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The asymptotic behavior (as well as the global existence) of classical solutions to the 3D
compressible Euler equations are considered. For polytropic perfect gas (P(ρ) = P0ρ

γ ), time
asymptotically, it has been proved by Pan and Zhao (2009) that linear damping and slip boundary
effect make the density satisfying the porous medium equation and the momentum obeying the
classical Darcy’s law. In this paper, we use a more general method and extend this result to the
3D compressible Euler equations with nonlinear damping and a more general pressure term.
Comparing with linear damping, nonlinear damping can be ignored under small initial data.

1. Introduction and Main Results

We study the 3D compressible Euler equations with nonlinear damping:

ρt +∇ · (ρ�u) = 0,
(
ρ�u
)
t +∇ · (ρ�u ⊗ �u) +∇P(ρ) = −αρ�u − βρ|�u|q−1�u.

(1.1)

This model represents the compressible flow through porous media with nonlinear external
force field. Here ρ, �u, and M = ρ�u denote density, velocity, and momentum, respectively.
The pressure P is a smooth function of ρ such that P(ρ) > 0, P ′(ρ) > 0 for any ρ > 0.
Obviously, for polytropic perfect gas, the pressure term P(ρ) = P0ρ

γ (P0 > 0, γ > 1) satisfies
this condition. (∇·) denotes the divergence in R3 and the symbol ⊗ denotes the Kronecker
tensor product. The external term −αρ�u − βρ|�u|q−1�u appears in the momentum equation,
where α is a positive constant, β is another constant but can be either negative or positive.
The term −αρ�u is called the linear damping and throughout this paper we assume α ≡ 1.
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The term −βρ|�u|q−1�u with q > 1 is regarded as a nonlinear source to the linear damping,

where the symbol |�u| denotes
√
u21 + u

2
2 + u

2
3 if we assume �u = (u1, u2, u3). When β > 0, the

term −βρ|�u|q−1�u is nonlinear damping, while, when β < 0 this term is regarded as nonlinear
accumulating. For convenience, we call both the two cases nonlinear damping.

System (1.1) is supplemented by the following initial and boundary conditions:

(
ρ, �u
)
(�x, 0) =

(
ρ0, �u0

)
(�x), �x = (x1, x2, x3) ∈ Ω,

�u · �n|∂Ω = 0, t ≥ 0,
∫

Ω
ρ0d�x = ρ∗ > 0,

(1.2)

whereΩ ∈ R3 is a bounded domain with smooth boundary ∂Ω, �n is the unit outward normal
vector of ∂Ω, and the last condition is imposed to avoid the trivial case, ρ ≡ 0.

For 1D case, system (1.1) and its corresponding p-system in Lagrangian coordinates
have been studied intensively during the past decades. When β = 0, for various initial
and initial-boundary conditions, both the existence and large time behaviors of solutions
(including classical and weak solutions) were investigated, see [1–10] and the references
therein. [11–13] studied the p-system with nonlinear damping (β /= 0). The existence as well
as approximate behavior of smooth solutions to the initial boundary condition in half line
and Cauchy problem are considered.

From physical point of view, the 3D model (1.1) describes more realistic phenomena.
Also, the 3D compressible Euler equations carry some unique features, such as the effect of
vorticity, which are totally absent in the 1D case and make the problem more mathematically
challenging. Thus, due to strong physical background and significant mathematical
challenge, system (1.1) and its time-asymptotic behavior are of great importance and are
much less understood than its 1D companion. When β = 0, investigations were carried
out among small smooth solutions and we refer the readers to [14–16]. In the direction of
nonlinear damping (β /= 0), even the global existence of classical solutions is still open, no less
than the asymptotic behavior. In this paper, we consider the global existence and asymptotic
behavior of classical solutions to the 3D problem (1.1)(1.2) with nonlinear damping and slip
boundary condition.

When β = 0, it has been proved that (see [15]) the dissipation in the momentum
equations and the boundary effect make system (1.1) be approximated by the decoupled
system

ρ̃t = ΔP
(
ρ̃
)
,

M̃ = ρ̃�̃u = −∇P(ρ̃),
(1.3)

where the first equation is the famous porous medium equation with P(ρ) = ργ/γ , while the
second one states Darcy’s law. The corresponding initial-boundary conditions change into

ρ̃(�x, 0) = ρ̃0(�x),

∇P(ρ̃) · �n|∂Ω = 0, t ≥ 0,
∫

Ω
ρ̃0d�x = ρ∗ > 0.

(1.4)
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When β /= 0, we will prove in this paper that the effect of nonlinear damping (β < 0) or
accumulating (β > 0) can be ignored comparing with the linear damping when the initial
perturbation around equilibrium state is small.

Before stating our main results, we give some notations. Throughout this paper, ‖ · ‖
and ‖ · ‖s denote the norms of L2(Ω) andHs(Ω), respectively. For any vector valued function
F = (f1, f2, f3) : Ω 
→ R3, we denote

‖F‖2s =
∥
∥f1
∥
∥2
s +
∥
∥f2
∥
∥2
s +
∥
∥f3
∥
∥2
s, ‖F‖L∞ =

∥
∥f1
∥
∥
L∞ +

∥
∥f2
∥
∥
L∞ +

∥
∥f3
∥
∥
L∞ , (1.5)

furthermore, for any functional matrixM = (Mij)n×n : Ω → Rn×n, we denote

‖M‖2s =
n∑

i,j=1

∥
∥Mij

∥
∥2
s
, ‖M‖L∞ =

n∑

i,j=1

∥
∥Mij

∥
∥
L∞ . (1.6)

The energy space under consideration is

X3(Ω, [0, T]) =
{
F : Ω × [0, T] −→ R3(or R)

}
(1.7)

equipped with norm

‖F‖3,T = ess sup
0≤t≤T

|‖F‖| = ess sup
0≤t≤T

[
3∑

l=0

∥∥∥∂ltF(·, t)
∥∥∥
2

3−l

]1/2
, (1.8)

for any F ∈ X3(Ω, [0, T]). The notation |Ω| denotes the measure of the R3 domain Ω. In this
paper, unless specified, C will denote a generic constant which is independent of time. The
followings are the main results of this paper.

Theorem 1.1. Suppose the initial data satisfy the compatibility condition ∂lt�u(0) · �n|∂Ω = 0 for
0 ≤ l ≤ 2. Then there exists a constant δ > 0 such that if (ρ0 − ρ∗/|Ω| , �u0) ∈ H3(Ω) and
‖(ρ0 − ρ∗/|Ω|, �u0)‖3 ≤ δ, the initial boundary condition (1.1) and (1.2) exists a unique global
solution (ρ, �u) in C1(Ω × [0,∞)) ∩X3(Ω, [0,∞)). Moreover, the global solution satisfies

∣∣∣∣

∥∥∥∥

(
ρ − ρ∗

|Ω|
)
(·, t)
∥∥∥∥

∣∣∣∣ + |‖�u(·, t)‖| ≤ C1

∥∥∥∥

(
ρ0 −

ρ∗

|Ω| , �u0
)∥∥∥∥

3
exp−η1t, (1.9)

for some certain positive constants C1 and η1.

Theorem 1.2. Let (ρ, �u) be the unique global smooth solution of (1.1) and (1.2), (ρ̃, �̃u) be the global
solution of (1.3)(1.4). Then there exist constants C2 and η2 such that

∥∥(ρ − ρ̃)(·, t)∥∥1 +
∥∥∥
(
�u − �̃u

)
(·, t)
∥∥∥ ≤ C2 exp−η2t (1.10)

satisfies for big enough t > 0.
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Theorem 1.1 states that the global solution of (1.1) and (1.2) converges to the steady
state (ρ∗/|Ω|, 0) exponentially fast in time. To prove this theorem, we first change problem
(1.1) into

ρt +∇ · (ρ�u) = 0,

�ut + �u · ∇�u + �u +
∇P(ρ)

ρ
= −β|�u|q−1�u,

(1.11)

and then we consider the existence and large time behavior of perturbation solution. It is worth
pointing out that in [15] the pressure P is assumed to be P(ρ) = ργ/γ , then the authors
can introduce a nonlinear transformation σ = (ρθ/θ)(θ = (γ − 1)/2) to reformulate the
perturbation system as a symmetric hyperbolic system. In this paper, the pressure is more
general and the transformation in [15] do not work any more. To overcome this difficulty,
we use a symmetrizer to reduce the system to a symmetric hyperbolic one in the sense
of Friedrichs. Due to the slip boundary condition, the basic energy estimates can not be
applied directly to spatial derivatives. Inspired by [15, 17], we use time-derivatives, which
still preserve the boundary conditions, to estimate the spatial derivatives.

Theorem 1.2 is our target result. To prove this theorem, we first claim system (1.3)
and (1.4) decays to the steady state (ρ∗/|Ω|, 0) exponentially, too. Then using the triangular
inequality we get Theorem 1.2.

Now, we recall some inequalities which will be used in the following.

Lemma 1.3. Let Ω be any bounded domain in R3 with smooth boundary. Then

∥∥f
∥∥
L∞(Ω) ≤ C∥∥f∥∥H2(Ω),

∥∥f
∥∥
Lp(Ω) ≤ C∥∥f∥∥H1(Ω), 2 ≤ p ≤ 6 (1.12)

for some constant C > 0 depending only on Ω.

Lemma 1.4. Let �u ∈ Hs(Ω) be a vector-valued function satisfying �u · �n|∂Ω = 0, where �n is the unit
outer normal of ∂Ω. Then

‖�u‖s ≤ C(‖∇ × �u‖s−1 + ‖∇ · �u‖s−1 + ‖�u‖s−1), (1.13)

for s ≥ 1, and the constant C depends only on s and Ω.

2. Global Existence and Asymptotic Behavior

In this section, we will consider the global existence and the asymptotic behavior of system
(1.11) and (1.2). Due to the boundary effect (1.2)2 and the dissipation in the velocity
equations, the kinetic energy is conjectured to vanish and the potential energy will converge
to a constant as time goes to infinity. Furthermore, since the conservation of mass and the
initial condition (1.2)3, we expect

(
ρ, �u
) −→

(
ρ∗

|Ω| , 0
)

as t −→ ∞, (2.1)
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where (ρ, �u) is the solution of problem (1.11) and (1.2), and |Ω| is the measure of Ω in R3.
Without loss of generality, we assume |Ω| = 1.

For this purpose, we consider the perturbation system:

ϕt +∇ · ([ϕ + ρ∗
]
�u
)
= 0,

�ut + �u · ∇�u + �u +
∇P([ϕ + ρ∗

])

[
ϕ + ρ∗

] = −β|�u|q−1�u,
(2.2)

where ϕ = ρ − ρ∗. Let g(ρ) = Q′(ρ) = P ′(ρ)/ρ, then Q′(ρ)∇ρ = ∇P(ρ)/ρ and system (2.2)
changes into

ϕt +
[
ϕ + ρ∗

]∇ · �u +∇ϕ · �u = 0,

�ut + �u · ∇�u + �u + g
(
ϕ + ρ∗

)∇ϕ = −β|�u|q−1�u,
(2.3)

that is,

ϕt +
[
ϕ + ρ∗

]
�ui,i + ϕ,i�u

i = 0,

�uit + �u
j �ui,j + �u

i + g
(
ϕ + ρ∗

)
ϕ,i = −β|�u|q−1�ui.

(2.4)

In matrix notation, we have

⎡

⎢⎢
⎣

ϕt
�u1t
�u2t
�u3t

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

�u1 ϕ + ρ∗ 0 0
g
(
ϕ + ρ∗

)
�u1 0 0

0 0 �u1 0
0 0 0 �u1

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

ϕ,1

�u1,1

�u2,1

�u3,1

⎤

⎥⎥⎥⎥
⎦
+

⎡

⎢⎢
⎣

�u2 0 ϕ + ρ∗ 0
0 �u2 0 0

g
(
ϕ + ρ∗

)
0 �u2 0

0 0 0 �u2

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

ϕ,2

�u1,2

�u2,2

�u3,2

⎤

⎥⎥⎥⎥
⎦

+

⎡

⎢⎢
⎣

�u3 0 0 ϕ + ρ∗

0 �u3 0 0
0 0 �u3 0

g
(
ϕ + ρ∗

)
0 0 �u3

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

ϕ,3

�u1,3

�u2,3

�u3,3

⎤

⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢
⎣

0
�u1 + β|�u|q−1�u1
�u2 + β|�u|q−1�u2
�u3 + β|�u|q−1�u3

⎤

⎥⎥⎥⎥
⎦

= 0.

(2.5)

Denoting w =
[ ϕ
�u

]
and multiplying (2.5) on the left by the symmetrizer

D = diag
[
g
(
ϕ + ρ∗

)
, ϕ + ρ∗, ϕ + ρ∗, ϕ + ρ∗

]
, (2.6)

we can rewrite the result to be

Dwt +A1w,1 +A2w,2 +A3w,3 + f = 0, (2.7)
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where

A1 =

⎡

⎢
⎢
⎢
⎢
⎣

g
(
ϕ + ρ∗

)
�u1

(
ϕ + ρ∗

)
g
(
ϕ + ρ∗

)
0 0

(
ϕ + ρ∗

)
g
(
ϕ + ρ∗

) (
ϕ + ρ∗

)
�u1 0 0

0 0
(
ϕ + ρ∗

)
�u1 0

0 0 0
(
ϕ + ρ∗

)
�u1

⎤

⎥
⎥
⎥
⎥
⎦
,

A2 =

⎡

⎢
⎢
⎢
⎢
⎣

g
(
ϕ + ρ∗

)
�u2 0

(
ϕ + ρ∗

)
g
(
ϕ + ρ∗

)
0

0
(
ϕ + ρ∗

)
�u2 0 0

(
ϕ + ρ∗

)
g
(
ϕ + ρ∗

)
0

(
ϕ + ρ∗

)
�u2 0

0 0 0
(
ϕ + ρ∗

)
�u2

⎤

⎥
⎥
⎥
⎥
⎦
,

A3 =

⎡

⎢⎢⎢⎢
⎣

g
(
ϕ + ρ∗

)
�u3 0 0

(
ϕ + ρ∗

)
g
(
ϕ + ρ∗

)

0
(
ϕ + ρ∗

)
�u3 0 0

0 0
(
ϕ + ρ∗

)
�u3 0

(
ϕ + ρ∗

)
g
(
ϕ + ρ∗

)
0 0

(
ϕ + ρ∗

)
�u3

⎤

⎥⎥⎥⎥
⎦
,

(
ϕ + ρ∗

)

⎡

⎢⎢⎢⎢
⎣

0
�u1 + β|�u|q−1�u1
�u2 + β|�u|q−1�u2
�u3 + β|�u|q−1�u3

⎤

⎥⎥⎥⎥
⎦
.

(2.8)

The existence of global solution to (2.7) can be proved by local existence result and
a priori estimates. The local existence is classical and we omit it here. As for the a priori
estimates, we first have the following estimate about the temporal derivatives of w.

Lemma 2.1. Let |‖w‖| ≤ δ be sufficiently small. Then there exists a positive constant C3 > 0 such
that

d

dt

∫

Ω
∂kt w ·D∂kt wd�x + ρ∗

∫

Ω

∣∣∣∂kt u(�x, t)
∣∣∣
2
d�x ≤ C3|‖w‖|3, (2.9)

for k = 0, 1, 2, 3.

Proof. (1) Zero Order Estimate.

Multiplying (2.7) by w and integrating over Ω, we have

∫

Ω
w ·Dwtd�x +

3∑

i=1

∫

Ω
w ·Aiw,id�x +

∫

Ω
w · fd�x = 0. (2.10)
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Using Lemma 1.3 and Cauchy-Schwarz inequality, we have

∫

Ω
w ·Dwtd�x =

1
2
d

dt

∫

Ω
w ·Dwd�x − 1

2

∫

Ω
w ·Dtwd�x

≤ 1
2
d

dt

∫

Ω
w ·Dwd�x + C‖Dt‖L∞

∫

Ω
|w|2d�x

≤ 1
2
d

dt

∫

Ω
w ·Dwd�x + C|‖w‖|3.

(2.11)

For the second term coming from the left side of (2.10), we have

3∑

i=1

∫

Ω
w ·Aiw,id�x =

1
2

∫

Ω

3∑

i=1

(
w ·Aiw

)

i
d�x − 1

2

∫

Ω
w

3∑

i=1

Ai
,iwd�x

≤ 1
2

∫

∂Ω
w ·

3∑

i=1

Ai�niwds + C
∥∥∥Ai

,i

∥∥∥
L∞

∫

Ω
|w|2d�x,

(2.12)

where we have used the Divergence Theorem. Since

w ·
3∑

i=1

Ai�niw =
(
gϕ2 + 2ρgϕ + ρ|�u|2

)
�n · �u = 0. (2.13)

Here g = g(ρ), ρ = ϕ + ρ∗, then (2.12) turns into

3∑

i=1

∫

Ω
w ·Aiw,id�x ≤ C|‖w‖|3. (2.14)

While the term

∫

Ω
w · fd�x =

(
ρ∗ + ϕ

)
∫

Ω

(
1 + β|�u|q−1

)
|�u|2d�x ≥ ρ∗

2

∫

Ω
|�u|2d�x, (2.15)

for q > 1 and the smallness of δ. Thus, we have

d

dt

∫

Ω
w ·Dwd�x + ρ∗

∫

Ω
|�u|2d�x ≤ C|‖w‖|3

(2.16)

from (2.10) to (2.15).
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(2) Higher Derivatives Estimate.

For k = 1, 2, 3, taking ∂kt of system (2.7), we get

D
{
∂kt w

}

t
+

3∑

i=1

Ai∂kt w,i + ∂kt f = −
k∑

l=1

k!
l!(k − l)!

{
∂ltD∂

k−l
t wt + ∂ltA

i∂k−lt w,i

}
. (2.17)

Multiply (2.17) by ∂kt and integrate over Ω to have

∫

Ω
∂kt w ·D

{
∂kt w

}

t
d�x +

∫

Ω
∂kt w ·

3∑

i=1

Ai∂kt w,id�x +
∫

Ω
∂kt w · ∂kt fd�x

= −
k∑

l=1

k!
l!(k − l)!

∫

Ω

{
∂kt w · ∂ltD∂k−lt wt + ∂kt w · ∂ltAi∂k−lt w,i

}
d�x.

(2.18)

Just like the estimates from (2.11) and (2.15), we estimate the three terms on the left side of
(2.18) as follows:

∫

Ω
∂kt w ·D

{
∂kt w

}

t
d�x =

1
2
d

dt

∫

Ω
∂kt w ·D∂kt wd�x − 1

2

∫

Ω
∂kt w ·Dt∂

k
t wd�x

≤ 1
2
d

dt

∫

Ω
∂kt w ·D∂kt wd�x + C‖Dt‖L∞

∫

Ω

∣∣∣∂kt w
∣∣∣
2
d�x

≤ 1
2
d

dt

∫

Ω
∂kt w ·D∂kt wd�x + C|‖w‖|3,

(2.19)

3∑

i=1

∫

Ω
∂kt w ·Ai∂kt w,id�x =

1
2

∫

Ω

3∑

i=1

(
∂kt w ·Ai∂kt w

)

i
d�x − 1

2

∫

Ω
∂kt w ·

3∑

i=1

Ai
,i∂

k
t wd�x

≤ 1
2

∫

∂Ω
∂kt w ·

3∑

i=1

Ai�ni∂
k
t wds + C

∥∥∥Ai
,i

∥∥∥
L∞

∫

Ω

∣∣∣∂kt w
∣∣∣
2
d�x

=
1
2

∫

∂Ω

[
g
(
∂kt ϕ
)2

+ ρ
∣∣∣∂kt �u

∣∣∣
2
]
�u · �nds + 2

∫

Ω
ρg∂kt ϕ

(
∂kt �u · �n

)
ds

+ C
∥∥∥Ai

,i

∥∥∥
L∞

∫

Ω

∣∣∣∂kt w
∣∣∣
2
d�x ≤ C|‖w‖|3,

(2.20)

∫

Ω
∂kt w · ∂kt fd�x =

∫

Ω
∂kt �u ·

(
k∑

l=0

[
∂lt
(
ϕ + ρ∗

)
∂k−lt

(
�u + β|�u|q−1�u

)])

d�x

≥ (ρ∗ + ϕ)
∫

Ω

(
1 + β|�u|q−1

)∣∣∣∂kt �u
∣∣∣
2
d�x

+ C
k∑

l=1

∫

Ω
∂ltϕ∂

k
t �u · ∂k−lt

[(
1 + |�u|q−1

)
�u
]
d�x

+ C
(
ρ∗ + ϕ

)
∫

Ω
∂kt �u

k∑

l=1

∂lt

(
1 + β|�u|q−1

)
∂k−lt �ud�x

≥ ρ∗

2

∫

Ω

∣∣∣∂kt �u
∣∣∣
2
d�x + C|‖w‖|3.

(2.21)
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For the term on the right-hand side of (2.18)we have,

∣
∣
∣
∣

∫

Ω

{
∂kt w · ∂ltD∂k−lt wt + ∂kt w · ∂ltAi∂k−lt w,i

}
d�x

∣
∣
∣
∣

≤ C
∥
∥
∥∂kt w

∥
∥
∥
L2

∥
∥
∥∂ltD

∥
∥
∥
L4

∥
∥
∥∂k−lt wt

∥
∥
∥
L4

+ C
∥
∥
∥∂kt w

∥
∥
∥
L2

∥
∥
∥∂ltA

i
∥
∥
∥
L4

∥
∥
∥∂k−lt w,i

∥
∥
∥
L4

≤ C|‖w‖|3,
(2.22)

for l = 1, 2 and l ≤ k ≤ 3. When l = k = 3, we get

∣
∣
∣
∣

∫

Ω

{
∂kt w · ∂ltD∂k−lt wt + ∂kt w · ∂ltAi∂k−lt w,i

}
d�x

∣
∣
∣
∣

≤ C
∥
∥
∥∂kt w

∥
∥
∥
L2

∥
∥
∥∂ltD

∥
∥
∥
L2
‖wt‖L∞ + C

∥
∥
∥∂kt w

∥
∥
∥
L2

∥
∥
∥∂ltA

i
∥
∥
∥
L2
‖w,i‖L∞ ≤ C|‖w‖|3.

(2.23)

Combining (2.18) and (2.23), we get

d

dt

∫

Ω
∂kt w ·D∂kt wd�x + ρ∗

∫

Ω

∣∣∣∂kt u(x, t)
∣∣∣
2
d�x ≤ C|‖w‖|3, (2.24)

for k = 1, 2, 3. Thus we prove Lemma 2.1.

For slip boundary condition, spatial derivatives can be controlled by temporal
derivatives and vorticity that is discussed below.

Lemma 2.2. Let |‖w‖| ≤ δ be sufficiently small and (ϕ, �u) be the solution of (1.11) and (1.2), then
there exists a constant C4 such that

|‖w‖|2 ≤ C4

(
2∑

l=0

∥∥∥∂lt(∇ × �u)
∥∥∥
2

2−l
+

3∑

l=0

∥∥∥∂ltw
∥∥∥
2
)

.

(2.25)

Proof. From the velocity equation (2.3)2 we have

∇ϕ = − 1
g
(
ρ∗ + ϕ

)
[
�u + �ut + �u · ∇�u + β|�u|q−1�u

]
. (2.26)

Taking the L2 inner product of (2.26)with ∇, we get

∥∥∇ϕ∥∥2 = −
∫

Ω

1
g
(
ρ∗ + ϕ

)
[
�u + �ut + �u · ∇�u + β|�u|q−1�u

]
· ∇ϕd�x

≤ C
(
‖�u‖2 + ‖�ut‖2 + ‖�u‖L∞‖∇�u‖2 + β‖�u‖q−1L∞ ‖�u‖2

)

≤ C
(
‖�u‖2 + ‖�ut‖2

)
+ C|‖w‖|r ,

(2.27)

where r = min{3, q + 1} > 2.
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The continuity equation (2.3)1 implies

∇ · �u = − 1
ϕ + ρ∗

(
ϕt + �u · ∇ϕ). (2.28)

Therefore, we have

‖∇ · �u‖2 ≤ C
(∥
∥ϕt
∥
∥2 + |‖w‖|3

)
. (2.29)

Using Lemma 1.4 with s = 1, we have

‖�u‖21 ≤ C
(
‖∇ × �u‖2 + ‖∇ · �u‖2 + ‖�u‖2

)

≤ C
(
‖∇ × �u‖2 + ‖�u‖2 + ∥∥ϕt

∥∥2 + |‖w‖|3
)
.

(2.30)

Next, we take time derivatives of (2.26) and (2.28). It is clear that every time derivative
up to order two of ∇ϕ and ∇ · �u is bounded by

∑3
l=0 ‖∂ltw‖2. Furthermore, by using an

induction on the number of spatial derivatives, we get that the same is true for any derivative
up to order of two of ∇ϕ and ∇ · �u. Applying Lemma 1.4 with s = 1, 2, 3, we complete the
proof of Lemma 2.2.

From Lemma 2.2, to prove Theorem 1.1 we only need to estimate ‖∂lt(∇ × �u)‖22−l and
‖∂itw‖2 for l = 0, 1, 2, i = 0, 1, 2, 3. The following Lemma is contributed to the estimate of
∇ × �u.

Lemma 2.3. Let |‖w‖| ≤ δ is sufficiently small, then for any solution w = (ϕ, �u) of problem
(1.11)(1.2), one has

1
2
d

dt

(
2∑

l=0

∥∥∥∂lt(∇ × �u)
∥∥∥
2
)

+
2∑

l=0

∥∥∥∂lt(∇ × �u)
∥∥∥
2 ≤ C|‖w(t)‖|3. (2.31)

Proof. Taking ∇× of the velocity equation in (2.3) and denoting the vorticity �v = ∇ × �u, we
have

�vt + �v = −∇ × (�u · ∇�u) − ∇ × (g(ρ)∇ϕ) − β∇ ×
(
|�u|q−1�u

)

= �v · ∇�u − �u · ∇�v − �v∇ · �u − β|�u|q−1�v − β∇|�u|q−1 × �u.
(2.32)

Let ∂ denote any mixed time and spatial derivative of order at most 2, then by taking any
mixed derivative of the above equation, we have

∂�vt + ∂�v = −∂
(
∇ × (�u · ∇�u) + β∇ ×

(
|�u|q−1�u

))

= −∂(−�v · ∇�u + �u · ∇�v + �v∇ · �u) − ∂
(
β|�u|q−1�v + β∇|�u|q−1 × �u

)
.

(2.33)
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Multiplying the above equation by ∂�v and integrating the result over Ω, similar the
calculations in (2.22) and (2.23), we get

1
2
d

dt
‖∂�v‖2 + ‖∂�v(t)‖2 ≤ C|‖w‖|3, (2.34)

by using the Sobolev inequality in Lemma 1.3. This completes the proof of Lemma 2.3.

The next Lemma gives the dissipation in density due to nonlinearity.

Lemma 2.4. There exists a positive constant C5 such that

− d
dt

(
3∑

l=1

∫

Ω

(
∂l−1t ϕ∂ltϕ

)
d�x

)

+
3∑

l=0

∥
∥
∥∂ltϕ

∥
∥
∥
2 ≤ C5

(
‖�u‖2 + ‖�ut‖2 + |‖w‖|r

)
, (2.35)

where r = min{3, q + 1}.

Proof. Due to the conservation of total mass, we know that
∫
Ω(ρ−ρ∗)d�x = 0, that is,

∫
Ω ϕd�x = 0.

Using Poincaré’s inequality and (2.27), we have

∥∥ϕ
∥∥2 ≤ C∥∥∇ϕ∥∥2 ≤ C

(
‖�u‖2 + ‖�ut‖ + |‖w‖|r

)
. (2.36)

Taking the t derivative of (2.3)1 and applying (∇·) to (2.3)2, we get

ϕtt +
(∇ϕ · �u)t + ϕt(∇ · �u) + ϕ(∇ · �u)t = 0, (2.37)

(∇ · �u)t +∇ · (�u · ∇�u) +∇ · �u +∇ · (g(ρ)∇ϕ) = −β∇ ·
(
|�u|q−1�u

)
. (2.38)

(2.37) − (2.38) × ϕ yields

ϕtt +
(∇ϕ · �u)t + ϕt(∇ · �u) − ϕ∇ ·

[
�u · ∇�u + g

(
ρ
)∇ϕ + �u + β|�u|q−1�u

]
= 0, (2.39)

that is,

ϕtt +
(∇ϕ · �u)t + ϕt(∇ · �u) + ϕ∇ · �ut = 0. (2.40)

Multiplying (2.40) by ϕ, and integrating the result over Ω, we have

d

dt

∫

Ω
ϕϕtd�x −

∫

Ω
ϕ2
t d�x +

∫

Ω
∇ϕt · �uϕd�x +

∫

Ω
∇ϕ · �utϕd�x

+
∫

Ω
ϕt(∇ · �u)ϕd�x +

∫

Ω

{
∇ ·
[
ϕ2�ut

]
− ∇
(
ϕ2
)
· �ut
}
d�x = 0.

(2.41)
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Using the Divergence Theorem, we obtain

d

dt

∫

Ω
ϕϕtd�x −

∫

Ω
ϕ2
t d�x +

∫

Ω
∇ϕt · �uϕdx +

∫

Ω
∇ϕ · �utϕd�x

+
∫

Ω
ϕt(∇ · �u)ϕd�x +

∫

Ω

[
ϕ2�ut

]
· �nds − 2

∫

Ω
ϕ∇ϕ · �utd�x = 0.

(2.42)

Then we have

− d
dt

∫

Ω
ϕϕtd�x +

∫

Ω
ϕ2
t d�x ≤ C|‖w‖|3. (2.43)

Furthermore, applying the derivative ∂t to (2.40)we have

ϕttt +
(∇ϕtt

) · �u +∇ϕ · �utt + 2∇ϕt · �ut + ϕtt(∇ · �u) + ϕt(∇ · �u)t + ϕ∇ · �utt + ϕt∇ · �ut = 0. (2.44)

Taking L2 inner product of (2.44)with ϕt, we get

− d
dt

∫

Ω
ϕttϕtd�x +

∫

Ω
ϕ2
ttd�x −

∫

Ω
∇ · (ϕtt�u + ϕ�utt

)
ϕtd�x −

∫

Ω
∇ ·
(
ϕ2
t �ut
)
d�x −

∫

Ω
ϕ2
t (∇�u)td�x = 0,

(2.45)

that is,

− d
dt

∫

Ω
ϕttϕtd�x +

∫

Ω
ϕ2
ttd�x ≤ C|‖w‖|3, (2.46)

where we have used the boundary condition and the Sobolev inequality in Lemma 1.3. Next,
apply the derivative ∂t to (2.44) and times the result with ϕtt to get

− d
dt

∫

Ω
ϕtttϕttd�x +

∫

Ω
ϕ2
tttd�x ≤ C|‖w‖|3, (2.47)

in which we have used

ϕtt∇ · (ϕttt�u
)
+ ϕtt∇ · (ϕ�uttt

)
= ∇ · (ϕtttϕtt�u

) − ∇ϕtt
(
ϕttt�u

)
+∇ · (ϕϕtt�uttt

) − ∇ϕtt
(
ϕ�uttt

)
,

(2.48)

and the similar method as (2.46). Combining (2.43), (2.46), and (2.47), we finish the proof of
Lemma 2.4.
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Combining Lemmas 2.1 and 2.4, we can characterize the total dissipation of
∑3

l=0 ‖∂ltw‖2. Let

λ = min

{
ρ∗

2C5
,
ρ∗

4
,
g
(
ρ∗/2

)

4

}

,

E(t) =
∫

Ω

(
3∑

l=0

(
∂ltw ·D∂ltw

)
− λ

3∑

l=1

(
∂l−1t ϕ∂ltϕ

))

d�x.

(2.49)

We can easily see that
∑3

l=0 ‖∂ltw‖2 and E(t) are equivalent, that is, there exist constantsA and
B such that

A
3∑

l=0

∥
∥
∥∂ltw

∥
∥
∥
2 ≤ E(t) ≤ B

3∑

l=0

∥
∥
∥∂ltw

∥
∥
∥
2
. (2.50)

Calculating (2.9) + λ(2.35), we have

d

dt

∫

Ω

(
3∑

l=0

(
∂ltw ·D∂ltw

)
− λ

3∑

l=0

(
∂l−1t ϕ∂ltϕ

))

d�x + λ
3∑

l=0

∥∥∥∂ltw
∥∥∥
2 ≤ C|‖w‖|r̃ , (2.51)

where r̃ = min{3, r}, that is,

d

dt
E(t) +

λ

B
E(t) ≤ C|‖w‖|r̃ . (2.52)

Then Gronwall’s inequality and the equivalent relationship (2.50) deduce that

3∑

l=0

∥∥∥∂ltw
∥∥∥
2 ≤ C

3∑

l=0

∥∥∥∂ltw(0)
∥∥∥
2
e−(λ/B)t + C

∫ t

0
es−t|‖w(s)‖|r̃ds. (2.53)

This inequality combines Lemmas 2.2 and 2.3 deduces the result of Theorem 1.1.

3. About Porous Medium Equations

In this section, we investigate the large time behavior of classical solutions to problem
(1.3)(1.4). As indicated in the introduction, we expect that (1.1) and (1.2) are captured by
(1.3) and (1.4) time asymptotically if

∫

Ω
ρ̃0d�x =

∫

Ω
ρ0d�x = ρ∗. (3.1)

Noticing Theorem 1.1 and the triangle inequality, we only need to show that the large time
asymptotic state of (1.3) and (1.4) is also the constant state (ρ∗, 0).
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Consider

ρ̃t = ΔP
(
ρ̃
)
,

ρ̃(�x, 0) = ρ̃0(x),

∇P(ρ̃) · �n|∂Ω = 0, t ≥ 0,

(3.2)

with the initial data
∫

Ω
ρ̃0d�x = ρ∗, ρ̃0(�x) ∈ L∞(Ω). (3.3)

Here we assume ρ̃0 is uniform bounded, that is, there exists a constant ρ∗ < ρ <∞ such that

0 ≤ ρ̃0(�x) ≤ ρ. (3.4)

The global existence and the large time behavior of solutions to (3.2) and (3.3) have
been established in [18]. The method we used in this section is similar with which in [15].
Yet, since the pressure is more general in this paper, we can not use the corresponding result
in [15] directly.

Lemma 3.1. Let ρ̃ be the global solution of problem (3.2) and (3.3), M̃ = −∇P(ρ̃). Then there exist
positive constants C > 0, η > 0, independent of time t, such that

∥∥(ρ̃ − ρ∗)∥∥1 +
∥∥∥M̃
∥∥∥ ≤ Ce−ηt, (3.5)

for big enough t.

Proof. From [18], we know that there exists a positive constant T > 0 such that the problem
(3.2) and (3.3) has a classical solution ρ̃(�x, t) for t > T , and

ρ̃(�x, t) >
ρ∗

2
, for t > T. (3.6)

On the other hand, due to the comparison principle

0 ≤ ρ̃(�x, t) ≤ ρ, for any (�x, t) ∈ Ω × [0, L∞). (3.7)

For t > T , We consider

(
ρ̃ − ρ∗)t = Δ

(
P
(
ρ̃
) − P(ρ∗)). (3.8)
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Taking L2 inner product of (3.8) with (ρ̃ − ρ∗), we have

0 =
1
2
d

dt

∫

Ω

(
ρ̃ − ρ∗)2d�x −

∫

Ω
Δ
(
P
(
ρ̃
) − P(ρ∗))(ρ̃ − ρ∗)d�x

=
1
2
d

dt

∥
∥ρ̃ − ρ∗∥∥2 +

∫

Ω

∣
∣∇(P(ρ̃) − P(ρ∗))∣∣2

P ′(ρ̃
) d�x,

(3.9)

where we have used boundary condition (3.2)3. Combining the increasing property of P ′(ρ̃)
and the inequality (3.7), we have

1
2
d

dt

∥
∥ρ̃ − ρ∗∥∥2 + 1

P ′(ρ
)
∥
∥∇(P(ρ̃) − P(ρ∗))∥∥2 ≤ 0. (3.10)

Multiplying (3.2)1 with P ′(ρ̃), we have

P
(
ρ̃
)
t − P ′(ρ̃

)
ΔP
(
ρ̃
)
= 0, (3.11)

that is,
(
P
(
ρ̃
) − P(ρ∗))t − P ′(ρ̃

)
Δ
(
P
(
ρ̃
) − P(ρ∗)) = 0. (3.12)

Define

ψ = ρ̃ − ρ∗, φ = P
(
ρ̃
) − P(ρ∗). (3.13)

Taking L2 inner product of (3.12)with Δφ, we get

1
2
d

dt

∥∥∇φ∥∥2 + P ′
(
ρ∗

2

)∥∥Δφ
∥∥2 ≤ 0. (3.14)

(3.10) plus (3.14) deduce

1
2
d

dt

(∥∥ψ
∥
∥2 +

∥∥∇φ∥∥2
)
+ C̃
(∥
∥∇φ∥∥2 + ∥∥Δφ∥∥2

)
≤ 0, (3.15)

where C̃ = min{P ′(ρ∗/2), 1/P ′(ρ)}. Since the conservation of total mass and the Poincaré’s
inequality, we have

∥∥ψ
∥∥2 ≤ C∥∥∇ψ∥∥2 ≤ C

(
1

P ′(ρ∗/2
)

)2
∥∥∇φ∥∥2. (3.16)

Then inequality (3.15) turns into

1
2
d

dt

(∥∥ψ
∥∥2 +

∥∥∇φ∥∥2
)
+ C
(∥∥ψ

∥∥2 +
∥∥∇φ∥∥2 + ∥∥Δφ∥∥2

)
≤ 0. (3.17)

The Gronwall inequality and (3.16) deduce Lemma 3.1.
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