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This paper studies the eigenvalue comparisons for second-order linear equations with boundary
conditions on time scales. Using results frommatrix algebras, the existence and comparison results
concerning eigenvalues are obtained.

1. Introduction

In this paper, we consider the eigenvalue problems for the following second-order linear
equations:

(
r(t)yΔ(t)

)Δ
+ λ(1)p(t)yσ(t) = 0, t ∈ [ρ(a), ρ(b)]

T
, (1.1)

(
r(t)yΔ(t)

)Δ
+ λ(2)q(t)yσ(t) = 0, t ∈ [ρ(a), ρ(b)]

T
, (1.2)

with the boundary conditions

y
(
ρ(a)

) − τy(a) = y(σ(b)) − δy(b) = 0, (1.3)
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where λ(1) and λ(2) are parameters, σ(t) and ρ(t) are the forward and backward jump
operators, yΔ is the delta derivative, yσ(t) := y(σ(t)), and [ρ(a), ρ(b)]

T
is a finite isolated

time scale; the discrete interval is given by

[
ρ(a), ρ(b)

]
T
:=
{
ρ(a), a, σ(a), σ2(a), . . . , ρ(b)

}
. (1.4)

We assume throughout this paper that

(H1) rΔ, p, and q are real-valued functions on [ρ(a), ρ(b)]
T
, p ≥ 0 (/≡ 0), q ≥ 0 (/≡ 0) on

[ρ(a), ρ(b)]
T
and r > 0 on [ρ(a), b]

T
;

(H2) τ, δ ∈ [0, 1).

First we briefly recall some existing results of eigenvalues comparisons for differential
and difference equations. In 1973, Travis [1] considered the eigenvalue problem for boundary
value problems of higher-order differential equations. He employed the theory of u0-positive
linear operator on a Banach space with a cone of nonnegative elements to obtain comparison
results for the smallest eigenvalues. A representative set of references for these works would
be Davis et al. [2], Diaz and Peterson [3], Hankerson and Henderson [4], Hankerson and
Peterson [5–7], Henderson and Prasad [8], and Kaufmann [9]. However, in all the above
papers, the comparison results are for the smallest eigenvalues only. The main purpose of
this paper is to establish the comparison theorems for all the eigenvalues of (1.1) with (1.3)
and (1.2) with (1.3).

Like the eigenvalue comparison for the boundary value problems of linear equations,
this type of comparison of eigenvalues in matrix algebra is known as Weyl’s inequality [10,
Corllary 6.5.]: If A,B are Hermitian matrices, that is, A = A∗, where A∗ is the conjugate
transpose of A and A − B is positive semidefinite, then λ

(A)
i ≥ λ

(B)
i , where λ

(A)
i and λ

(B)
i are

all eigenvalues of A and B. Associated with this conclusion is spectral order of operators.
The spectral order has proved to be useful for solving several open problems of spectral
theory and has been studied in the context of von Neumann algebras, matrix algebras, and
so forth in [10–15]. Recently, Hamhalter [15] studied the spectral order in a more general
setting of Jordan operator algebras, which is a generalization of the result due to Kato [13].
And as a preparatory material, he extended Olson’s characterization of the spectral order
to JBW algebras [14]. Since the boundary value problems (1.1), (1.3) and (1.2), (1.3) can be
rewritten into matrix equations, we employ some results from matrix algebras to establish
the comparison theorems for the eigenvalues of (1.1), (1.3) and (1.2), (1.3).

This paper is organized as follows. Section 2 introduces some basic concepts and a
fundamental theory about time scales, which will be used in Section 3. By some results from
matrix algebras and time scales, the existence and comparison theorems of eigenvalues of
boundary value problems (1.1), (1.3) and (1.2), (1.3) are obtained, which will be given in
Section 3.

2. Preliminaries

In this section, some basic concepts and some fundamental results on time scales are intro-
duced.
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Let T ⊂ R be a nonempty closed subset. Define the forward and backward jump
operators σ, ρ : T → T by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, (2.1)

where inf ∅ = supT, sup ∅ = infT. We put T
k = T if T is unbounded above and T

k = T \
(ρ(maxT),maxT] otherwise. The graininess functions ν, μ : T → [0,∞) are defined by

μ(t) = σ(t) − t, ν(t) = t − ρ(t). (2.2)

Let f be a function defined on T. f is said to be (delta) differentiable at t ∈ T
k provided

there exists a constant a such that for any ε > 0, there is a neighborhood U of t (i.e., U =
(t − δ, t + δ) ∩ T for some δ > 0) with

∣∣f(σ(t)) − f(s) − a(σ(t) − s)
∣∣ ≤ ε |σ(t) − s|, ∀s ∈ U. (2.3)

In this case, denote fΔ(t) := a. If f is (delta) differentiable for every t ∈ T
k, then f is said to

be (delta) differentiable on T. If f is differentiable at t ∈ T
k, then

fΔ(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

lim
s→ t
s∈T

f(t) − f(s)
t − s

if μ(t) = 0,

f(σ(t)) − f(t)
μ(t)

if μ(t) > 0.
(2.4)

For convenience, we introduce the following results ([16, Chapter 1], [17, Chapter 1],
and [18, Lemma 1]), which are useful in this paper.

Lemma 2.1. Let f, g : T → R and t ∈ T
k.

(i) If f and g are differentiable at t, then fg is differentiable at t and

(
fg
)Δ(t) = fσ(t)gΔ(t) + fΔ(t)g(t) = fΔ(t)gσ(t) + f(t)gΔ(t). (2.5)

(ii) If f and g are differentiable at t, and f(t)fσ(t)/= 0, then f−1g is differentiable at t and

(
gf−1

)Δ
(t) =

(
gΔ(t)f(t) − g(t)fΔ(t)

)(
fσ(t)f(t)

)−1
. (2.6)

3. Eigenvalue Comparisons

In the following, we will write X ≥ Y if X and Y are symmetric n × n matrices and X − Y
is positive semidefinite. A matrix is said to be positive if every component of the matrix is
positive. We denote ρ(a) = σ−1(a), a = σ0(a), ρ(b) = σn−2(a), b = σn−1(a), μi = σi+1(a) −
σi(a), and rσ

i
(a) = r(σi(a)), i = −1, 0, 1, 2, . . . , n − 1.
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It follows from Lemma 2.1(ii), (2.4), and (1.4) that the boundary value problem (1.1),
(1.3) can be written in the form

(
−D + λ(1)P

)
y = 0, (3.1)

where

D :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A + B −B 0 · · · 0 0 0

−B B + C −C · · · 0 0 0

0 −C C +
rσ

2
(a)
μ2

· · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · rσ
n−4
(a)

μn−4
+D −D 0

0 0 0 · · · −D D + E −E

0 0 0 · · · 0 −E E +
(1 − δ)rσ

n−1
(a)

μn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P = diag
(
μ−1p

(
σ−1(a)

)
, μ0p

(
σ0(a)

)
, . . . , μn−3p

(
σn−3(a)

)
, μn−2p

(
σn−2(a)

))
,

(3.2)

where A donates (1 − τ)rσ
−1
(a)/μ−1, B donates rσ

0
(a)/μ0, C donates rσ(a)/μ1, D donates

rσ
n−3
(a)/μn−3, and E donates rσ

n−2
(a)/μn−2.

y =
(
y
(
σ0(a)

)
, y(σ(a)), . . . , y

(
σn−2(a)

)
, y
(
σn−1(a)

))T
. (3.3)

And the problem (1.2), (1.3) is equivalent to the equation

(
−D + λ(2)Q

)
y = 0, (3.4)

where

Q = diag
(
μ−1q

(
σ−1(a)

)
, μ0q

(
σ0(a)

)
, . . . , μn−3q

(
σn−3(a)

)
, μn−2q

(
σn−2(a)

))
. (3.5)

Since the solutions of (1.1), (1.3) can be written into the form of vectors, then the nontrivial
solution corresponding to λ is called an eigenvector.
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Let ei be the ith column of the identity matrix I of order n and

D1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A + B −B 0 · · · 0 0 0

−B B + C −C · · · 0 0 0

0 −C C +
rσ

2
(a)
μ2

· · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · rσ
n−4
(a)

μn−4
+D −D 0

0 0 0 · · · −D D + E −E
0 0 0 · · · 0 −E E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.6)

Define Pi = I + ei−1eTi . It is easily seen that

D = D1 + en(1 − δ)
rσ

n−1
(a)

μn−1
eTn , (3.7)

P2P3 · · ·PnD1P
T
n · · ·PT

3 P
T
2 = diag

(
(1 − τ)

rσ
−1
(a)

μ−1
,
rσ

0
(a)
μ0

, . . . ,
rσ

n−3
(a)

μn−3
,
rσ

n−2
(a)

μn−2

)
. (3.8)

It follows from (H1), (H2), and (3.8) that

D1 = P−1
n · · ·P−1

3 P−1
2 diag

(
(1 − τ)

rσ
−1
(a)

μ−1
,
rσ

0
(a)
μ0

, . . . ,
rσ

n−3
(a)

μn−3
,
rσ

n−2
(a)

μn−2

)
P−T
2 P−T

3 · · ·P−T
n ,

(3.9)

D−1
1 = PT

n · · ·PT
3 P

T
2 diag

(
μ−1

(1 − τ)rσ−1(a)
,

μ0

rσ0(a)
, . . . ,

μn−3
rσn−3(a)

,
μn−2

rσn−2(a)

)
P2P3 · · ·Pn. (3.10)

For any x = (x1, x2, . . . , xn)
T , we have

x∗Dx = x∗D1x + (1 − δ)
rσ

n−1
(a)

μn−1
x∗eneTnx

=
(
P−T
2 P−T

3 · · ·P−T
n x
)∗

diag

(
(1 − τ)

rσ
−1
(a)

μ−1
,
rσ

0
(a)
μ0

, . . . ,
rσ

n−3
(a)

μn−3
,
rσ

n−2
(a)

μn−2

)

×
(
P−T
2 P−T

3 · · ·P−T
n x
)
+ (1 − δ)

rσ
n−1
(a)

μn−1

∣∣∣eTnx
∣∣∣
2 ≥ 0.

(3.11)

Moreover, x∗Dx = 0 implies x = 0. Hence, the matrix D is positive definite.
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Lemma 3.1. If λ(1) is an eigenvalue of the boundary value problem (1.1), (1.3) and y is a
corresponding eigenvector, then

(i) y∗Py > 0,

(ii) λ(1) is real and positive.

If ρ /=λ(1) is an eigenvalue of the boundary value problem (1.1), (1.3) and x is a corresponding
eigenvector, then x∗Py = 0.

Proof. (i) It follows from (H1) and (3.2) that y∗Py ≥ 0. Assume the contrary that y∗Py = 0, we
have y∗Dy = λ(1)y∗Py = 0. Since D is positive definite, then y = 0, which is a contradiction.

(ii)We can write

λ(1)y∗Py = y∗
(
λ(1)Py

)
= y∗Dy =

(
Dy
)∗
y =
(
λ(1)Py

)∗
y = λ(1)y∗P ∗y = λ(1)y∗Py, (3.12)

which implies λ(1) = λ(1), that is, λ is real. Since D is positive definite and y∗Py > 0, we have
λ(1) = y∗Dy/y∗Py > 0.

If ρPx = Dx and ρ /=λ(1), then

(
λ(1) − ρ

)
x∗Py = λ(1)x∗Py − ρx∗Py = x∗

(
λ(1)Py

)
− (ρPx)∗y = x∗Dy − (Dx)∗y = 0. (3.13)

Hence, x∗Py = 0. This completes the proof.

Lemma 3.2. If λ(1) is an eigenvalue of the boundary value problem (1.1), (1.3), then 1/λ(1) is an
eigenvalue of D−1/2PD−1/2. If α is a positive eigenvalue of D−1/2PD−1/2, then 1/α is an eigenvalue
of (1.1), (1.3), respectively.

Proof. If λ(1) is an eigenvalue of the boundary value problem (1.1), (1.3) and y is a
corresponding eigenvector, then λ(1) > 0 and λ(1)Py = Dy. Therefore,

λ(1)Py = D1/2D1/2y,

D−1/2PD−1/2
(
D1/2y

)
=

1
λ(1)

(
D1/2y

)
.

(3.14)

With a similar argument, one can get that if α is a positive eigenvalue of D−1/2PD−1/2,
then 1/α is an eigenvalue of (1.1), (1.3). This completes proof.

Lemma 3.3. For any 1 ≤ i, j ≤ n, define γ = min{i, j}. We have

(i) eTi D
−1
1 ej = μ−1/(1 − τ)rσ

−1
(a) +

∑γ−2
k=0(μk/r

σk
(a));

(ii) eTi D
−1ej = ((μ−1/(1−τ)rσ−1

(a))+
∑γ−2

k=0(μk/r
σk
(a)))((μn−1/(1−δ)rσn−1

(a))+(μ−1/(1−
τ)rσ

−1
(a)) +

∑n−2
k=0(μk/r

σk
(a))) − ((μ−1/(1 − τ)rσ

−1
(a)) +

∑i−2
k=0(μk/r

σk
(a)))((μ−1/(1 −

τ)rσ
−1
(a)) +

∑j−2
k=0(μk/r

σk
(a)))/(μn−1/(1 − δ)rσ

n−1
(a)) + (μ−1/(1 − τ)rσ

−1
(a)) +∑n−2

k=0(μk/r
σk
(a)).
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Proof. It is easy to see that Piej = ej if i /= j, while Piej = ej−1 + ej if i = j. Hence,

P2P3 · · ·Pnej = e1 + e2 + · · · + ej . (3.15)

(i) It is seen from (3.10) and (3.15) that

eTi D
−1
1 ej = (P2P3 · · ·Pnei)T diag

(
μ−1

(1 − τ)rσ−1(a)
,

μ0

rσ0(a)
, . . . ,

μn−3
rσn−3(a)

,
μn−2

rσn−2(a)

)(
P2P3 · · ·Pnej

)

= (e1 + e2 + · · · + ei)T diag
(

μ−1
(1 − τ)rσ−1(a)

,
μ0

rσ0(a)
, . . . ,

μn−3
rσn−3(a)

,
μn−2

rσn−2(a)

)

× (e1 + e2 + · · · + ej
)

=
μ−1

(1 − τ)rσ−1(a)
+

γ−2∑
k=0

μk

rσk(a)
.

(3.16)

(ii) It follows from (3.7) and the Sherman-Morrison updating formula [19] that

D−1 = D−1
1 − D−1

1 ene
T
nD

−1
1(

μn−1/(1 − δ)rσn−1(a)
)
+ eTnD

−1
1 en

, (3.17)

leading to

eTi D
−1ej = eTi D

−1
1 ej −

eTi D
−1
1 ene

T
nD

−1
1 ej(

μn−1/(1 − δ)rσn−1(a)
)
+ eTnD

−1
1 en

, (3.18)

which, together with (i), further implies the result (ii). This completes the proof.

Theorem 3.4. (i) If λ(1) is an eigenvalue of the boundary value problem (1.1), (1.3) and y /= 0 is a
corresponding eigenvector, then y(a)/= 0 and y(b)/= 0.

(ii) If λ(1)1 > 0 is the smallest eigenvalue of the boundary value problem (1.1), (1.3), then there
exists a positive eigenvector y > 0 corresponding to λ(1)1 .

Proof. (i) Assume the contrary that either y(a) = 0 or y(b) = 0. By the boundary condition
(1.3), we can easily deduce a contradiction y(t) ≡ 0.

(ii) It follows from D−1Py = (1/λ(1)1 )y that 1/λ(1)1 is the maximum eigenvalue of
D−1P and the y is an eigenvector corresponding to 1/λ(1)1 . By Lemma 3.3(ii), we have that
all the elements of D−1 are positive, then D−1 is a positive matrix. Since p(t) ≥ 0 for all
t ∈ [ρ(a), ρ(b)]

T
, hence, the following discussions are divided into two cases.
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Case 1. If p(t) > 0 for all t ∈ [ρ(a), ρ(b)]
T
, then we obtain that the matrixD−1P is positive and

therefore, the result follows from the Perron-Forbenius theorem [20].

Case 2. Let p(t) = 0 for some t ∈ [ρ(a), ρ(b)]
T
. Without loss of generality, we assume that

p(t) = 0 for all t ∈ [ρ(a), σm−2(a)]
T
and p(t) > 0 for all t ∈ [σm−1(a), ρ(b)]

T
; we can writeD−1P

as follows:

D−1P =

(
0 V

0 Z

)
, (3.19)

where V is an m × (n − m) matrix and Z is an (n − m) × (n − m) matrix. Both V and Z

are positive matrices. 1/λ(1)1 is also the maximum eigenvalue of Z. Applying the Perron-
Forbenius theorem to the positive matrix Z, there exists a positive vector yZ > 0 such that
ZyZ = (1/λ(1)1 )yZ. Let yV = λ

(1)
1 VyZ and y = (yT

V , y
T
Z)

T . Obviously, we have

D−1Py =
1

λ
(1)
1

y, where y > 0. (3.20)

This completes the proof.

Lemma 3.5. If λ(1) is an eigenvalue of the boundary value problem (1.1), (1.3), then the dimension of
the null space of (−D + λ(1)P) is 1.

Proof. Let x /= 0 and y /= 0 be any two eigenvectors of the boundary value problem (1.1), (1.3)
corresponding to λ(1) and define z = x(a)y − y(a)x. Obviously, we have

(
−D + λ(1)P

)
z = x(a)

(
−D + λ(1)P

)
y − y(a)

(
−D + λ(1)P

)
x = 0, (3.21)

which, together with z(a) = 0, indicates that z = 0, that is, x(a)y = y(a)x. Therefore, x and y
are linearly dependent. So the dimension of the null space of (−D+λ(1)P) is 1. This completes
the proof.

Lemma 3.6. LetN ≥ 1 be the number of positive elements in the set {p(t) | t ∈ [ρ(a), ρ(b)]
T
}. Then

there areN distinct eigenvalues λ(1)i (i = 1, 2, . . . ,N) of the boundary value problem (1.1), (1.3) and
αi = 1/λ(1)i (i = 1, 2, . . . ,N) are the only positive eigenvalues of D−1/2PD−1/2.

Proof. Suppose that α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 are all eigenvalues of D−1/2PD−1/2. Since
D−1/2PD−1/2 is real and symmetric that there exists an orthogonal matrix C such that

CTD−1/2PD−1/2C = diag(α1α2 · · ·αn), (3.22)

therefore, we have that

rank(P) = rank
(
CTD−1/2PD−1/2C

)
= rank

(
diag(α1α2 · · ·αn)

)
(3.23)

indicating that the number of positive αi is the same as that of positive number in P which is
equal to N.
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Suppose that αi0 = αi0+1 > 0 for some i0 where 1 ≤ i0 ≤ N − 1. Observe that
CTD−1/2PD−1/2Cei = αiei in view of (3.22), which further implies that

D
(
D−1/2Cei

)
=

1
αi
P
(
D−1/2Cei

)
i = i0, i0 + 1. (3.24)

Thus, we have two independent vectors in the null space of (−D+λ(1)P) for λ(1) = 1/αi0 , which
contradicts Lemma 3.5. Thus, from Lemma 3.2, we see that {λ(1)i = 1/αi | i = 1, 2, . . . ,N} gives
the complete set of eigenvalues of the boundary value problem (1.1), (1.3). This completes
the proof.

Theorem 3.7. Let j be the number of positive elements in the set {p(t) | t ∈ [ρ(a), ρ(b)]
T
} and k the

number of positive elements in the set {q(t) | t ∈ [ρ(a), ρ(b)]
T
}. Let {λ(1)1 < λ

(1)
2 < · · · < λ

(1)
j } be the

set of all eigenvalues of the boundary value problem (1.1), (1.3) and {λ(2)1 < λ
(2)
2 < · · · < λ

(2)
k
} the set

of all eigenvalues of the boundary value problem (1.2), (1.3). If p(t) ≥ q(t) for all t ∈ [ρ(a), ρ(b)]
T
,

then λ
(1)
i ≤ λ

(2)
i for 1 ≤ i ≤ k.

Proof. It follows from Lemma 3.6 that

α1 =
1

λ
(1)
1

> · · · > αj =
1

λ
(1)
j

> 0, αj+1 = · · · = αn = 0,

β1 =
1

λ
(2)
1

> · · · > βk =
1

λ
(2)
k

> 0, βk+1 = · · · = αn = 0

(3.25)

are the eigenvalues of D−1/2PD−1/2 and D−1/2QD−1/2, respectively. If p(t) ≥ q(t) for all t ∈
[ρ(a), ρ(b)]

T
, then P ≥ Q, implying

D−1/2PD−1/2 ≥ D−1/2QD−1/2. (3.26)

By Weyl’s inequality and (3.26), we have

αi ≥ βi 1 ≤ i ≤ n. (3.27)

Finally, it is easily seen from (3.25) and (3.27) that

1

λ
(1)
i

≥ 1

λ
(2)
i

1 ≤ i ≤ k, (3.28)

implying that λ(1)i ≤ λ
(2)
i for 1 ≤ i ≤ k. This completes the proof.
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