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An explicit finite difference scheme for one-dimensional Burgers equation is derived from the
lattice Boltzmannmethod. The system of the lattice Boltzmann equations for the distribution of the
fictitious particles is rewritten as a three-level finite difference equation. The scheme is monotonic
and satisfies maximum value principle; therefore, the stability is proved. Numerical solutions have
been compared with the exact solutions reported in previous studies. The L2,L∞ and Root-Mean-
Square (RMS) errors in the solutions show that the scheme is accurate and effective.

1. Introduction

The lattice Boltzmann method (LBM) has been introduced as a new computational tool for
the study of fluid dynamics and systems governed by partial differential equations. It has
made a rapid development in theory and application over the last couple of decades since
its inception [1–4]. This method can be either regarded as an extension of the lattice gas
automaton [5] or as a special discrete form of the Boltzmann equation for kinetic theory [6].
The lattice Boltzmann models can also be used as partial differential equation (PDE) solvers.
By choosing appropriate collision operator or equilibrium distribution, the lattice Boltzmann
model is able to recover the PDE of interest. Recently, it has been developed to simulate
linear and nonlinear PDE such as Laplace equation [7], Poisson equation [8, 9], the shallow
water equation [10], Burgers equation [11], Korteweg-de Vires equation [12], Wave equation
[13, 14], reaction-diffusion equation [15, 16], and convection-diffusion equation [17, 18].

The numerical schemes based on the LBM are given as a system of two-level explicit
difference equations composed of the distribution functions of fictitious particles for each
direction in which the particles move. For one-dimensional advection-diffusion problems,
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Ancona [19] showed that the LB schemes with the velocity model D1Q2 which includes two
velocities with speed 1 in opposite directions to each other can be rewritten as the DuFort-
Frankel scheme [20] which is a second-order three-level difference scheme. This shows that
the accuracy of the LB schemes based on the model D1Q2 is identical to that of the DuFort-
Frankel scheme. Suga [21] have proposed a four-level explicit finite difference scheme for 1D
diffusion equation which is derived from the lattice Boltzmann method with rest particles.
The consistency analysis of the scheme shows that the two parameters which appear in the
scheme, the relaxation parameter and the amount of rest particles, can be determined such
that the scheme has the truncation error of fourth order. In spite of the vast and successful
applications, the numerical stability of the method has not been well understood. For certain
specific class of lattice Boltzmann methods, for example, solving for linear and nonlinear
convective-diffusive equation, there are some convergence and stability results given by Elton
et al. [22].

Many works have been developed on lattice Boltzmann method to the Burgers
equation in one or higher dimension [23–25]. In those papers, the standard lattice Boltzmann
method was used and the macroscopic quantities were computed by the distribution
function. However, those models are suffered from the stability. In this paper, we derive a
three-level difference scheme for 1D Burgers equation based on the model D1Q2 from the
LB schemes. It is generally recognized that LBM is a finite difference scheme of Boltzmann
equation that has higher-order discretization error. We develop this method with the point
of view above, but, at the same time, we also regard the LBM with BGK model as finite
difference method for macroscopic equation. We find such LB scheme is a three-level finite
difference one, which is monotonic and satisfies maximum value principle; therefore, we
complete the proof of stability.

The rest of the paper is organized as follows. Section 2 describes the LB scheme
with the velocity model D1Q2 and derives the three-level finite difference scheme which
is equivalent to the LB scheme. A stability analysis of the scheme is given in Section 3.
In Section 4, numerical solutions are compared with exact solutions reported in previous
studies. And the conclusions are given in the end.

2. The Three-Level Finite Difference Scheme for 1D Burgers Equation
Based on the LB Schemes

The one-dimensional Burgers equation take the following form:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (2.1)

with the initial condition u(x, 0) = u0(x). Here, the viscous coefficient ν = 1/Re, Re is
the Reynolds number. Historically, (2.1) was first introduced by Bateman [26] who gave its
steady solutions. It was later treated by Burgers [27] as a mathematical model for turbulence
and after whom such an equation is widely referred to as Burgers equation. For a small value
of ν, Burgers equation behaves merely as hyperbolic partial differential equation and the
problem becomes very difficult to solve as a steep shock-like wave fronts developed.
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Figure 1: D1Q2 model with two velocities in one dimension.

2.1. The Lattice Boltzmann Scheme

According to the theory of the LBM, it consists of two steps: (1) streaming, where each particle
moves to the nearest node in the direction of its velocity; (2) colliding, which occurs when
particles arriving at a node interact and possibly change their velocity directions according
to scattering rules. Fictitious particles are introduced at each of the mesh points x = jΔx(j =
. . . ,−2,−1, 0, 1, 2, . . .), and theymove with the velocity ci determined by the D1Q2model from
x to the neighboringmesh point whichwas shown in Figure 1. The lattice Boltzmann schemes
are established on grids with two directions

[c1, c−1] = [−c, c], (2.2)

where c = Δx/Δt is the speed in the system. Let fi(x, t) denote the distribution function
of the particles moving with velocity ci. So the time evolution of the distribution function
fi(x, t) is given by the following lattice Boltzmann equation (LBE) based on the Bhatnagar-
Gross-Krook (BGK)model:

fi(x + ciΔt, t + Δt) = fi(x, t) − 1
τ

(
fi(x, t) − f

eq
i (x, t)

)
, (2.3)

where f
eq
i (x, t) is the local equilibrium distribution function of particles and τ is the

dimensionless relaxation time which controls the rate of approach to equilibrium. The change
in the distribution function produced by the collision of particles is approximated by the
second term on the right-hand side of (2.3). The macroscopic velocity u(x, t) is defined in
terms of the distribution function as

u(x, t) =
∑
i

fi(x, t) =
∑
i

f
eq
i (x, t). (2.4)

In this paper, feq
i (x, t) are determined as to satisfy (2.4) and the following conditions:

∑
i

cif
eq
i (x, t) =

u2(x, t)
2

,

∑
i

cicif
eq
i (x, t) = c2u(x, t).

(2.5)

Solving these equations determines the equilibrium distribution functions

f
eq
1 (x, t) =

u(x, t)
2

+
u2(x, t)Δt

4Δx
,

f
eq
−1(x, t) =

u(x, t)
2

− u2(x, t)Δt

4Δx
.

(2.6)
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Applying the Chapman-Enskog expansion [24] yields the above Burgers equation (2.1) from
the LBE and the equilibrium distribution functions given by (2.3) and (2.6), respectively. The
viscosity ν is defined by ν = (τ − 1/2)(Δx2/Δt).

2.2. The Multilevel Finite Difference Scheme

Now, we let fn
i,j denote fi(jΔx, nΔt) and let un

j denote u(jΔx, nΔt). We note that the subscript
i, j combines information about the channel or direction of propagation (i = 1,−1) and
location (j denotes a grid node). Using the equilibrium distribution function (2.6), the lattice
Boltzmann equation (2.3) can be rewritten by classical finite different notation

fn+1
1,j+1 =

(
1 − 1

τ

)
fn
1,j +

1
2τ

un
j +

Δt

4τΔx

(
un
j

)2
, (2.7)

fn+1
−1,j−1 =

(
1 − 1

τ

)
fn
−1,j +

1
2τ

un
j −

Δt

4τΔx

(
un
j

)2
. (2.8)

According to (2.4), the macroscopic velocity can be computed by

un+1
j = fn+1

1,j + fn+1
−1,j =

(
1 − 1

τ

)(
fn
1,j−1 + fn

−1,j+1
)

+
1
2τ

(
un
j−1 + un

j+1

)
+

Δt

4τΔx

((
un
j−1
)2 −

(
un
j+1

)2)

= H
(
fn
1,j−1, f

n
−1,j+1, u

n
j−1, u

n
j+1

)
.

(2.9)

In addition,

fn
1,j−1 + fn

−1,j+1 =
(
un
j−1 − fn

−1,j−1
)
+
(
un
j+1 − fn

1,j+1

)

= un
j−1 + un

j+1 −
(
fn
1,j+1 + fn

−1,j−1
)
,

(2.10)

while

fn
1,j+1 + fn

−1,j−1 =
(
1 − 1

τ

)
fn−1
1,j +

1
2τ

un−1
j +

Δt

4τΔx

(
un−1
j

)2

+
(
1 − 1

τ

)
fn−1
−1,j +

1
2τ

un−1
j − Δt

4τΔx

(
un−1
j

)2

=
(
1 − 1

τ

)(
fn−1
1,j + fn−1

−1,j
)
+
1
τ
un−1
j

=
(
1 − 1

τ

)
un−1
j +

1
τ
un−1
j

= un−1
j .

(2.11)
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Then, (2.10) becomes

fn
1,j−1 + fn

−1,j+1 = un
j−1 + un

j+1 − un−1
j . (2.12)

Substitute (2.12) to (2.9), we finally obtain the following three-level explicit finite
difference scheme

un+1
j =

(
1 − 1

τ

)(
un
j−1 + un

j+1 − un−1
j

)
+

1
2τ

(
un
j−1 + un

j+1

)
+

Δt

4τΔx

((
un
j−1
)2 −

(
un
j+1

)2)
. (2.13)

3. Stability Analysis

In this section, assumed the initial value u0(x) is bounded and smooth enough, we will prove
the multilevel finite difference scheme is stable in L1⋂L∞ space. Suppose

u0(x) ∈ L1, |u0(x)| ≤ 1. (3.1)

It is not difficult to see that, if |un
j | ≤ 1 and

τ ≥ 1,
Δt

Δx
≤ 1, (3.2)

then the scheme (2.9) is monotonic increase. τ ≥ 1 means

νΔt

Δx2
≥ 1

2
. (3.3)

Now, we will point out that the solution of the scheme (2.13) satisfies the maximum
value principle.

Lemma 3.1 (maximum value principle). If initial value |u0(x)| ≤ 1 and the restrictions (3.2) hold,
then, for all j ∈ Z, there are

min
l

u0
l ≤ un+1

j ≤ max
l

u0
l , n ≥ 0. (3.4)
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Proof. It is known that if we take f0
1,j = u0

j /2, f
0
−1,j = u0

j /2, and un
L = maxjun

j , u
n
S = minju

n
j j ∈

Z, then, for all j, k ∈ Z,

f1
1,j + f1

−1,k = H
(
f0
1,j−1, f

0
−1,k+1, u

0
j−1, u

0
k+1

)

= H

⎛
⎝u0

j−1
2

,
u0
k+1

2
, u0

j−1, u
0
k+1

⎞
⎠

≤ H

(
u0
L

2
,
u0
L

2
, u0

L, u
0
L

)

=
(
1 − 1

τ

)(
u0
L

2
+
u0
L

2

)
+

1
2τ

(
u0
L + u0

L

)
+

Δt

4τΔx

((
u0
L

)2 −
(
u0
L

)2)

= u0
L,

(3.5)

and similarly

f1
1,j + f1

−1,k = H

⎛
⎝u0

j−1
2

,
u0
k+1

2
, u0

j−1, u
0
k+1

⎞
⎠

≥ H

(
u0
S

2
,
u0
S

2
, u0

S, u
0
S

)

= u0
S.

(3.6)

If we suppose u0
S ≤ fn

1,j +f
n
−1,k ≤ u0

L is also correct. Particularly j = k, we have u0
S ≤ un

j ≤
u0
L, then

fn+1
1,j + fn+1

−1,k = H
(
fn
1,j−1, f

n
−1,k+1, u

n
j−1, u

n
k+1

)

≤ H
(
fn
1,j−1, f

n
−1,k+1, u

0
L, u

0
L

)

=
(
1 − 1

τ

)(
fn
1,j−1 + fn

−1,k+1
)
+
1
τ
u0
L

≤ u0
L.

(3.7)

Similarly, we get

fn+1
1,j + fn+1

−1,k ≥ u0
S. (3.8)

Let j = k, we can get

min
l

u0
l ≤ un+1

j ≤ max
l

u0
l , n ≥ 0. (3.9)
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Assume that ũ(x, t) is another solution of (2.1)with subject to initial condition ũ(x, 0) =
ũ0(x), and the initial condition satisfies |ũ0(x)| ≤ 1. Using the same scheme (2.13) and same
restriction condition (3.2), we have the following.

Lemma 3.2. If the conditions of Lemma 3.1 are fulfilled, there are inequalities

∑
j

max
(
un+1
j , ũn+1

j

)
≤
∑
j

max
(
u0
j , ũ

0
j

)
,

∑
j

min
(
un+1
j , ũn+1

j

)
≥
∑
j

min
(
u0
j , ũ

0
j

)
.

(3.10)

Denote that un
Δx = {un

j , j ∈ Z} is the discrete solution of LBE (2.7)–(2.9) at time nΔt, and
‖un

Δx‖L1 =
∑

j |un
j |Δx is the L1 norm of discrete function un

Δx. Then, the solution is stable in the
meaning of L1.

Theorem 3.3. If un
Δx, ũ

n
Δx are the solutions of (2.13), u0

Δx, ũ
0
Δx ∈ L1(R2) with subject to the

corresponding initial conditions (3.1) and restrictions (3.2), then there are

∥∥un
Δx − ũn

Δx

∥∥
L1 ≤

∥∥∥u0
Δx − ũ0

Δx

∥∥∥
L1
, (3.11)

∥∥un
Δx

∥∥
L1 ≤

∥∥∥u0
Δx

∥∥∥
L1
. (3.12)

Proof. Consider

∣∣∣un+1
j − ũn+1

j

∣∣∣ = max
(
un+1
j , ũn+1

j

)
−min

(
un+1
j , ũn+1

j

)
. (3.13)

Summing the absolute value to all j, by Lemma 3.2, we have

∑
j

∣∣∣un+1
j − ũn+1

j

∣∣∣ =
∑
j

max
(
un+1
j , ũn+1

j

)
−
∑
j

min
(
un+1
j , ũn+1

j

)

≤
∑
j

max
(
u0
j , ũ

0
j

)
−
∑
j

min
(
u0
j , ũ

0
j

)
=
∑
j

∣∣∣u0
j − ũ0

j

∣∣∣.
(3.14)

If we let ũΔx(x, t) = 0 in (3.11), we can get (3.12).

Remark 3.4. The restriction (3.2) is sufficient but not necessary.

4. Numerical Experiments

Example 4.1. We investigate the accuracy of the scheme by solving (2.1) on the domain (t, x) ∈
(0, T] × [0, 1]. The initial condition is u(x, 0) = sin(2πx), 0 ≤ x ≤ 1, and the homogenous
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boundary condition is u(0, t) = u(1, t) = 0. In this case, the exact Fourier solution is given by
[28]

u(x, t) = 2πν
∑∞

n=1 an exp
(−n2π2νt

)
n sin(nπx)

a0 +
∑∞

n=1 an exp(−n2π2νt) cos(nπx)
, (4.1)

where

a0 =
∫1

0
exp
(
−(2πν)−1(1 − cos(πx))

)
dx,

an = 2
∫1

0
exp
(
−(2πν)−1(1 − cos(πx))

)
cos(nπx)dx, n = 1, 2, . . . .

(4.2)

In comparison with the analytical solutions, the efficiency of proposed model is
validated. The following error norms are used to measure the accuracy:

(1) L2-error

‖e‖L2
=

(
n∑
i=1

e2i

)1/2

, (4.3)

(2) L∞-error

‖e‖L∞ = Max|ei|, 1 ≤ i ≤ n, (4.4)

(3) The root mean square (RMS) error

‖e‖RMS =

(
n∑
i=1

e2i
n

)1/2

. (4.5)

The numerical solutions of (2.1), which are computed by using different step size at
time T = 0.1 for ν = 1, are given in Table 1. The above error norms are given in Table 2 for
different mesh size.

From Table 2, we find that the accuracy measured in L2, L∞ and RMS norm errors
increases as the step size decrease. The numerical solutions are in the symmetric pattern as
the exact solutions are. Table 3 and Figure 1 show a comparison between numerical and exact
solutions at different times for ν = 0.005. The curves for distribution of absolute errors at
different times are also shown in Figure 2. It is known that the Fourier solutions for ν ≤ 0.001
fail to converge because of the slow convergence of the infinite series [28]. The numerical
solution cures for ν = 0.001 at different time are drawn in Figure 3, which shows the correct
physical behavior.
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Table 1: Comparison of the LB finite difference solutions with exact solution at T = 0.1 for ν = 1 with τ = 1.

x
Numerical solution Exact solution

N = 10 N = 20 N = 100

0.1 0.00847 0.01059 0.01129 0.01132

0.2 0.01370 0.01715 0.01828 0.01833

0.3 0.01371 0.01716 0.01830 0.01835

0.4 0.00848 0.01061 0.01132 0.01135

0.5 0.00000 0.00000 0.00000 0.00000

0.6 −0.00848 −0.01061 −0.01132 −0.01135
0.7 −0.01371 −0.01716 −0.01830 −0.01835
0.8 −0.01370 −0.01715 −0.01829 −0.01833
0.9 −0.00847 −0.01059 −0.01129 −0.01132

Table 2: Error norms for ν = 1 at T = 0.1 with different step size.

N ‖e‖L2 ‖e‖L∞ ‖e‖RMS

10 1.089E−02 2.789E−03 1.125E−04
20 4.640E−03 1.190E−03 5.000E−05
100 3.631E−03 9.296E−04 3.756E−05

Example 4.2. Consider Burgers equation with the following forms:

∂u

∂t
+ u

∂u

∂x
=

1
Re

∂2u

∂x2
,

1
2
≤ x ≤ 3

2
, t > 0,

u(x, 0) =
1
Re

(
x + tan

(x
2

))
,

1
2
≤ x ≤ 3

2
,

u

(
1
2
, t

)
=

1
Re+t

[
1
2
+ tan

(
Re

4(Re+t)

)]
, t > 0,

u

(
3
2
, t

)
=

1
Re+t

[
3
2
+ tan

(
3Re

4(Re+t)

)]
, t > 0.

(4.6)

It possesses the exact solution [23]

u(x, t) =
1

Re+t

[
x + tan

(
xRe

2(Re+t)

)]
. (4.7)
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Table 3: Comparison of the LB finite difference solutions with exact solution for ν = 0.005 with dx =
0.005, dt = 0.003, and τ = 1.1 at different times.

x

t

1.4 2.0 2.6

Numerical Exact Numerical Exact Numerical Exact

0.1 0.06303 0.06394 0.04567 0.04621 0.03581 0.03618

0.2 0.11975 0.12784 0.09133 0.09241 0.07162 0.07234

0.3 0.18902 0.19168 0.13694 0.13854 0.10717 0.10826

0.4 0.25091 0.25434 0.17809 0.18022 0.13367 0.13521

0.5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.6 −0.25091 −0.25434 −0.17809 −0.18022 −0.13367 −0.13521
0.7 −0.18902 −0.19168 −0.13694 −0.13854 −0.10717 −0.10826
0.8 −0.12605 −0.12784 −0.09133 −0.09241 −0.07162 −0.07234
0.9 −0.06303 −0.06394 −0.04567 −0.04621 −0.03581 −0.03618

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

X

t = 2.6

t = 1.4

t = 0

t = 2

U
(x
,t
)

(a) Numerical solutions

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

X

A
bs
ol
ut
e
er
ro
r

t = 2.0

t = 1.4

t = 2.6

×10−3

(b) Absolute errors

Figure 2: Numerical solutions (a) and distribution of absolute errors (b) for ν = 0.005 at different times
with dx = 0.005, τ = 1.1, and dt = 0.003.

In the computation, we compare the result with the D1Q2 and D1Q3 lattice Boltzmann
model whose equilibrium distribution functions are taken as

f
eq
1 (x, t) =

u(x, t)
2

+
u2(x, t)

4c
,

f
eq
2 (x, t) =

u(x, t)
2

− u2(x, t)
4c

,

f
eq
0 (x, t) =

2
3
u(x, t),

f
eq
1 (x, t) =

u(x, t)
6

+
u2(x, t)

4c
,

f
eq
2 (x, t) =

u(x, t)
6

− u2(x, t)
4c

.

(4.8)
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Figure 3: Numerical solutions for ν = 0.001, at different times with dx = 0.001, τ = 1 and dt = 0.0005.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
1.5

2

2.5

3

3.5

4

4.5

5

Exact solution
Ourmodel

X

×10−3

U
(x
,t
)

Figure 4: Comparison of the exact solution and our model. Parameters are: Re = 500, dx = 0.01, dt =
0.002, τ = 1.

Let Re = 500, we give the results of our model, and exact solution as Figure 4 at t = 0.4.
Table 4 shows the results of the D1Q2, D1Q3, our model and the exact solution at different
lattice at time t = 0.4. The global relative errors

GRE =
∑

i

∣∣uE(xi, t) − uN(xi, t)
∣∣

∑
i

∣∣uN(xi, t)
∣∣ , (4.9)

which are used to measure the accuracy are presented in Table 5.
From Figure 4 and Table 4, we find that the D1Q2,D1Q3, and our model are all in

excellent agreement with the exact solutions. The accuracy of the multilevel finite difference
model is even higher than the D1Q2 andD1Q3model. It should be pointed out that in order to
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Table 4: Comparison of the results with D1Q2, D1Q3, our model, and exact solution.

x D1Q2 model D1Q3 model Our model Exact solution
0.5 0.001500 0.001500 0.001500 0.001500
0.6 0.001795 0.001787 0.001788 0.001786
0.7 0.002112 0.002099 0.002103 0.002096
0.8 0.002431 0.002414 0.002420 0.002411
0.9 0.002755 0.002734 0.002742 0.002731
1.0 0.003086 0.003060 0.003069 0.003056
1.1 0.003425 0.003393 0.003402 0.003389
1.2 0.003773 0.003735 0.003742 0.003729
1.3 0.004131 0.004087 0.004092 0.004080
1.4 0.004511 0.004483 0.004451 0.004421
1.5 0.005000 0.005000 0.005000 0.005000

Table 5: Global relative errors with different models.

D1Q2 model D1Q3 model Our model
GRE 3.2383E − 03 1.7094E − 03 5.8823E − 04

attain better accuracy, the LB model requires a relatively small time stepΔt but the multilevel
finite difference model does not have this restriction.

5. Conclusion

In the current study, a three-level explicit finite difference scheme for 1D Burgers equation
is derived by rewriting the LB scheme. Furthermore, it is proved that the scheme is
conditionally stable. The efficiency and accuracy of the proposed scheme are validated
through detail numerical simulation. It can be found that the numerical solutions are in
excellent agreement with the analytical solutions. In order to derive LB scheme in a higher
dimension, the LBM with the multispeed velocity model will be useful, in which different
free parameters will be assigned for different values of the speed. Application of our method
to 2D and 3D equations is left for future work.
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