an effective vaccine [3], current control programs for malaria have
focused on personal protection and mosquito reduction strategies (such as larviciding, adul-
ticiding and elimination of mosquito breeding sites). A way to prevent the malaria epidemic
is to control the growth of mosquito population. Intensive use of insecticides has been one
of the major efforts in many years. Most of the mosquitoes use favorable climatic conditions
to flourish [4]. Thus, combating efforts of malaria are more effective and economical if it
is in phase with climatic changes. Consequently, we consider an optimal control model
with three time-dependent controls, prevention u1, treatment u2 and mosquito reduction u3,
respectively.

The use of mathematical modeling is increasing influence the theory and practice of
disease transmission and control. The mathematical modeling can help in figuring out deci-
sions that are of significant importance on the outcomes and provide complete examinations
that enter into decisions in a way that human reasoning and debate cannot. Several health
reports and studies in the literature address that malaria is increasing in severity, causing
significant public health and socioeconomic burden [5, 6]. Malaria remains the world’s most
prevalent vector-borne disease. Despite decades of global eradication and control efforts, the
disease is reemerging in areas where control efforts were once effective and emerging in areas
thought free of the disease. The global spread necessitates a concerted global effort to combat
the spread of malaria. The present study illustrates the use of mathematical modeling and
analysis to gain insight into the transmission dynamics of malaria in a population, with main
objective on determining optimal control measures. In order tomanage the disease, one needs
to understand the dynamics of the spread of the disease. Some health scientists have tried
to obtain some insight in the transmission and elimination of malaria using mathematical
modeling [7].

Recently, some theoretical studies and mathematical models have used control theory
[8]. The optimal control efforts are carried out to limit the spread of the disease, and in
some cases, to prevent the emergence of drug resistance. The authors in [9] studied a
model to assess the impact of some anti-WNV control measures, by reformulating the model
as an optimal control problem with density-dependent demographic parameters. They
have used two control functions, one for mosquito-reduction strategies and the other for
personal (human) protection. In [10], time-dependent prevention and treatment efforts
are investigated, where optimal control theory is applied. Using analytical and numerical
techniques, they have shown that there are cost-effective control efforts for treatment of
hosts and prevention of host-vector contacts. Three types of control functions, one for vector-
reduction strategies and the other two for personal (human) protection and blood screening,
respectively, are considered in [11]. They have investigated that there are cost-effective
control efforts for prevention of direct and indirect transmission of vector-borne disease. In
this paper, we use three control functions one for mosquito-reduction strategies and other
two for prevention and treatment efforts, respectively. The goal of this paper is to use optimal
control theory to evaluate the effectiveness of the control functions. We want to minimize
the exposed, infected human and susceptible, exposed, infected mosquito populations with
minimum implementation cost.
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The paper is organized as follows. Section 2 describes amathematical model of malaria
with three control terms. The analysis of optimization problem is presented in Section 3. The
numerical implementation and the strategy used to solve the problem is given in Section 4.
Finally, the conclusions are summarized in Section 5.

2. Malaria Model with Controls
The model presented in this section will be a continuation of ideas from recent vector-host
models [9–11]. We will begin with the presentation of the optimal control problem for the
transmission dynamics of malaria in order to derive optimal prevention, treatment and
mosquito reduction strategies with minimal implementation cost. Our aim is to show that
it is possible to implement time-dependent anti-malaria control techniques while minimizing
the cost of implementation of such measures. In this paper, we introduce three control
functions, u1, u2 and u3. The control functions u1, u2 represent time-dependent successful
efforts of prevention and treatment, respectively. The well-known practices of prevention
efforts include, surveillance, use of mosquito nets, treating mosquito-breading ground and
reducing contacts between human and mosquitoes. On the other hand, treatment efforts
are carried out by screening patients, administering drug intake. The control function u3(t)
represents the level of larvacide and adulticide used for mosquito control administered at
mosquito breeding sites.

We consider a compartmental model that divide the human andmosquito populations
into different classes. For humans, the four compartments represent the total population of
humans at a given time t. Let Sh denotes the number of members of a population susceptible
to the disease, Ih is the number of infective members of a population, Eh is the number
of exposed members of a population and Rh is the number of members who have been
removed from the possibility of infection. For mosquitoes the three compartments represent
susceptible mosquitoes Sv, exposed mosquitoes Ev and infectious mosquitoes Iv populations
at a given time t. The immune class in the mosquito population does not exist, since the
mosquito once infected never recover.

For the human population: Λh is the human input rate of new individuals entering the
population (assumed susceptible). μh and δh are the natural and disease induced death rates
respectively. αh is the progression rate of the exposed class to infectious class. r is treatment
rate, r0 and c0 are rate constants. bβh is the inoculation rate, where βh is the probability that a
bite by an infectious mosquito results in transmission of the disease to the susceptible human
and b is the contact rate between the two. In the model, the term bβhShIv denotes the rate at
which the human hosts Sh get infected by infected mosquitoes Iv.

For the mosquito population: Λv represent the per capita birth rate of mosquito and
μv is the natural death rate in mosquito and αv is the progression rate of the exposed class in
mosquito to infectious class. bβv is the rate of transmission where βv is the probability that a
bite results in transmission of the parasite to a susceptible mosquito. The term bβvSvIh refers
to the rate at which the susceptible mosquito Sv are infected by the infected human hosts Ih.
Parameter definitions and assumptions lead to the following model which involves a system
of coupled nonlinear differential equations and three controls.

dSh

dt
= Λh − bβhSh(t)Iv(t)(1 − u1(t)) − μhSh(t),

dEh

dt
= bβhSh(t)Iv(t)(1 − u1(t)) − αhEh − μhEh,
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dIh
dt

= αhEh − (r + r0u2)Ih(t) −
(
δh + μh

)
Ih(t),

dRh

dt
= (r + r0u2)Ih(t) − μhRh(t),

dSv

dt
= ΛvNv(1 − u1) − bβvSv(t)Ih(t)(1 − u1(t)) − μvSv(t) − c0u3(t)Sv(t),

dEv

dt
= bβvSv(t)Ih(1 − u1(t)) − αvEv(t) − μvEv(t) − c0u3(t)Ev(t),

dIv
dt

= αvEv(t) − μvIv(t) − c0u3(t)Iv(t),

(2.1)

with initial conditions given at t = 0. The associated force of infections is reduced by factor
of (1 − u1(t)), where u1(t) measures the level of successful prevention (personal protection)
efforts. The control variable u1(t) represents the use of drugs or vaccine which are alternative
preventive measures to minimize or eliminate mosquito human contacts (such as the use
of insect repellents). The per capita recovery rate is proportional to u2(t), where r0 > 0
is a rate constant. Finally, we describe the role of the third control variable u3(t). Most of
the mosquito use favorable climatic conditions to flourish, particularly during hot and wet
seasons. These problems are less pressing during cold seasons. Therefore, we can use a time-
dependent mosquito control, preferably applied in seasons favorable for mosquito outbreak.
The control variable u3(t) represents the level of larvicide and adulticide used for mosquito
control administered atmosquito breeding sites to eliminate specific breeding areas. It follows
that the reproduction rate of the mosquito population is reduced by a factor of (1−u3(t)). It is
assumed that under the successful control efforts the mortality rate of mosquito population
increases at a rate proportional to u3(t), where c0 > 0 is a rate constant. The impact of the
controls is explored via simulations.

3. Mathematical Analysis of the Model

3.1. Positivity and Boundedness of Solutions

Since the model (2.1) represent human and vector population, it is important to prove that
all solutions with nonnegative initial data will remain nonnegative for all time.

Theorem 3.1. If Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0) are nonnegative, then Sh(t), Eh(t),
Ih(t), Rh(t), Sv(t), Ev(t), Iv(t) remain nonnegative for all t > 0.

Proof. To see this, let

t∗ = sup{t > 0 : Sh > 0, Eh ≥ 0, Ih > 0, Rh ≥ 0, Sv > 0, Ev ≥ 0, Iv ≥ 0}. (3.1)
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Figure 1: The plot represents population of susceptible, exposed, infected and recovered human both with
control and without control.

Thus, t∗ > 0. Then, from the first equation of the system (2.1) we have

dSh

dt
= Λh − βhShIv(1 − u1) − μhSh,

= Λh −
(
βhIv(1 − u1) + μh

)
Sh.

(3.2)

Letting f(t) = βhShIv(1 − u1), the above equation can be written as

d

dt

(

Sh exp

{∫ t

0
f(u)du + μht

})

= Λh exp

{∫ t

0
f(u)du + μht

}

, (3.3)
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Figure 2: The plot represents population of susceptible, exposed, infected and the total number ofmosquito
population both with control and without control.

integrating both sides from t = 0 to t = t∗,

Sh(t∗) exp

{∫ t∗

0
f(u)du + μht

∗
}

− Sh(0) =
∫ t∗

0
Λh exp

{∫x

0
f(x)dx + μhy

}
dy, (3.4)

multiplying both sides by exp{− ∫ t∗
0 f(u)du − μht

∗},

Sh(t∗) = Sh(0) exp

{

−
∫ t∗

0
f(u)du − μht

∗
}

+ exp

{

−
∫ t∗

0
f(u)du − μht

∗
}

×
∫ t∗

0
Λh exp

{∫x

0
f(x)dx + μhy

}
dy > 0.

(3.5)
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Figure 3: The plot represents the three controls (3.14) when A1 = 1, A2 = 1, A3 = 1, B1 = 200, B2 = 50,
B3 = 250.

Thus, Sh(t∗) being the sum of positive terms is positive. By the same argument, it can
be proved that the quantities Eh, Ih, Rh, Sv, Ev, and Iv are positive for all times t > 0. This
completes the proof.

The objective functional F formulates the optimization problem of interest, namely,
that of identifying the most effective strategies. The overall preselected objective involves
the minimization of the number of exposed, infected human and minimizing the susceptible,
exposed and infective mosquitoes at a minimal cost over a finite time interval [0, T].

Define the objective functional F,

F(u1, u2, u3) =
∫T

0

(
A1Eh +A2Ih +A3Nv +

1
2

(
B1u

2
1 + B2u

2
2 + B3u

2
3

))
dt. (3.6)

The goal is to minimize the cost functional (3.6). This functional includes the number of
exposed, infectious and the total number of mosquito population, respectively, as well as
the social costs related to the resources needed for, personal protection B1u

2
1, treatment B2u

2
2,

and spraying of insecticides operations, B3u
2
3. In words, we are minimizing the number of
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Figure 4: The plot represents the three controls (3.14)whenA1 = 1,A2 = 1,A3 = 0.00001, B1 = 200, B2 = 50,
B3 = 250.

exposed, infectious human and susceptible, exposed and infectious mosquito populations
as well as the cost based on the implementation of the control functions. We choose to
model the control efforts via a linear combination of quadratic terms, u2

i (t) (i = 1, 2, 3).
The constants Ai and Bi (i = 1, 2, 3) represent a measure of the relative cost of the
interventions over [0, T]. The objective of the optimal control problem is to seek optimal
control functions (u∗

1(t), u
∗
2(t), u

∗
3(t)) such that

F(u∗
1, u

∗
2, u

∗
3
)
= min{F(u1, u2, u3), (u1, u2, u3) ∈ U}, (3.7)

where the control set is defined as

U =
{
u = (u1, u2, u3) | ui(t) is Lebesgue measurable, 0 ≤ ui(t) ≤ 1, t ∈ [0, T] for i = 1, 2, 3

}

(3.8)

subject to the system (2.1) and appropriate initial conditions. Pontryagin’s Maximum
Principle is used to solve this optimal control problem and the derivation of the necessary
conditions. First we prove the existence of an optimal control for system (2.1) and then derive
the optimality system.
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Figure 5: The plot represents the three controls (3.14)whenA1 = 1,A2 = 1,A3 = 0.00001, B1 = 200, B2 = 50,
B3 = 50.

3.2. Existence of an Optimal Control

Theorem 3.2. Given the objective functional F(u1, u2, u3) =
∫T
0 (A1Eh +A2Ih+A3Nv + 1/2(B1u

2
1 +

B2u
2
2 + B3u

2
3))dt, where the control set U given by (3.8) is measurable subject to system (2.1) with

initial conditions given at t = 0, then there exists an optimal control u∗ = (u∗
1(t), u

∗
2(t), u

∗
3(t)) such

that F(u∗
1, u

∗
2, u

∗
3) = min{F(u1, u2, u3), (u1, u2, u3) ∈ U}.

Proof. The integrand of the objective functional F given by (3.6) is a convex function of
(u1, u2, u3) and the state system satisfies the Lipschitz property with respect to the state
variables since state solutions are bounded. The existence of an optimal control follows [12].

In order to find an optimal solution, first we should find the Lagrangian and
Hamiltonian for the optimal control problem (2.1)–(3.6). The Lagrangian of the control
problem is given by

L = A1Eh +A2Ih +A3(Sv + Ev + Iv) +
1
2

(
B1u

2
1 + B2u

2
2 + B2u

2
3

)
. (3.9)
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Figure 6: The plot represents the three controls (3.14) when A1 = 10, A2 = 1, A3 = 0.00001, B1 = 200,
B2 = 50, B3 = 50.

We seek for the minimal value of the Lagrangian. To do this, we define the Hamiltonian
function H for the system, where λi, i = 1, . . . , 7 are the adjoint variables:

H = A1Eh +A2Ih +A3Nv +
1
2

(
B1u

2
1 + B2u

2
2 + B2u

2
3

)

+ λ1
[
Λh−bβhSh(t)Iv(t)(1−u1(t))−μhSh(t)

]
+λ2

[
bβhSh(t)Iv(t)(1 − u1(t))−αhEh−μhEh

]

+ λ3
[
αhEh − (r + r0u2)Ih(t) −

(
δh + μh

)
Ih(t)

]
+ λ4

[
(r + r0u2)Ih(t) − μhRh(t)

]

+ λ5
[
ΛvNv(1 − u3(t)) − bβvSv(t)Ih(t)(1 − u1(t)) − μvSv(t) − c0u3(t)Sv(t)

]

+ λ6
[
bβvSv(t)Ih(1 − u1(t)) − αvEv(t) − μvEv(t) − c0u3(t)Ev(t)

]

+ λ7
[
αvEv(t) − μvIv(t) − c0u3(t)Iv(t)

]
.

(3.10)

In order to derive the necessary conditions, we use Pontryagin’s maximum principle
[13] as follows.
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If (x, u) is an optimal solution of an optimal control problem, then there exists a non
trivial vector function λ = (λ1, λ2, . . . , λn) satisfying the following conditions.

dx

dt
=

∂H(t, x, u, λ)
∂λ

,

0 =
∂H(t, x, u, λ)

∂u
,

dλ

dt
=

∂H(t, x, u, λ)
∂x

.

(3.11)

We now derive the necessary conditions that optimal control functions and corresponding
states must satisfy. In the following theorem, we present the adjoint system and control
characterization.

Theorem 3.3. Given an optimal control u∗ = (u∗
1, u

∗
2, u3∗) and a solution y∗ = (S∗

h
, E∗

h
, I∗

h
, R∗

h
, S∗

v,
E∗
v, I

∗
v) of the corresponding state system (2.1), there exists adjoint variables λi, i = 1, . . . , 7 satisfying

dλ1(t)
dt

= bβh(λ1 − λ2)(1 − u1)Iv + μhλ1,

dλ2(t)
dt

= αh(λ2 − λ3) + μhλ2 −A1,

dλ3(t)
dt

= (r + r0u2)(λ3 − λ4) +
(
δh + μh

)
λ3 + bβv(λ5 − λ6)(1 − u1)Sv −A2,

dλ4(t)
dt

= μhλ4,

dλ5(t)
dt

= −Λvλ5(1 − u3) + bβv(λ5 − λ6)(1 − u1)Ih + μvλ5 + c0λ5u3 −A3,

dλ6(t)
dt

= −Λvλ5(1 − u3) + αv(λ6 − λ7) + μvλ6 + c0λ6u3 −A3,

dλ7(t)
dt

= −Λvλ5(1 − u3) + bβh(λ1 − λ2)(1 − u1)Sh + μvλ7 + c0λ7u3 −A3,

(3.12)

with transversality conditions

λi(tend) = 0, , i = 1, 2, . . . , 7. (3.13)
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Furthermore, the control functions u∗
1, u

∗
2, and u∗

3 are given by

u∗
1 = max{min{R1, 1}, 0},

u∗
2 = max{min{R2, 1}, 0},

u∗
3 = max{min{R3, 1}, 0},

(3.14)

where

R1 =
bβh(λ2 − λ1)S∗

h
I∗v + bβv(λ6 − λ5)S∗

vI
∗
h

B1
,

R2 =
(λ3 − λ4)r0I∗h

B2
,

R3 =
Λvλ5N

∗
v + c0(λ5S∗

v + λ6E
∗
v + λ7I

∗
v)

B3
.

(3.15)

Proof. To determine the adjoint equations and the transversality conditions we use the
Hamiltonian (3.10). The adjoint system results from Pontryagin’s Maximum Principle [13].

dλ1(t)
dt

= − ∂H

∂Sh
,

dλ2(t)
dt

= − ∂H

∂Eh
, . . . ,

dλ7(t)
dt

= −∂H
∂Iv

, (3.16)

with λi(T) = 0.
To get the characterization of the optimal control given by (3.14), solving the equations,

∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0, (3.17)

on the interior of the control set and using the property of the control spaceU, we can derive
the desired characterization (3.14).

4. Numerical Results and Discussion

The numerical algorithm presented below is a semi-implicit finite difference method.
We discretize the interval [t0, tf] at the points ti = t0 + il (i = 0, 1, . . . , n), where l is the

time step such that tn = tf . Next, we define the state and adjoint variables Sh(t), Eh(t), Ih(t),
Rh(t), Sv(t), Ev(t), Iv(t), λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ7(t) and the controls u1(t), u2(t),
u3(t) in terms of nodal points Si

h, E
i
h, I

i
h, R

i
h, S

i
v, E

i
v, I

i
v, λ

i
1, λ

i
2, λ

i
3, λ

i
4, λ

i
5, λ

i
6, λ

i
7, u

i
1, u

i
2 and ui

3.
Now a combination of forward and backward difference approximation is used as follows.
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Table 1: Parameters, their symbols and values used in simulation.

Parameters Descriptions Values

Λh Recruitment rate of humans 10

αh Transfer rate from Eh to Ih class 1/17

αv Transfer rate from Ev to Iv class 1/18

ΛvNv Recruitment rate of mosquitoes 50

μh Death rate for humans 1/60 × 365

μv Death rate for mosquitoes 1/15

δh
Disease-induced death rate for
humans 0.01

b
Biting rate of infectious
mosquitoes 3

βh
Transmission probability from
mosquitoes to humans 0.001

βv
Transmission probability from
humans to mosquitoes 0.0001

r Recovery rate for humans 0.07

r0 Rate constant 0.04

The Method, developed by [14] and presented in [15, 16], to adapt it to our case as
following:
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(4.1)
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By using a similar technique, we approximate the time derivative of the adjoint variables by
their first-order backward-difference and we use the appropriated scheme as follows
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(4.2)

The algorithm describing the approximation method for obtaining the optimal control is the

following.

Algorithm 4.1.

Step 1. Consider Sh(0) = Sh0, Eh(0) = Eh0, Ih(0) = Ih0, Rh(0) = Rh0, Sv(0) = Sv0, Ev(0) = Ev0,
Iv(0) = Iv0 , λi(tf) = 0 (i = 1,. . ., 5), and u1(0) = u2(0) = u3(0) = 0.

Step 2. For i = 1, . . . , n − 1, do
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end for.

Step 3. For i = 1,. . ., n − 1, write S∗
h(ti) = Si

h, E
∗
h(ti) = Ei

h, I
∗
h(ti) = Iih, R

∗
h(ti) = Ri

h, S
∗
v(ti) = Si

v,
E∗
v(ti) = Ei

v, I
∗
v(ti) = Ii

h
, u∗

1(ti) = ui
1, u

∗
2(ti) = ui

2, u
∗
3(ti) = ui

3.
end for.

We have plotted susceptible, infected, exposed and recovered human population with
and without control by considering parameter values as given in Table 1, with initialization
Sh(0) = 100, Eh(0) = 20, Ih(0) = 20, Rh(0) = 10. The control individuals are marked by solid
blue line while the individual without control are marked by black line. Similarly, we have
plotted susceptible, infected, exposed and total number of mosquito population with and
without control by considering parameter values as given in Table 1, with initial conditions
Sv(0) = 1000, Ev(0) = 20, Iv(0) = 30. The control individuals are marked by solid blue line
while the individual without control are marked by black line. The weight constant values in
the objective functional are A1 = 1, A2 = 1, A3 = 1, B1 = 150, B2 = 50 and B3 = 300. Figure 1,
represents the population of susceptible, exposed, infected and recovered humans with
and without control. The solid black line denotes the population of individuals in system
(2.1) without control while the blue line denotes the population of exposed individuals in
system (2.1) with control. We see that the population of the exposed, infected human with
control is more sharply decreased after 12 or 13 days than the individuals without control.
Figure 2 represents the population of susceptible, exposed, infected and the total number
of mosquito population in the system (2.1) with and without control. The population of
susceptible, exposed and infected mosquito with control is more sharply decreased than
without control and becomes very small. In Figure 2, we see that if there are no control
susceptible, exposed and infected mosquito without control constantly increases, but if there
is control the population of susceptible, exposed and infected mosquito begins to decrease
from the very beginning day of the control measure. Figures 3,4,5,6 represents the optimal
controls u1, u2 and u3, the balancing constants A1, A2, A3, B1, B2 and B3 are given in each
of the figure captions and parameters are given in Table 1. Parameter values used in the
numerical simulations are estimated based on malaria disease as given in Table 1 and are
taken from [10]. The constant c0 is arbitrarily chosen with c0 = 0.06. For illustration purposes,
we consider the parameter values in Table 1 for numerical simulation.

5. Conclusion

A comprehensive, continuous model for the transmission dynamics of malaria has been
presented. We sought to determine optimal control strategies that would minimize not only
the exposed, infected human, and susceptible, exposed, infected mosquito but also the cost
of implementation of the control as well. Our model incorporates three control measures. We
analyzed the optimal control using the functional F in terms of quadratic forms. Minimizing
the cost we obtained the optimal controls u1, u2 and u3 where F was minimized. The model
is analyzed for the existence of control. The proposed optimal control shows the result of
optimally controlling the disease using three controls, personal protection, treatment and
mosquito reduction strategies, respectively. We have developed the necessary conditions for
the optimal control using the Pontryagin’s Maximum Principle. Using the state and adjoint
system together with the characterization of the optimal control, we solved the problem
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numerically via an efficient numerical method based on optimal control with parameter
values estimated based on malaria. A comparison between optimal control and without
control dynamics is presented. It is easy to see that the optimal control has a very desirable
effect upon the population for reducing the number of infected individuals. In order to
illustrate the overall picture of the disease, the numbers of susceptible, exposed, infected,
recovered human population and susceptible, exposed, infected mosquito population under
the optimal control and without control are shown in figures.
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