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Mathematical form for two energy groups of three-dimensional homogeneous reactor kinetics
equations and average one group of the precursor concentration of delayed neutrons is presented.
This mathematical form is called “two energy groups of the point kinetics equations.” We rewrite
two energy groups of the point kinetics equations in the matrix form. Generalization of the
analytical exponential model (GAEM) is developed for solving two energy groups of the point
kinetics equations. The GAEM is based on the eigenvalues and the corresponding eigenvectors of
the coefficient matrix. The eigenvalues of the coefficient matrix are calculated numerically using
visual FORTRAN code, based on Laguerre’s method, to calculate the roots of an algebraic equation
with real coefficients. The eigenvectors of the coefficient matrix are calculated analytically. The
results of the GAEM are compared with the traditional methods. These comparisons substantiate
the accuracy of the results of the GAEM. In addition, the GAEM is faster than the traditional
methods.

1. Introduction

In real nuclear reactor problems that involve safety considerations, the coefficients of the
space-time neutron diffusion equations depend upon the neutron flux density, precursor con-
centration of delayed neutrons groups, space, time, and temperature feedback. The numerical
methods and the analytical approximations for solving the space-time neutron diffusion
equations in the nuclear reactor have been of interest in nuclear physics and reactor design.

Three-dimensional nodal mixed dual method was used for the nuclear reactor
kinetics equations with improved quasistatic model and the semiimplicit scheme to solve
the precursor equations [1]. A rigorous weight function in the quasistatic method was
presented to solve the time-dependent multigroup diffusion equations for subcritical systems
with external sources [2]. Parallelised Krylov methods were applied to the improved
quasistatic approach in addition to the direct, implicit time difference, approach for solving
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space-time dependent multigroup neutron diffusion equations [3]. The nodal diffusion
method was presented to solve space-time neutron kinetics using the finite element, primal
and mixed hybrid nodal methods [4]. A one-step implicit method and a nodal modal
method were studied for the solution of the time-dependent neutron diffusion equations
which-based on a hexagonal spatial mesh [5–7]. An adiabatic kinetics model was developed
for a boiling water reactor (BWR) core simulator AETNA [8]. Mathematical modeling of
the space-time kinetics phenomena in advanced heavy water reactor, a 920 MW thermal,
vertical pressure tube type thorium-based nuclear reactor, was presented using nodal modal
method [9]. Class of Padé and cut-product approximations were applied to solve the
two energy groups space-time nuclear reactor kinetics equations in two dimensions [10].
Adaptive Matrix Formation (AMF) method was presented and applied to homogeneous,
symmetric heterogeneous, and nonsymmetric heterogeneous reactors in the cases of two and
three dimensions [11]. The generalized Runge-Kutta method was developed for solving the
multigroup, multidimensional, static, and transient neutron diffusion kinetics equations [12].
Computation accuracy and efficiency of a power series analytic method were presented for
the time-space-dependent neutron diffusion equations with adiabatic heat up and doppler
feedback [13]. The multigroup integro-differential equations of the neutron diffusion kinetics
were presented and solved numerically in multislab geometry with the use of the progressive
polynomial approximation [14].

The different kinds of Padé approximations were applied to the nonlinear point kinet-
ics equations including temperature feedback via analytical inversion method [15, 16]. The
straightforward recurrence relation of a power series was presented to solve the point kinetics
equations in the presence of delayed neutrons with Newtonian feedback [17]. The stability
of generalized Runge-Kutta method of order four was studied for the stiff system point
kinetics equations with temperature feedback reactivity [18, 19]. The analytical exponential
model was generalized to solve the point kinetics equations of beryllium and heavy water
moderated reactors with step, ramp, and temperature feedback reactivities [20]. Power series
solution (PWS) was applied for solving the point kinetics equations with lumped model
temperature feedback [21]. Recently, new analytical solution, based on the roots of inhour
equation, the eigenvalues of the coefficient matrix, was presented and applied for the point
kinetics equations with the constant, ramp, and temperature feedback reactivities [22].

In this work, the two energy groups of the point kinetics equations and the average
one group of delayed neutron are introduced. The generalization of the analytical exponential
model is calculated using the eigenvalues and the eigenvectors of the coefficient matrix. The
eigenvalues and the corresponding eigenvectors of the coefficient matrix are calculated. The
results of the generalization of the analytical exponential model are comparedwith the results
of the traditional methods.

2. Mathematical Model

The two energy groups neutron diffusion equations governing the dynamic groups diffusion
neutron flux and average one group of the precursor concentration of delayed neutrons
behavior are written as follows [23–25]:

1
v1

∂

∂t
Φ1(r, t) = D1∇2Φ1(r, t) − (Σa1 + Σs12)Φ1(r, t) + νΣf1

(
1 − β

)
Φ1(r, t)

+ νΣf2

(
1 − β

)
Φ2(r, t) + λC(r, t),
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∂t
Φ2(r, t) = D2∇2Φ2(r, t) − Σa2Φ2(r, t) + Σs12Φ1(r, t),

∂

∂t
C(r, t) = β

(
νΣf1Φ1(r, t) + νΣf2Φ2(r, t)

) − λC(r, t),

(2.1)

where Φ1(r, t) and Φ2(r, t) are fast and thermal neutron flux, C(r, t) is average one group of
the precursor concentration of delayed neutrons, D1 and D2 are fast and thermal diffusion
coefficients, Σa1 and Σa2 are fast and thermal absorption cross-sections, Σf1 and Σf2 are fast
and thermal fission cross-sections, Σs12 is the scattering cross-section from fast-to-thermal
neutron, ν is the neutron fission, v1 and v2 are fast and thermal neutron speed, λ is decay
constant of average one group of delayed neutrons, and β is the fraction of delayed neutrons.

The neutron flux and the precursor concentration of delayed neutrons can be written
as separable functions of space and time as

Φ1(r, t) = v1n1(t)Ψ̂(r),

Φ2(r, t) = v2n2(t)Ψ̂(r),

C(r, t) = c(t)Ψ̂(r),

(2.2)

where n1(t) and n2(t) are the fast and thermal neutron density, c(t) is the precursor
concentration density of delayed neutrons and Ψ̂(r) is the fundamental function which can
be determined from the following:

∇2Ψ̂(r) + B2Ψ̂(r) = 0, (2.3)

where B2 is the material buckling.
Substituting (2.2) and (2.3) into (2.1) yields

dn1(t)
dt

= −D1B
2v1n1(t) − (Σa1 + Σs12)v1n1(t) + νΣf1

(
1 − β

)
v1n1(t)

+ νΣf2

(
1 − β

)
v2n2(t) + λc(t),

dn2(t)
dt

= −D2B
2v2n2(t) − Σa2v2n2(t) + Σs12v1n1(t),

dc(t)
dt

= β
(
νΣf1v1n1(t) + νΣf2v2n2(t)

) − λc(t).

(2.4)

Let us consider that l1 = 1/v1νΣf1 and l2 = 1/v2νΣf2 are fast and thermal generation
time of neutrons, L2

1 = D1/Σa1 and L2
2 = D2/Σa2 are fast and thermal diffusion length,

k1 = νΣf1/Σa1[1 + L2
1B

2] and k2 = νΣf2/Σa2[1 + L2
2B

2] are fast and thermal multiplication
factor, ρ1 = (k1 − 1)/k1 and ρ2 = (k2 − 1)/k2 are fast and thermal reactivities, κ = v1Σs12 ,
μ1 = β/l1 and μ2 = β/l2.
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Equations (2.4) are rewritten in the following form:

dn1(t)
dt

=
(
ρ1
l1

− μ1 − κ

)
n1(t) +

(
1
l2

− μ2

)
n2(t) + λc(t),

dn2(t)
dt

= κn1(t) +
(
ρ2 − 1
l2

)
n2(t),

dc(t)
dt

= μ1n1(t) + μ2n2(t) − λc(t).

(2.5)

Aboanber [26] presented two-energy group two-point kinetic model of reflected reactor. So,
(2.5) can be called “two energy groups of the point kinetics equations”.

The initial values of this system, dn1(0)/dt = dn2(0)/dt = dc(0)/dt = 0, take the
following form

n1(0) =

[
1 − ρ2

]

l2κ
n2(0),

c(0) =
μ1

λ
n1(0) +

μ2

λ
n2(0),

(2.6)

and the material buckling takes the form:

B2 = −Σa1 + Σs12 − νΣf1

2D1
− Σa2

2D2

+

√√√
√
(Σa1 + Σs12 − νΣf1

2D1
+

Σa2

2D2

)2

−
(

Σa2

(
Σa1 + Σs12 − νΣf1

) − Σs12νΣf2

D1D2

)

.

(2.7)

3. Generalization of the Analytical Exponential Model

Let us rewrite (2.5) in matrix form as follows

d

dt
Ψ(t) = AΨ(t), (3.1)

where

Ψ(t) =

⎡

⎢⎢
⎣

n1(t)

n2(t)

c(t)

⎤

⎥⎥
⎦, A =

⎡

⎢⎢
⎣

−α ζ λ

κ −η 0

μ1 μ2 −λ

⎤

⎥⎥
⎦ ,

α = μ1 + κ − ρ1
l1
, ζ =

1
l2

− μ2, η =
1 − ρ2
l2

.

(3.2)
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Using the exponential integrator [27, 28], we can determine the general solution of (3.1) as
follows:

Ψ(t) = B exp

(∫ t

t0

Adt

)

, (3.3)

where B is the integral constant.
This solution includes the exponential function of thematrixAwhich can be calculated

using generalization of the analytical exponential model [20, 29] as

Ψ(t) =
3∑

k=1

Bk exp(ωkt)Uk, (3.4)

where Bk are the constants, ωk are the eigenvalues of the matrix A and Uk are the
corresponding eigenvectors of the matrix A.

Using the initial condition Ψ(0) = Ψ0 to determine the constants Bk = VT
k
Ψ0, (3.4)

becomes as follows

Ψ(t) =
3∑

k=1

exp(ωkt)UkVT
kΨ0, (3.5)

where, Vk are the eigenvectors of matrix AT which corresponding to eigenvalues ωk and
satisfies the normalization condition UT

kVk = 1. The eigenvectors Uk and Vk of the coefficient
matrix A and AT , respectively, are calculated analytically in the next subsections.

Equation (3.5) gives good results only for a constant matrix A. But for variable matrix
A, the solution of the equation (3.1) can be takes the form

Ψ(tm+1) =
3∑

k=1

exp(hωk)UkVT
kΨ(tm), (3.6)

where, the values of the eigenvalues ωk and the corresponding eigenvectors Uk and Vk are
calculated at time tm + (h/2), and h = tm+1 − tm is the time step interval [tm, tm+1].

Equations (3.5) and (3.6) represent the solutions of the two energy groups of point
kinetics equation with average one group of delayed neutrons. These solutions represent a
generalization of the analytical exponential model for step and variable coefficient matrix A,
respectively.

3.1. Eigenvalues of the Matrix A

The eigenvalues of the matrix A are determined from the following algebraic equation:

ω3 +ω2(α + η + λ
)
+ω
[
αη + αλ + ηλ − κζ − λμ1

]
+ αηλ − κζλ − κλμ2 − ηλμ1 = 0. (3.7)

The equation (3.7) is called “inhour equation.” This equation has a 3rd degree algebraic
equation. To determine the roots of (3.7), we use the visual FORTRAN code, based on
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Laguerre’s numerical method, to calculate the roots of an algebraic equation with real
coefficients.

3.2. Eigenvectors of the Matrix A

The eigenvectors of the matrix A are determined analytically as follows:

Uk =

⎡

⎢⎢
⎢
⎢
⎢
⎣

1
κ

(
ωk + η

)

μ1
(
ωk + η

)
+ κμ2

(ωk + λ)
(
ωk + η

)

⎤

⎥⎥
⎥
⎥
⎥
⎦
. (3.8)

3.3. Eigenvectors of the Matrix AT

The eigenvectors of the matrix AT are determined analytically as follows:

Vk =
1

1+
(
κζ(ωk+λ)+κλμ2

)
/(ωk + λ)

(
ωk + η

)2+
(
λμ1
(
ωk+η

)
+κλμ2

)
/(ωk + λ)2

(
ωk+ η

)

×

⎡

⎢⎢⎢⎢⎢
⎣

1

ζ(ωk + λ) + λμ2

(ωk + λ)
(
ωk + η

)

λ

(ωk + λ)

⎤

⎥⎥⎥⎥⎥
⎦
,

(3.9)

where (1+(κζ(ωk+λ)+κ λ μ2)/(ωk+λ)(ωk + η)2+(λ μ1(ωk+η)+κλμ2)/(ωk + λ)2(ωk+η))
−1

is the normalization factor.

4. Results and Discussions

To check the accuracy of the results of the mathematical model of two energy groups of the
homogeneous reactor kinetics equations, it is applied to the three-dimensional homogeneous
reactor. This reactor is a bare homogeneous cube of side length 200 cm on each side with
two neutron groups and one precursor group. The parameters of the three-dimensional
homogeneous reactor are taken from [11] and shown in Table 1. The mathematical model
of two energy groups of the point kinetics equations are solved by the generalization of
the analytical exponential model (GAEM). Two different types of problems; step and ramp
reactivities, are applied.

4.1. Step Reactivity

The thermal neutron flux at the center point of the two energy groups of the homogeneous
reactor kinetics equations with a positive step reactivity, ΔΣa2 = −0.0000369, is calculated in
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Table 1: Parameters of three-dimensional homogeneous reactor [11].

Parameter Group 1 Group 2
Diffusion coefficient D (cm) 1.35 1.08
Absorption cross-section Σa (cm−1) 0.001382 0.0054869
Neutron fission ν (neutron) 2.41 2.41
Fission cross-section Σf (cm−1) 0.000242 0.00408
Scattering cross-section Σsg,g+1 (cm−1) 0.0023 0.0
Velocity v (cm/s) 3.0 × 107 2.2 × 105

Decay constant λ (s−1) 0.08
Fraction of delayed neutron β 0.0064
Keff 0.8952858

Table 2: Thermal neutron flux at the center point of three-dimensional homogeneous reactor with a positive
step reactivity.

Time (s) 3DKIN AMF GAEM Exact
h = 0.001 h = 0.0001 h = 0.001 h = 0.0001

0.0 0.816 0.816356 0.816356 0.816356 0.816
0.05 1.124 1.127264 1.127320 1.127300 1.127
0.10 1.406 1.407563 1.407587 1.407538 1.407
0.15 1.660 1.660798 1.660782 1.660695 1.660
0.20 1.890 1.890179 1.890112 1.889979 1.890
0.30 2.289 2.288396 2.288189 2.287949 2.288
0.40 2.622 2.621201 2.620796 2.620432 2.620

Table 2. The results of the GAEM for the two energy groups of the point kinetics equations
have an accuracy comparable with the results of the adaptive matrix formation (AMF) [11],
3DKIN [30] and the exact solution for the space-time nuclear reactor kinetics equations.

The fast and thermal neutron flux of the two energy groups of the point kinetics
equations with a negative step reactivity, ΔΣa2 = +0.0000369, is calculated in Table 3. This
table substantiates the accuracy of the results of the GAEM compared with the results of the
AMF [11].

Figure 1. shows the fast and thermal neutron flux at three values for positive step
reactivities, ΔΣa2 = −0.0000369, −2(0.0000369) and −3(0.0000369). And, the fast and thermal
neutron flux at three types of negative step reactivities,ΔΣa2 = +0.0000369,+2(0.0000369) and
+3(0.0000369), are shown in Figure 2.

The calculation times, CPU times, of the GAEM to the AMFmethod are 0.43 s: 0.79 s at
the same time step using personal desktop computer (processor: Core 2 Duo, 2.93GHz). This
means that the GAEM for two energy groups of the point kinetics equations is faster than the
AMF for the space-time nuclear reactor kinetics equations.

4.2. Ramp Reactivity

To substantiate the accuracy and the efficiency of the generalization of the analytical
exponential model for solving two energy groups of the point kinetics equations with linear
ramp reactivity, it is applied to three dimensional homogeneous reactor. The fast and thermal
neutron flux for a positive ramp reactivity, ΔΣa2 = −(0.0000369/0.4)t, are calculated in



8 Journal of Applied Mathematics

Table 3: Neutron flux at the center point of three-dimensional homogeneous reactor with a negative step
reactivity.

Time (s) AMF GAEM
Fast Thermal Fast Thermal

0.0 2.228929 0.816356 2.228929 0.816356
0.05 1.645481 0.601048 1.645513 0.601060
0.10 1.409437 0.513969 1.409514 0.513998
0.15 1.313217 0.478479 1.313283 0.478504
0.20 1.273214 0.463731 1.273261 0.463748
0.30 1.247508 0.454268 1.247519 0.454272
0.40 1.239679 0.451400 1.239661 0.451394
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Figure 1: Fast and thermal neutron flux at a positive step reactivity.

Table 4. This table is demonstrates the comparison between the results of the GAEM and
AMF.

The fast and thermal neutron flux of the two energy groups of the point kinetics
equations with a negative ramp reactivity, ΔΣa2 = +(0.0000369/0.4)t, is calculated in Table 5.

The fast and thermal neutron flux at different types of positive ramp reactivities,
ΔΣa2 = −(0.0000369 t), −2(0.0000369 t) and −3(0.0000369 t), is shown in Figure 3. And also,
the fast and thermal neutron flux at different types of negative ramp reactivities, ΔΣa2 =
+(0.0000369 t), +2(0.0000369 t) and +3(0.0000369 t), are shown in Figure 4.

For ramp reactivity, The calculation times, CPU times, of the GAEM to the AMF
method are 0.45 s: 0.81 s. This means, the GAEM is faster than the AMF.

5. Conclusions

Two energy groups of the point kinetics equations are represented a mathematical form
for three dimensional homogeneous reactor kinetics equations and average one group of
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Figure 2: Fast and thermal neutron flux at a negative step reactivity.
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Figure 3: Fast and thermal neutron flux at a positive ramp reactivity.

precursor delayed neutrons. The mathematical form was rewritten in the matrix form.
Generalization of the analytical exponential model (GAEM)was developed to solve the new
mathematical matrix form for three dimensional homogeneous reactor. This GAEM based on
the eigenvalues and the corresponding eigenvectors of the coefficient matrix.

The results of GAEM were compared with the AMF, 3DKIN, and the exact solution
for three dimensional homogeneous reactor. This comparison substantiated the accuracy of
the results of the GAEM for different types of reactivities. In addition, the GAEM for the
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Figure 4: Fast and thermal neutron flux at a negative ramp reactivity.

Table 4: Neutron flux at the center point of three dimensional homogeneous reactor with a positive ramp
reactivity.

Time (s) AMF GAEM
Fast Thermal Fast Thermal

0.0 2.228929 0.816356 2.228929 0.816356
0.05 2.276718 0.833995 2.276712 0.833993
0.10 2.399085 0.879151 2.399048 0.879137
0.15 2.580062 0.945931 2.579972 0.945898
0.20 2.816616 1.033217 2.816456 1.033158
0.30 3.484146 1.279522 3.483773 1.279385
0.40 4.529838 1.665354 4.529085 1.665078

Table 5: Neutron flux at the center point of three dimensional homogeneous reactor with a negative ramp
reactivity.

Time (s) AMF GAEM
Fast Thermal Fast Thermal

0.0 2.228929 0.816356 2.228929 0.816356
0.05 2.182204 0.799109 2.182170 0.799097
0.10 2.072954 0.758795 2.072892 0.758773
0.15 1.936615 0.708488 1.936528 0.708456
0.20 1.795565 0.656446 1.795460 0.656407
0.30 1.541171 0.562589 1.541033 0.562539
0.40 1.340555 0.488582 1.340396 0.488524
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mathematical form, two energy groups of the point kinetics equations, is faster than any other
traditional methods. So, this mathematical form may be one of the most important models
for the neutron diffusion equations in the nuclear reactors.
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