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We present sharp upper and lower generalized logarithmic mean bounds for the geometric
weighted mean of the geometric and harmonic means.

1. Introduction

For p ∈ R the generalized logarithmic mean Lp(a, b) of two positive numbers a and b is
defined by

Lp(a, b) =

⎧
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a, a = b,
[

ap+1 − bp+1
(
p + 1

)
(a − b)

]1/p

, p /= 0, p /= − 1, a /= b,

1
e

(
bb

aa

)1/(b−a)
, p = 0, a /= b,

b − a

log b − loga
, p = −1, a /= b.

(1.1)

It is well-known that Lp(a, b) is continuous and strictly increasing with respect to p ∈ R

for fixed a and b with a/= b. In the recent past, the generalized logarithmic mean has been
the subject of intensive research. In particular, many remarkable inequalities for Lp can be
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found in the literature [1–23]. The generalized logarithmic mean has applications in convex
function, economics, physics, and even in meteorology [24–27]. In [26] the authors study
a variant of Jensen’s functional equation involving Lp, which appear in a heat conduction
problem. LetA(a, b) = (a+b)/2, I(a, b) = (1/e)(bb/aa )1/(b−a), L(a, b) = (b−a)/(log b−loga),
G(a, b) =

√
ab, and H(a, b) = 2ab/(a + b) be the arithmetic, identric, logarithmic, geometric,

and harmonic means of two positive numbers a and b with a/= b, respectively. Then it is well
known that

min{a, b} < H(a, b) < G(a, b) = L−2(a, b) < L(a, b) = L−1(a, b)

< I(a, b) = L0(a, b) < A(a, b) = L1(a, b) < max{a, b}. (1.2)

In [28–30], the authors present bounds for L and I in terms of G and A.

Proposition 1.1. For all positive real numbers a and b with a/= b, one has

A1/3(a, b)G2/3(a, b) < L(a, b) <
1
3
A(a, b) +

2
3
G(a, b),

1
3
G(a, b) +

2
3
A(a, b) < I(a, b).

(1.3)

The proof of the following Proposition 1.2 can be found in [31].

Proposition 1.2. For all positive real numbers a and b with a/= b, we have

√

G(a, b)A(a, b) <
√

L(a, b)I(a, b) <
1
2
(L(a, b) + I(a, b)) <

1
2
(G(a, b) +A(a, b)). (1.4)

For r ∈ R the rth power mean Mr(a, b) of two positive numbers a and b is defined by

Mr(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ar + br

2

)1/r

, r /= 0,

√
ab, r = 0.

(1.5)

The main properties of these means are given in [32]. Several authors discussed the
relationship of certain means to Mr . The following sharp bounds for L, I, (IL)1/2, and (I +
L)/2 in terms of power means are proved in [31, 33–37].

Proposition 1.3. For all positive real numbers a and b with a/= b one has

M0(a, b) < L(a, b) < M1/3(a, b), M2/3(a, b) < I(a, b) < Mlog 2(a, b),

M0(a, b) < I1/2(a, b)L1/2(a, b) < M1/2(a, b),
1
2
[I(a, b) + L(a, b)] < M1/2(a, b).

(1.6)

The following three results were established by Alzer and Qiu in [38].
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Proposition 1.4. The inequalities

αA(a, b) + (1 − α)G(a, b) < I(a, b) < βA(a, b) +
(
1 − β

)
G(a, b) (1.7)

hold for all positive real numbers a and b with a/= b if and only if

α ≤ 2
3
, β ≥ 2

e
= 0.73575 · · · . (1.8)

Proposition 1.5. Let a and b be real numbers with a/= b. If 0 < a, b ≤ e, then

[G(a, b)]A(a,b) < [L(a, b)]I(a,b) < [A(a, b)]G(a,b). (1.9)

And, if a, b ≥ e, then

[A(a, b)]G(a,b) < [I(a, b)]L(a,b) < [G(a, b)]A(a,b). (1.10)

Proposition 1.6. For all positive real numbers a and b with a/= b, one has

Mc(a, b) <
1
2
(L(a, b) + I(a, b)) (1.11)

with the best possible parameter c = log 2/(1 + log 2) = 0.40938 · · ·

In [39] the authors presented inequalities between the generalized logarithmic mean
and the productAα(a, b)Gβ(a, b)Hγ(a, b) for all a, b > 0 with a/= b and α, β > 0 with α+ β < 1.

It is the aim of this paper to give a solution to the problem: for α ∈ (0, 1), what are the
greatest value p and the least value q, such that the inequality

Lp(a, b) ≤ Gα(a, b)H1−α(a, b) ≤ Lq(a, b) (1.12)

holds for all a, b >0?

2. Main Result

Theorem 2.1. For α ∈ (0, 1) and all a, b > 0, one has the following:

(1) L3α−5(a, b) = Gα(a, b)H1−α(a, b) = L−(2/α)(a, b) for α = 2/3,

(2) L3α−5(a, b) ≥ Gα(a, b)H1−α(a, b) ≥ L−(2/α)(a, b) for 0 < α < 2/3, and L3α−5(a, b) ≤
Gα(a, b)H1−α(a, b) ≤ L−(2/α)(a, b) for 2/3 < α < 1, with equality if and only if a = b, and
the parameters 3α − 5 and −2/α in each inequality cannot be improved.

Proof. (1) If α = 2/3 and a = b, then (1.1) implies that L3α−5(a, b) = Gα(a, b)H1−α(a, b) =
L−(2/α)(a, b) = a.
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If α = 2/3 and a/= b, then (1.1) leads to

L3α−5(a, b) = L−(2/α)(a, b) = L−3(a, b) =

[
a−2 − b−2

2(b − a)

]−1/3

= (ab)1/3
(

2ab
a + b

)1/3

= G2/3(a, b)H1/3(a, b) = Gα(a, b)H1−α(a, b).

(2.1)

(2) If a = b, then from (1.1) we clearly see that L3α−5(a, b) = Gα(a, b)H1−α(a, b) =
L−(2/α)(a, b) = a for any α ∈ (0, 1).

If a/= b, without loss of generality, we assume a > b. Let a/b = t > 1 and

f(t) = logL3α−5(a, b) − log
[
Gα(a, b)H1−α(a, b)

]
. (2.2)

Then (1.1) and simple computations yield

f(t) =
1

3α − 5
log

t3α−4 − 1
(3α − 4)(t − 1)

− α

2
log t − (1 − α) log

2t
1 + t

,

lim
t→ 1+

f(t) = 0,
(2.3)

f ′(t) = − t4−3α

t(t2 − 1)
(
t4−3α − 1

)g(t), (2.4)

where g(t) = (2 − α/2)t3α−2 − ((2 − α)(2 − 3α)/5 − 3α)t3α−3 + ((1 − α)(2 − 3α)/2(5 − 3α))t3α−4 −
((1 − α)(2 − 3α)/2(5 − 3α))t2 + ((2 − α)(2 − 3α)/(5 − 3α))t − (2 − α)/2,

g(1) = 0,

g ′(t) =
(2 − α)(3α − 2)

2
t3α−3 − 3(2 − α)(2 − 3α)(α − 1)

5 − 3α
t3α−4

+
(1 − α)(2 − 3α)(3α − 4)

2(5 − 3α)
t3α−5 − (1 − α)(2 − 3α)

(5 − 3α)
t

+
(2 − α)(2 − 3α)

(5 − 3α)
,

g ′(1) = 0,

g ′′(t) =
3(2 − α)(3α − 2)(α − 1)

2
t3α−4 − 3(2 − α)(2 − 3α)(α − 1)(3α − 4)

5 − 3α
t3α−5

− (1 − α)(2 − 3α)(3α − 4)
2

t3α−6 − (1 − α)(2 − 3α)
(5 − 3α)

,

(2.5)

g ′′(1) = 0, (2.6)

g ′′′(t) =
3
2
(1 − α)(2 − α)(4 − 3α)(3α − 2)t3α−7(t − 1)2. (2.7)
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If 0 < α < 2/3, then (2.7) implies

g ′′′(t) < 0 (2.8)

for t > 1.
From (2.3)–(2.6) and (2.8) we know that f(t) > 0 for t > 1.
If 2/3 < α < 1, then (2.7) leads to

g ′′′(t) > 0 (2.9)

for t > 1. Therefore f(t) < 0 for t > 1 follows from (2.3)–(2.6) and (2.9).
Let

h(t) = logL−(2/α)(a, b) − log
[
Gα(a, b)H1−α(a, b)

]
(2.10)

for t = a/b > 1; then (1.1) and elementary calculations lead to

h(t) = −α
2
log

t(α−2)/α − 1
((α − 2)/α)(t − 1)

− α

2
log t − (1 − α) log

2t
1 + t

,

lim
t→ 1+

h(t) = 0,
(2.11)

h′(t) = − t(2−α)/α

t(t2 − 1)
(
t(2−α)/α − 1

)v(t), (2.12)

where v(t) = ((2 − α)/2)t(3α−2)/α + ((3α − 2)/2)t(2α−2)/α − ((3α − 2)/2)t − (2 − α)/2,

v(1) = 0,

v′(t) =
(2 − α)(3α − 2)

2α
t(2α−2)/α +

(3α − 2)(α − 1)
α

t(α−2)/α − 3α − 2
2

,
(2.13)

v′(1) = 0, (2.14)

v′′(t) =
(2 − α)(1 − α)(2 − 3α)

α2
t−2/α(t − 1). (2.15)

If α ∈ (0, 2/3), then (2.15) implies

v′′(t) > 0 (2.16)

for t > 1.
From (2.11)–(2.14) and (2.16) we know that h(t) < 0 for t > 1.
If α ∈ (2/3, 1), then (2.15) leads to

v′′(t) < 0 (2.17)

for t > 1. Therefore, h(t) > 0 for t > 1 follows from (2.11)–(2.14) and (2.17).
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Next, we prove that the parameters −(2/α) and 3α − 5 in either case cannot be
improved. The proof is divided into two cases.

Case 1 (α ∈ (0, 2/3)). For any ε > 0 and x ∈ (0, 1), from (1.1) one has

[
Gα(1, 1 + x)H1−α(1, 1 + x)

]5−3α+ε − [L3α−5−ε(1, 1 + x)]5−3α+ε

=
f1(x)

(1 + x/2)(1−α)(5−3α+ε)
[
(1 + x)4−3α+ε − 1

] ,
(2.18)

where f1(x) = (1 + x)(1−α/2)(5−3α+ε)[(1 + x)4−3α+ε − 1] − (4 − 3α + ε)x(1 + x)4−3α+ε

(1 + x/2)(1−α)(5−3α+ε).
Let x → 0; making use of the Taylor expansion, we get

f1(x) =
ε(4 − 3α + ε)(5 − 3α + ε)

24
x3 + o

(
x3
)
. (2.19)

Equations (2.18) and (2.19) imply that for any α ∈ (0, 2/3) and ε > 0 there exists
δ = δ(ε, α) ∈ (0, 1), such that L3α−5−ε(1, 1 + x) < Gα(1, 1 + x)H1−α(1, 1 + x) for x ∈ (0, δ).

On the other hand, for any ε ∈ (0, (2/α) − 1) we have

L−(2/α)+ε(1, t) −Gα(1, t)H1−α(1, t)

= tα/(2−εα)

⎧
⎨

⎩

[
1 − t−2/α+ε+1

(2/α − ε − 1)(1 − 1/t)

]−α/(2−εα)
− t−εα

2/2(2−εα)
(

2t
1 + t

)1−α
⎫
⎬

⎭
,

lim
t→+∞

⎧
⎨

⎩

[
1 − t−2/α+ε+1

(2/α − ε − 1)(1 − 1/t)

]−α/(2−εα)
− t−εα

2/2(2−εα)
(

2t
1 + t

)1−α
⎫
⎬

⎭

=
(
2
α
− ε − 1

)α/(2−εα)
> 0.

(2.20)

From (2.20) we know that for any α ∈ (0, 2/3) and ε ∈ (0, 2/α − 1) there exists T =
T(ε, α) > 1, such that L−2/α+ε(1, t) > Gα(1, t)H1−α(1, t) for t ∈ (T,∞).

Case 2 (α ∈ (2/3, 1)). For any ε ∈ (0, 4 − 3α) and x ∈ (0, 1), from (1.1) one has

[L3α−5+ε(1, 1 + x)]5−3α−ε −
[
Gα(1, 1 + x)H1−α(1, 1 + x)

]5−3α−ε

=
f2(x)

(1 + x/2)(1−α)(5−3α−ε)
[
(1 + x)4−3α−ε − 1

] ,
(2.21)

where f2(x) = (4−3α−ε)x(1+x)4−3α−ε(1+x/2)(1−α)(5−3α−ε)−(1+x)(1−α/2)(5−3α−ε)[(1+x)4−3α−ε−1].
Let x → 0; making use of the Taylor expansion, we have

f2(x) =
ε

24
(4 − 3α − ε)(5 − 3α − ε)x3 + o

(
x3
)
. (2.22)
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Equations (2.21) and (2.22) imply that for any α ∈ (2/3, 1) and ε ∈ (0, 4 − 3α) there
exists δ = δ(ε, α) ∈ (0, 1), such that L3α−5+ε(1, 1 + x) > Gα(1, 1 + x)H1−α(1, 1 + x) for x ∈ (0, δ).

On the other hand, for any ε > 0, we have

Gα(1, t)H1−α(1, t) − L−(2/α)−ε(1, t)

= tα/2

⎧
⎨

⎩

(
2t

1 + t

)1−α
− t−εα

2/2(2+εα)

[
1 − t−(2/α+ε−1)

(2/α + ε − 1)(1 − 1/t)

]−α/(2+εα)⎫⎬

⎭
,

lim
t→+∞

⎧
⎨

⎩

(
2t

1 + t

)1−α
− t−εα

2/2(2+εα)

[
1 − t−(2/α+ε−1)

(2/α + ε − 1)(1 − 1/t)

]−α/(2+εα)⎫⎬

⎭
= 21−α > 0.

(2.23)

From (2.23) we know that for any α ∈ (2/3, 1) and ε > 0 there exists T = T(ε, α) > 1,
such that L−(2/α)−ε(1, t) < Gα(1, t)H1−α(1, t) for t ∈ (T,∞).
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