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A class of Soblove type multivariate function is approximated by feedforward network with one
hidden layer of sigmoidal units and a linear output. By adopting a set of orthogonal polynomial
basis and under certain assumptions for the governing activation functions of the neural network,
the upper bound on the degree of approximation can be obtained for the class of Soblove functions.
The results obtained are helpful in understanding the approximation capability and topology
construction of the sigmoidal neural networks.

1. Introduction

Artificial neural networks have been extensively applied in various fields of science
and engineering. Why is so mainly because the feedforward neural networks (FNNs)
have the universal approximation capability [1–13]. A typical example of such universal
approximation assertions states that, for any given continuous function defined on a compact
set K of Rd, there exists a three-layer of FNN so that it can approximate the function
arbitrarily well. A three-layer of FNN with one hidden layer, d inputs and one output can
be mathematically expressed as

N(x) =
m∑

i=1

ciσ

⎛

⎝
d∑

j=1

wijxj + θi

⎞

⎠, x ∈ Rd, d ≥ 1, (1.1)

where 1 ≤ i ≤ m, θi ∈ R are the thresholds, wi = (wi1, wi2, . . . , wid)
T ∈ Rd are connection

weights of neuron i in the hidden layer with the input neurons, ci ∈ R are the connection
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strength of neuron i with the output neuron, and σ is the activation function used in the
network. The activation function is normally taken as sigmoid type; that is, it satisfies σ(t) →
1 as t → +∞ and σ(t) → 0 as t → −∞. Equation (1.1) can be further expressed in vector
form as

N(x) =
m∑

i=1

ciσ(wi · x + θi), x ∈ Rd. (1.2)

Universal approximation capabilities for a broad range of neural network topologies have
been established by researchers like Cybenko [1], Ito [5], and T. P. Chen and H. Chen [6].
Their work concentrated on the question of denseness. But from the point of application, we
are concerned about the degree of approximation by neural networks.

For any approximation problem, the establishment of performance bounds is an
inevitable but very difficult issues. As we know, feedforward neural networks (FNNS) have
been shown to be capable of approximating general class of functions, including continuous
and integrable ones. Recently, several researchers have been derived approximation error
bounds for various functional classes (see, e.g., [7–13]) approximated by neural networks.
While many open issues remain concerning approximation degree, we stress in this paper on
the issue of approximation of functions defined over [−1, 1]d by FNNS. In [10], the researcher
took some basics tools from the theory of weighted polynomial of functions (The weight
function is ω(x) = exp(−Q(x))), under certain assumptions on the smoothness of functions
being approximated and on the activation functions in the neural network, the authors
present upper bounds on the degree of approximation achieved over the domain Rd.

In this paper, using the Chebyshev Orthogonal series from the approximation theory
andmoduli of continuity, we obtain upper bounds on the degree of approximation in [−1, 1]d.
We take advantage of the properties of the Chebyshev polynomial and the methods of paper
[10], we yield the desired results, which can be easily extended to the space Rd.

2. Multivariate Chebyshev Polynomial Approximation

Before introducing the main results, we firstly introduce some basic results on Chebyshev
polynomials from the approximation theory. For convenience, we introduce a weighted norm
of a function f [14] given by

∥∥f
∥∥
p,ω =

(∫

[−1,1]d
ω(x)|f(x)|pdx

)1/p

, (2.1)

where 1 ≤ p < ∞, ω(x) =
∏d

i=1ω(xi) is multivariate weighted function, ω(xi) = (1 − x2
i )

−1/2,
x = (x1, x2, . . . , xd) ∈ Rd, m = (m1, m2, . . . , md) ∈ Zd, dx = dx1dx2 . . . dxd. We denote the class
of functions for which ‖f‖p,ω is finite by Lp,ω.

For function f : Rd → R, the class of functions we wish to approximate in this work
is defined as follows:

Ψr,d
p,ω =

{
f :

∥∥∥f (λ)
∥∥∥
p,ω

≤ M, |λ| ≤ r

}
, (2.2)

where λ = (λ1, λ2, . . . , λd), |λ| = λ1 + λ2 + · · · + λd, f (λ) = ∂|λ|f/∂x1
λ1 . . . ∂xd

λd , r is a natural
number, and M < ∞.
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2.1. A Chebyshev Polynomial Approximation of Multivariate Functions

As we know, Chebyshev polynomial of a single real variable is a very important polynomial
in approximation theory. Using the above notation, we introduce multivariate Chebyshev
polynomials: T0(x) = 1/

√
π , Tn(x) =

∏d
i=1Tni(xi), Tni(xi) = 2/

√
π cos(ni arccosxi). Evidently,

for any m, l ∈ Zd, we have

∫

[−1,1]d
Tm(x)Tl(x)ω(x)dx =

{
1 m = l,

0 m/= l.
(2.3)

For f ∈ Lp,ω,m ∈ Zk, let f̂(m) =
∫
[−1,1]d f(x)Tm(x)ω(x)dx, thenwe have the orthogonal

expansion f(x) ∼ ∑∞
m=0 f̂(m)Tm(x), x ∈ [−1, 1]d.

For one-dimension degree of approximation of a function g by polynomials of degree
m, one has the following:

Em

(
g, Pm, Lp,ω

)
= inf

P∈Pm

∥∥g − P
∥∥
p,ω, (2.4)

where Pm stands for the class of degree-m algebraic polynomials. From [15], we have a simple
relationship which we will be used in the following. Let g be differentiable, then we have

E
(
g, Pm, Lp,ω

) ≤ M1m
−1E

(
g ′, Pm, Lp,ω

)
,

E
(
g, Pm, Lp,ω

) ≤ ∥∥g
∥∥
p,ω.

(2.5)

Let Sn(f, t) =
∑n−1

k=1 f̂(k)Tk(x), and the de la Valle Poussin Operators is defined, that is,

Vn

(
f, t

)
=

1
n + 1

n+1∑

m=n+3/2

Sn

(
f, t

)
. (2.6)

Furthermore, we can simplify Vn(f, t) as follows:

Vn

(
f, t

)
=

n∑

k=1

ξkf̂(k)Tk(t), (2.7)

where

ξk =

⎧
⎪⎨

⎪⎩

m − 1
2(m + 1)

, if 0 ≤ k ≤ m + 3
2

,

m − k

m + 1
, if

m + 3
2

≤ k ≤ m.
(2.8)

A basic result concerning Valle Poussin Operators Vm(f, t) is

E2m
(
f, P2m, Lp,ω

) ≤ ∥∥f − Vmf
∥∥
p,ω ≤ Em

(
f, Pm, Lp,ω

)
. (2.9)
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Now we consider a class of multivariate polynomials defined as follows:

Pm =

⎧
⎨

⎩P : P(x) =
∑

0≤|i|≤|m|
bi1,i2,...,idx

i1
1 · · ·xid

d , bi1,i2,...,id ∈ R, ∀i1, . . . , id

⎫
⎬

⎭. (2.10)

Hence, we have the following theorem.

Theorem 2.1. For 1 ≤ p ≤ ∞, let f ∈ Ψr,d
p,ω. Then for any m = (m1, m2, . . . , md),mi ≤ m, we have

inf
P∈Pm

∥∥f − P
∥∥
p,ω ≤ Cm−r . (2.11)

Proof. We consider the Chebyshev orthogonal polynomials Tm(x), and obtain the following
equality from (2.7):

Vi,mi,

(
f
)
=

mi∑

s=1

ξsf̂s,iTs(xi), (2.12)

where f̂s,i =
∫
[−1,1]d f(x)Ts(xi)ω(xi)dxi. Hence, we define the following operators:

V
(
f
)
= V1,m1V2,m2 · · ·Vd,mdf

=
m1∑

s1=1

· · ·
md∑

sd=1

ξs1 · · · ξsdfs1,...,sdTs1(x1) · · · Tsd(xd),
(2.13)

where fs1,...,sd =
∫
[−1,1]d(

∏d
i=1ω(xi)Tsi(xi))f(x)dx. Then we have

∥∥f − V
(
f
)∥∥

p,ω =
∥∥f − V1,m1

(
f
)
+ V1,m1

(
f
) − V1,m1V2,m2

(
f
)

+V1,m1V2,m2

(
f
) − · · · − V

(
f
)∥∥

p,ω

≤
d∑

i=1

∥∥V0 · · ·Vi−1,mi−1f − V0 · · ·Vi,mif
∥∥
p,ω,

(2.14)

where V0 is the identity operator. Let g = V0 · · ·Vi−1,mi−1f , then Vi,mig = V0 · · ·Vi,mif , g
ri(x) =

V0 · · ·Vi−1,mi−1D
rif(x). We view Vi,mig as a one-dimensional function xi. Using (2.4), (2.5), and

(2.6), we have

∥∥g − Vi,mig
∥∥
p,ω ≤ C1Emi

(
g, Pmi , Lp,ω

)

≤ C1M
ri
1

(
1
mi

)
· · ·

(
1

mi − ri + 1

)
Emi−ri

(
gri , Pmi−ri , Lp,ω

)

≤ C1M
ri
1

(
1
mi

)
· · ·

(
1

mi − ri + 1

)∥∥gri
∥∥
p,ω

= Cri

(
1
mi

)
· · ·

(
1

mi − ri + 1

)∥∥V0 · · ·Vi−1,mi−1D
rif
∥∥
p,ω.

(2.15)
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Letting ri = r, mi = m, i = 1, . . . , d, if m > r(r − 1), we get from (2.15), (2.13), (2.14) and the
inequality

∏n
i=1(1 + ai) ≥ 1 +

∑n
i=1 ai, (ai ≥ −1),

∥∥f − V
(
f
)∥∥

p,ω ≤ Cr

d∑

i=1

(
1
m

)
· · ·

(
1

m − r + 1

)∥∥Drf
∥∥
p,ω

≤ CrdM

(
1
m

)
· · ·

(
1

m − r + 1

)

= CrdMm−r
(
1 − 1

m

)−1(
1 − 2

m

)−1
· · ·

(
1 − r − 1

m

)

≤ CrdMm−r
(
1 − r(r − 1)

2m

)−1
≤ 2dCrMm−r .

(2.16)

In order to obtain a bound valid for all m, for m ≤ r(r − 1), we always have the trivial bound
‖f − V (f)‖p,ω ≤ M2 since ‖f‖p,ω ≤ M2. Letting C = max{2dCrdM, 2−1M2(r(r − 1))r}, we
conclude an inequality of the desired type for everym.

This theorem reveals two things: (i) for any multivariate functions f ∈ Ψr,d
p,ω, there

is a polynomial P ∈ Pm that approximates f arbitrarily well in L
p
ω, (ii) quantitatively, the

approximation accuracy of a polynomial P ∈ Pm can attain the order of ©(m−r), where m
is the dimension of multivariate polynomial, and r is the smoothness of the function to be
approximated.

3. Approximation by Feedforward Neural Networks

We consider the approximation of functions by feedforward neural networks with a ridge
functions. We define the approximating function class composed of a single hidden layer
feedforward neural network with n hidden units. The class of function is

Fn =

{
f : f(x) =

n∑

k=1

dkφ(ak · x + bk);ak ∈ Rd, bk, dk ∈ R, k = 1, 2, . . . , n

}
, (3.1)

where φ(x) satisfy the following assumptions.

(1) There is a constant Cφ such that |φ(k)(x)| ≥ Cφ > 0, k = 0, 1, . . .

(2) For each finite k, there is a finite constant lk such that |φ(k)(x)| ≤ lk.

We define the distance from F to G as

dist
(
F,G, Lp,ω

)
= sup

f∈F
inf
g∈G

∥∥f − g
∥∥
p,ω, (3.2)

where F, G are two sets in L
p
ω. We have the following results.
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Theorem 3.1. Let condition (1) and (2) hold for the activation function φ(x). Then for every 0 < L <

∞,m = (m1, m2, . . . , md) ∈ Zd
+ , mi ≤ m, ε > 0 and n > (m + 1)d, we have

dist
(
BPm(L), Fn, Lp,ω

) ≤ ε, (3.3)

where

BPm(L) =

{
P : p(x) =

∑

0≤s≤m
asx

s; max
0≤s≤m

|as| ≤ L

}
. (3.4)

Proof. Firstly, we consider the partial derivative

φ(s)(w · x + b) =
∂(|s|)

∂s1w1 · · · ∂sdwd

(
φ(w · x + b)

)
= xsφ|s|(w · x + b), (3.5)

where |s| = s1 + · · · + sd, and xs =
∏d

i=1x
si
i . Thus φ

(s)(b) = xsφ|s|(b).
For any fixed b and |x| < ∞ (here |x| = ∑d

i=1 xi), we consider a finite difference of
orders

�s
h,xφ(b) =

∑

0≤l≤s
(−1)|l|Cl

sφ(hl · x + b)

= xs
∫h

0
· · ·

∫h

0
φ(|s|)[((a1 + · · · + as1)x1 + · · ·

+
(
a|s|−sd+1 + · · · + a|s|

)
xd

)
+ b

]
da1 · · ·da|s|

.= xsA|s|
h
φ(x),

(3.6)

where Cl
s =

∏d
i=1C

li
si , �s

h,x
φ(b) ∈ Fn with n =

∏d
i=1(1 + si), So

∣∣∣φs(b) − h−|s|�s
h,xφ(b)

∣∣∣ =
∣∣∣xs

(
φ|s|(b) − h−|s|As

hφ
|s|(x)

)∣∣∣

=
∣∣∣xs

(
φ|s|(b) − φ|s|(b + η

))∣∣∣

≤ Csω
(
φ|s|, h

)
,

(3.7)

where we derive (3.7) by using (3.6), the mean value theorem of integral, (i.e., there is a
η ∈ [0, h|s · x|], such that As

h
φ|s|(x) = h|s|φ|s|(b + η)) and the moduli of continuity ω(g, h) =

sup|t|≤h|f(x + t) − f(x)|.
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From the definition of dist (F,G, Lp,ω) and (3.7), we have

dist
(
BPm(L), Fn, Lp,ω

)p ≤
∥∥∥∥∥
∑

0≤s≤m
asx

s −
∑

0≤s≤m
as

�s
h,x

φ(b)

hsφ|s|(b)

∥∥∥∥∥

p

p,ω

≤ (m + 1)dmax
0≤s≤m

⎧
⎨

⎩|as|
∥∥∥∥∥x

s −
�s

h,x
φ(b)

hsφ|s|(b)

∥∥∥∥∥

p

p,ω

⎫
⎬

⎭

≤ (m + 1)dLmax
0≤s≤m

{
φ|s|(b)

}−p
ω
(
φ|s|, h

)

≤ (m + 1)dLCp

φ
ω
(
φ|s|, h

)
< ε.

(3.8)

The last step ω(φ|s|, h) can be made arbitrarily small by letting h → 0.
Using the Theorems 2.1 and 3.1, we can easily establish our final result.

Theorem 3.2. For 1 ≤ p ≤ ∞, we have

dist
(
Ψr,d

p,ω, Fn, Lp,ω

)
≤ Cn−r/d. (3.9)

This theorem reveals two things: (i) for any multivariate functions f ∈ Ψr,d
p,ω, there

is a single hidden layer feedforward neural network N ∈ Fn with n hidden units that
approximates f arbitrarily well in L

p
ω. That is, the feedforward neural networks can be used

as the universal approximator of functions in Ψr,d
p,ω; (ii) quantitatively, the approximation

accuracy of a mixture network of the form (3.1) can attain the order of ©(n−r/d), where d
is the dimension of input space, and r is the smoothness of the function to be approximated.

4. Conclusion

In this work, the approximation order of feedforward neural networks with the form (3.1)
has been studied. In terms of smoothness of a function, an upper bound estimation on
approximation precision and speed of the neural networks is developed. Our research
reveals that the approximation precision and speed of the neural networks depend not
only on the number of hidden neurons used, but also on the smoothness of the functions
to be approximated. The results obtained are helpful in understanding the approximation
capability and topology construction of the sigmoidal neural networks.
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