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A theorem on asymptotic stability is obtained for a differential equation with an infinite delay in a
function space which is suitable for the numerical computation of the solution to the infinite delay
equation.

1. Introduction and Preliminaries

In this paper, we study the asymptotic stability of the solutions to the infinite delay dif-
ferential equation given below:

x′(t) = ax(t) +
∞∑

i=1

bix(t − τi), t ≥ 0,

x(θ) = φ(θ), θ ∈ (−∞, 0],

(1.1)

under the following assumptions.

(i) There exists p > 0 with |bi| ≤ pγ−i for all i ∈ N.

(ii) τi ≤ iτ1 for all i ∈ N.
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The asymptotic stability of a linear infinite delay equation is studied in [1–5] in the
context of abstract phase spaces which includes the space:

{
φ ∈ C(−∞, 0] : sup

θ∈(−∞,0]
eγθ

∣∣φ(θ)
∣∣ <∞, lim

θ→∞
eγθφ(θ) exists

}
. (1.2)

The asymptotic constancy neutral equations are studied in [6]. Linear time-invariant systems
with constant point delays are studied in [7] and in [8]; a Razumikhin approach is used to
study exponential stability of delay equations. Asymptotic stability and stabilization of linear
delay-differential equations are studied in [9].

In this paper, the phase space Cσ(−∞, 0] for the initial function is chosen as follows.
Letmi = iτ1 > 0 and βi = pγ−i. The space Cσ(−∞, 0] is defined as

{
φ ∈ C(−∞, 0] :

∞∑

i=1

βi sup
θ∈[−mi,0]

∣∣φ(θ)
∣∣ <∞

}
. (1.3)

Here C(−∞, 0] is the set of continuous complex valued functions defined on (−∞, 0].
The motivation to consider the above type of phase space is that for numerical

computation of solutions it is enough to know the values of the initial data over a finite
domain at every stage of computation. See [10, 11].

The following definitions and results are well known, see for example [5] or [12].

Definition 1.1. The Kuratowski measure of noncompactness α(V ) of the subset V of a Banach
space X is defined by

α(V ) = inf
{
d > 0 : there exists a finite number of sets V1, V2, . . . , Vn,

with diam Vj ≤ d such that V = ∪nj=1Vj
}
.

(1.4)

For a bounded linear operator L : X → Y , |L|α is defined as

|L|α = inf{k > 0 : α(L(V )) ≤ kα(V ) for all bounded sets V }. (1.5)

Proposition 1.2. Let X,Y,Z be Banach spaces and M : X → Y , L : Y → Z be bounded linear
operators. Then, |M ◦ L|α ≤ |M|α|L|α. Further, ifM : X → Y is compact, then |M|α = 0.

Theorem 1.3. Let X be a Banach space and let A : D(A) → X be the infinitesimal generator of a
semigroup of operators St : X → X. Then, the growth bound of the semigroup ω0 defined as

ω0 = lim
t→∞

1
t
ln(‖St‖) = inf

{
ω : ∃M ≥ 1 such that ‖St‖ ≤Meωt

}
, (1.6)

is given by

ω0 = max{s(A), ωess}, (1.7)
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where s(A) = sup{�(λ) : λ ∈ spec (A)} and

ωess = lim
t→∞

1
t
ln(|St|α). (1.8)

In Theorem 1.3, spec(A) is the compliment of the resolvent set ρ(A)which is the set of
all λ ∈ C such that the operator λI −A is one-one and onto and (λI −A)−1 is a bounded linear
map.

For a real number r, r� = max{n ∈ Z : n ≤ r} and �r� = min{n ∈ Z : n ≥ r}. We will
make use of the observation �r� ≤ r� ≤ r + 1 for r ∈ R.

2. Asymptotic Stability of a PDE

Consider the following simple initial boundary value problem for a PDE:

∂u

∂t
=
∂u

∂θ
, t ≥ 0, θ ≤ 0,

u(t, 0) = 0, t ≥ 0,

u(0, θ) = u0(θ), θ ≤ 0,

(2.1)

where u0 ∈ Cσ,0(−∞, 0] = {u ∈ Cσ(−∞, 0] : u(0) = 0}.
Its mild solution is given by the semigroup Tt : Cσ,0(−∞, 0] → Cσ,0(−∞, 0] defined as

Ttu0(θ) = u0(t + θ), t + θ < 0

= 0, t + θ ≥ 0.
(2.2)

Proposition 2.1. Letmi = iτ1 and βi = pγ−i. The infinitesimal generator of the semigroup defined by
(2.2) is given by B : D(B) → Cσ,0(−∞, 0], Bφ = φ′, where

D(B) =
{
φ ∈ Cσ,0(−∞, 0] : φ′ ∈ Cσ,0(−∞, 0]

}
. (2.3)

Further, ρ(B) = {λ : �(λ) > − ln γ/τ1}.

Besides, if �(λ) > − ln γ/τ1, then eλ ∈ Cσ(−∞, 0] and for every f ∈ Cσ(−∞, 0], h
defined as h(θ) =

∫θ
0 e

λ(θ−ξ)f(ξ)dξ and eλ defined as eλ(θ) = eλθ are elements of Cσ(−∞, 0].
Finally, for the semigroup Tt defined in (2.2), ω0 = − ln γ/τ1.

Proof. Since θ ∈ [−iτ1, 0] ⇒ t + θ ∈ [−iτ1, t],

sup
θ∈[−iτ1,0]

∣∣Ttφ(θ)
∣∣ ≤ sup

θ∈[−iτ1,0]

∣∣φ(θ)
∣∣, (2.4)

and hence ‖Tt‖σ ≤ 1, Tt+s = TtTs is obvious, then

lim
t→ 0

∥∥Ttφ − φ∥∥σ = 0 (2.5)



4 Journal of Applied Mathematics

can be proved using Proposition 1.9 of [10]. The proof that B is the infinitesimal generator of
Tt is also easy.

Note that λ = 0 trivially satisfies �(λ) > − ln γ/τ1. Let 0/=λ ∈ ρ(B). Define φ, as φ(θ) =
θ. Since

∑∞
i=1 pγ

−i < ∞, φ ∈ Cσ,0(−∞, 0] and hence there is a unique ψ ∈ D(B), such that
λψ − ψ ′ = φ. Indeed, ψ = (λI0 − B)−1φ. Here, I0 is the identity on Cσ,0(−∞, 0]. Let us note
that ψ(0) = 0. Now, we find that ψ1, defined as ψ1(θ) = θ/λ + (1/λ2)(1 − eλθ) is the unique
continuously differentiable function such that λψ1 − ψ ′

1 = φ and ψ1(0) = 0. From this we
infer that ψ1 = (λI0 − B)−1φ and hence ψ1 ∈ Cσ,0(−∞, 0]. Now, since φ ∈ Cσ,0(−∞, 0], we
obtain (1 − eλ) ∈ Cσ,0(−∞, 0] ⊆ Cσ(−∞, 0]. Since the constant function 1 is an element of
Cσ(−∞, 0], eλ ∈ Cσ(−∞, 0]. Noting that − ln γ/τ1 = inf{�(λ) : eλ ∈ Cσ(−∞, 0]}, we obtain
�(λ) > − ln γ/τ1.

Let t ≥ τ1. It is clear that for all i ≤ t/τ1�, and θ ∈ [−iτ1, 0], Ttφ(θ) = 0. For i > t/τ1�,
and θ ∈ [−iτ1, 0], we have t + θ ≥ t − iτ1 ≥ −(i − t/τ1�)τ1. Thus,

sup
θ∈[−iτ1,0]

∣∣Ttφ(θ)
∣∣ ≤ sup

θ∈[−iτ1,0]

∣∣φ(t + θ)
∣∣

≤ sup
θ∈[−i−t/τ1�τ1,0]

∣∣φ(θ)
∣∣.

(2.6)

Hence

∥∥Ttφ
∥∥
σ ≤

∞∑

i=1

∣∣βi
∣∣ sup
θ∈[−iτ1,0]

∣∣Ttφ(θ)
∣∣

≤
∞∑

i=t/τ1�+1

∣∣βi
∣∣ sup
θ∈[−i−t/τ1�τ1,0]

∣∣φ(θ)
∣∣

≤
∞∑

i=t/τ1�+1

∣∣βi−t/τ1�
∣∣

∣∣βi
∣∣

∣∣βi−t/τ1�
∣∣ sup
θ∈[−i−t/τ1�τ1,0]

∣∣φ(θ)
∣∣

≤ sup
i>t/τ1�

∣∣βi
∣∣

∣∣βi−t/τ1�
∣∣

∞∑

i=t/τ1�+1
sup

θ∈[−i−t/τ1�τ1,0]

∣∣βi−t/τ1�
∣∣∣∣φ(θ)

∣∣

≤ sup
i>t/τ1�

∣∣βi
∣∣

∣∣βi−t/τ1�
∣∣
∥∥φ

∥∥
σ

≤ sup
i>t/τ1�

γ−i

γ−i+t/τ1�
∥∥φ

∥∥
σ

≤ γ−t/τ1�∥∥φ∥∥σ.

(2.7)

Hence, the operator norm ‖Tt‖σ ≤ γ−t/τ1�.
To prove the equality, we construct a function η ∈ Cσ,0(−∞, 0] such that ‖Ttη‖σ =

γ−t/τ1 �‖η‖σ and the result follows.
Let δ = (t/τ1 � + 1)τ1 − t = τ1(t/τ1 � + 1 − t/τ1). We have, δ < τ1. Define,

η(θ) =
−θ
δ
, −δ ≤ θ ≤ 0

= 1, θ < −δ.
(2.8)
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It is clear that ‖η‖σ =
∑∞

i=1 pγ
−i, Now,

Ttη(θ) = −
(
θ + t
δ

)
, (−δ − t) ≤ θ ≤ −t

= 1, θ < −δ − t.
(2.9)

Thus ‖Ttη‖σ = p
∑∞

i=t/τ1�+1 γ
−i.

Hence, ‖Ttη‖σ = γ−t/τ1�‖η‖σ .
Now, ω0 = limt→∞(1/t) ln(‖Tt‖σ) = − ln(γ)/τ1.
Let �(λ) > − ln γ/τ1. Since

∥∥∥(λI0 − B)−1g
∥∥∥
σ
=
∥∥∥∥

∫∞

0
e−λtTtgdt

∥∥∥∥
σ

≤
∫∞

0
e−�(λ)t∥∥Ttg

∥∥
σdt

≤
∫∞

0
e−�(λ)teω0t

∥∥g
∥∥
σdt =

∫∞

0
e(ω0−�(λ))t∥∥g

∥∥
σdt

≤
∫∞

0
e(− ln(γ)/τ1−�(λ))t∥∥g

∥∥
σdt,

(2.10)

we have λ ∈ ρ(B).
Let f ∈ Cσ(−∞, 0]. Define g(θ) = f(θ) − f(0). Then g ∈ Cσ,0(−∞, 0].
Let ψ = (λI0 − B)−1g. We have, ψ(0) = 0.
Define ψ1(θ) = − ∫θ

0 e
λ(θ−ξ) g(ξ)dξ. Now ψ1(0) = 0 and ψ ′

1(0) = 0.
By the uniqueness of the solution to the initial value problem of the ODE:

λψ − ψ ′ = g,

ψ(0) = 0,
(2.11)

it is now obvious that ψ1 = ψ and hence ψ1 ∈ Cσ,0(−∞, 0].
Now,

∫θ

0
eλ(θ−ξ)g(ξ)dξ =

∫θ

0
eλ(θ−ξ)

[
f(ξ) − f(0)]dξ =

∫θ

0
eλ(θ−ξ)f(ξ)dξ +

1
λ

(
1 − eλθ

)
f(0). (2.12)

Since 1 − eλ ∈ Cσ,0(−∞, 0], h ∈ Cσ,0(−∞, 0] ⊂ Cσ(−∞, 0], where h is defined as h(θ) =∫θ
0 e

λ(θ−ξ)f(ξ)dξ.

3. Stability of the Infinite Delay Equation

The proof of the next theorem assuring the existence of a unique solution to (1.1) is similar to
the proof of Theorem 2.2 of [10].
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Theorem 3.1. Let a ∈ R and the sequences bi and βi be as in Section 1. Assume that τi ≤ iτ1. Then
there exists a unique solution x : R → R to (1.1) such that its restriction to [0,∞), denoted by y, is
in C1[0,∞). Further, for any t ∈ [0,∞), there is a constant c(t) > 0 such that

sup
s∈[0,t]

∣∣y(s)
∣∣ ≤ c(t)∥∥φ∥∥σ. (3.1)

In addition, the family of operators {St : t ≥ 0} defined as

Stφ(θ) = x(t + θ), t + θ ≥ 0

= φ(t + θ), t + θ < 0
(3.2)

forms a semigroup. Also, the infinitesimal generator of St is given byA : D(A) → Cσ(−∞, 0],
where

D(A) =

{
φ ∈ Cσ(−∞, 0] : φ′ ∈ Cσ(−∞, 0], φ′(0) = aφ(0) +

∞∑

i=1

biφ(−τi)
}

Aφ = φ′.

(3.3)

Further, D(A) is dense and A is a closed operator.

Theorem 3.2. For the semigroup St defined by (3.2)

|St|α ≤ γ−t/τ1�. (3.4)

Further, assume that a+
∑∞

i=1 bi /= 0. Then for the generator of the semigroup St defined
by (3.3) and

spec (A) =

{
λ : �(λ) ≤ − ln

(
γ
)

τ1

}
∪
{
λ : �(λ) > − ln

(
γ
)

τ1
: λ = a +

∞∑

i=1

bie
−λτi

}
. (3.5)

Besides, suppose that for any λ ∈ C with λ = a +
∑∞

i=1 bie
−λτi , we have �(λ) < −μ1 for

some μ1 > 0. Then, the semigroup St is asymptotically stable.

Proof. Let Tt be as in Proposition 2.1. Fix t > 0. Define Vt : Cσ(−∞, 0] → Cσ(−∞, 0] as

Vtφ(θ) = 0, t + θ ≥ 0

= φ(t + θ) − φ(0), t + θ < 0.
(3.6)
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Define Kt : C[0, t] → Cσ(−∞, 0] as

[Ktz](θ) = z(t + θ) − z(0), t + θ ≥ 0

= 0, t + θ < 0.
(3.7)

It is easy to see that

‖Ktz‖σ ≤ 2
∞∑

i=1

∣∣βi
∣∣
(

sup
s∈[0,t]

|z(s)|
)
. (3.8)

Thus, Kt is a bounded linear map.
Define K1 : Cσ(−∞, 0] → Cσ(−∞, 0] as [K1φ](θ) = φ(0) for all θ ∈ (−∞, 0]. It is clear

that K1 is compact. Define Bt : Cσ(−∞, 0] → C[0, t] as Btφ = z, where z is the restriction of y
to [0, t]. From (3.1), Bt is a bounded linear map. Let St be as in (3.3). Then,

St = Vt +KtBt +K1. (3.9)

Now, if I is the identity on Cσ(−∞, 0] and J : Cσ,0(−∞, 0] → Cσ(−∞, 0] is the inclusion
map, then Vt = JTt(I −K1), and, finally,

St = JTt(I −K1) +KtBt +K1. (3.10)

Next, we show that Bt is, in fact, a compact map. Let x be the solution to (1.1) as in
Theorem 3.1:

z(s) = easφ(0) + eas
∫s

0
e−aη

∞∑

i=1

bix
(
η − τi

)
dη, s ∈ [0, t]. (3.11)

Thus,

z′(s) = az(s) +
∞∑

i=1

bix(s − τi). (3.12)

Consider n ∈ N such that t ∈ [nτ1, (n+1)τ1]. From (3.1) and (3.11), we obtain existence
of c1(t) ≥ 0 such that

sup
s∈[0,t]

∣∣z′(s)
∣∣ ≤ c1(t)

∥∥φ
∥∥
σ. (3.13)

Hence by Arzela-Ascoli theorem, Bt is a compact operator.
It is easy to show that |J |α ≤ ‖J‖σ = 1. By the compactness of K1 and Bt, |I −K1|α = 1

and |KtBt|α = |K1|α = 0. Thus, from the relation

St = JTt(I −K1) +KtBt +K1, (3.14)
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and Propositions 1.2 and 2.1 of this paper, we obtain

|St|α ≤ |Tt|α ≤ ‖Tt‖σ ≤ γ−t/τ1�. (3.15)

So,

ωess = lim
t→∞

1
t
ln(|St|α) ≤ − ln

γ

τ1
. (3.16)

Let 0/=λ ∈ ρ(A).
There is a unique ψ ∈ D(A) such that

λψ − ψ ′ = −1,

ψ ′(0) = aψ(0) +
∞∑

i=1

biψ(−τi).
(3.17)

It is clear that there is c ∈ C such that ψ(θ) = (c − 1/λ)eλθ − 1/λ. Now, we claim that
c /= 1/λ. If c = 1/λ, then ψ(θ) = −1/λ for all θ ∈ (−∞, 0]. Since ψ ∈ D(A), wemust have ψ ′(0) =
aψ(0)+

∑∞
i=1 biψ(−τi). But this would imply that a+

∑∞
i=1 bi = 0 which is a contradiction, to the

hypothesis that a +
∑∞

i=1 bi /= 0. Now, since c − 1/λ/= 0, it is obvious that eλ ∈ Cσ(−∞, 0]. But
this implies that �(λ) > − ln(γ)/τ1. If 0 ∈ ρ(A), the condition �(λ) > − ln(γ)/τ1 is obvious.
Thus,

ρ(A) ⊆
{
λ : �(λ) > − ln

(
γ
)

τ1

}
. (3.18)

We now infer that {λ : �(λ) ≤ − ln(γ)/τ1} ⊆ spec(A). Next, if λ = a +
∑∞

i=1 bie
−λτi ,

and �(λ) > − ln(γ)/τ1, then eλ ∈ Cσ(−∞, 0] and hence eλ ∈ D(A) with λeλ = Aeλ. Thus,
λ ∈ spec(A). So,

{
λ : �(λ) > − ln

(
γ
)

τ1
, λ = a +

∞∑

i=1

bie
−λτi

}
⊆ spec(A). (3.19)

Let us assume that �(λ) > − ln(γ)/τ1 and λ/=a +
∑∞

i=1 bie
−λτi .

Then, by Proposition 2.1, we have eλ ∈ Cσ(−∞, 0] and the function h defined as h(θ) =∫θ
0 e

λ(θ−ξ)f(ξ)dξ is in Cσ(−∞, 0].
Defining Λ : Cσ(−∞, 0] → C as Λ(φ) = aφ(0) +

∑∞
i=1 biφ(−τi) and taking c = (Λ(h) −

f(0))/(Λ(eλ) − λ), we find that φ defined as φ(θ) =
∫θ
0 e

λ(θ−ξ)f(ξ)dξ + ceλθ is (λI − A)−1(f).
Thus,

{
λ : �(λ) > − ln

(
γ
)

τ1
, λ /=a +

∞∑

i=1

bie
−λτi

}
⊆ ρ(A). (3.20)
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From (3.18), (3.19), and (3.20), we finally conclude that

spec(A) =

{
λ : �(λ) ≤ − ln

(
γ
)

τ1

}
∪
{
λ : �(λ) > − ln

(
γ
)

τ1
, λ = a +

∞∑

i=1

bie
−λτi

}
, (3.21)

or

ρ(A) =

{
λ : �(λ) > − ln

(
γ
)

τ1
, λ /=a +

∞∑

i=1

bie
−λτi

}
. (3.22)

Since ω0 = max{s(A), ωess} ≤ max{−μ1,− ln(γ)/τ1}, the result follows.

Remark 3.3. Consider the PDE:

∂u

∂t
=
∂u

∂θ
,

u(0, θ) = φ(θ).
(3.23)

Let B be as in Proposition 2.1 and A be as in Theorem 3.1. For φ ∈ D(B), u(t, θ) = Ttφ ∈
Cσ,0(−∞, 0] is the solution to the above PDE. For φ ∈ D(A), u(t, θ) = Stφ ∈ Cσ(−∞, 0] is the
solution to the above PDE. For the first solution u(t + θ) = 0, t + θ ≥ 0 and for the second
solution u(t + θ) = x(t + θ), t + θ ≥ 0. Here x is the solution to the delay equation.
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